末次冰期以来印尼穿越流出口处古海洋学记录及其意义

张鹏, 徐建, 杨策, 高莲凤, 张振国, 牛耀. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013
引用本文: 张鹏, 徐建, 杨策, 高莲凤, 张振国, 牛耀. 末次冰期以来印尼穿越流出口处古海洋学记录及其意义[J]. 海洋地质与第四纪地质, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013
ZHANG Peng, XU Jian, YANG Ce, GAO Lianfeng, ZHANG Zhenguo, NIU Yao. PALEOCEANOGRAPHIC RECORDS OF INDONESIAN THROUGHFLOW AT ITS EXIT SINCE THE LAST GLACIAL AND THEIR SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013
Citation: ZHANG Peng, XU Jian, YANG Ce, GAO Lianfeng, ZHANG Zhenguo, NIU Yao. PALEOCEANOGRAPHIC RECORDS OF INDONESIAN THROUGHFLOW AT ITS EXIT SINCE THE LAST GLACIAL AND THEIR SIGNIFICANCE[J]. Marine Geology & Quaternary Geology, 2017, 37(3): 129-137. doi: 10.16562/j.cnki.0256-1492.2017.03.013

末次冰期以来印尼穿越流出口处古海洋学记录及其意义

  • 基金项目:
    国家自然科学基金面上项目“末次冰期以来印尼穿越流次表层流时空变迁及其古海洋学意义” (41576045);2015年度陕西省人力资源与保障厅留学人员科技活动项目择优资助优秀类(陕人社函[2015]1190号)
详细信息
    作者简介: 张鹏(1987—), 男, 博士研究生, 主要从事海洋微体古生物学和古海洋学研究,E-mail: zp13@foxmail.com
    通讯作者: 徐建(1977—), 男, 教授,主要从事古海洋学和第四纪地质学研究,E-mail: jx08@live.cn
  • 中图分类号: P736.22

  • 蔡秋蓉编辑

PALEOCEANOGRAPHIC RECORDS OF INDONESIAN THROUGHFLOW AT ITS EXIT SINCE THE LAST GLACIAL AND THEIR SIGNIFICANCE

More Information
  • 印尼穿越流作为连接西太平洋和印度洋的唯一通道,调节着这两个大洋之间的热量和水汽的交换,继而在热带乃至全球气候变化中扮演着重要的角色。本文对来自于帝汶海内印尼穿越流出口处SO18460钻孔中浮游有孔虫Globigerinoides ruberPulleniatina obliquiloculata 壳体的Mg/Ca比值和氧同位素进行再分析,重建了末次冰期以来表层和温跃层海水温度、盐度以及温跃层深度的变化,并将其与区域古气候记录对比以探讨其意义。结果表明,末次冰期以来,SO18460孔的表层和温跃层海水盐度均与区域降雨量记录变化一致,显示降雨信号以海水盐度的形式通过水体混合由表层向温跃层的传输。自早全新世以来,SO18460孔的表层海水温度在28 ℃左右波动,可能是受西太平洋暖池的影响;同时,温跃层海水温度始终低于22 ℃可能指示厄尔尼诺-南方涛动处于类厄尔尼诺状态;而温跃层海水温度持续下降、温跃层深度持续变浅,一方面可能是对早全新世以来类厄尔尼诺事件频发的响应,另一方面也可能归因于热带辐合带的南向移动导致区域降雨增加、以及东亚冬季风驱使南海表层流的加强等因素对印尼穿越流表层流的抑制。冰期-间冰期尺度上,SO18460孔温跃层海水温度与北半球夏季太阳辐射量变化步幅一致,可能是北太平洋热带水借助棉兰老岛流在苏拉威西海混入印尼穿越流所致。

  • 加载中
  • 图 1  SO18460钻孔站位及研究区主要洋流分布

    Figure 1. 

    图 2  研究区现代表层(a)、次表层(b)海水温度[16]和盐度[17]分布图

    Figure 2. 

    图 3  末次冰期以来帝汶海区SO18460孔[9]与MD01-2378孔古海洋学记录[19]、中国、佛洛瑞斯石笋氧同位素[25, 44, 45]、卡里亚科盆地Ti元素统计[41]、ENSO波动程度[33]以及ENSO事件记录对比[30, 32]

    Figure 3. 

    图 4  1982—2009年间SO18460站位处月平均次表层海水温度(112m)、表层(5m)和次表层(112m)海水间的温度梯度(ΔT)与南方涛动指数(Southern Ocean Index, SOI)对比

    Figure 4. 

    表 1  SO18460孔AMS 14C测年数据[12]

    Table 1.  AMS 14C dates for Core SO18460[12]

    Lab code 深度/cm 14C年龄/aBP 日历年龄/aBP
    KIA 30820 10 905±25 595±33
    KIA 33791 100 5 170±35 5 604±24
    KIA 30821 200 11 050 ±50 12677±49
    KIA 33792 240 13 990±70 15 935±134
    KIA 30822 320 18 370±100 21 469±177
    KIA 30823 350 19 800±120 23 256±215
    KIA 30824 390 21 810±140 25 847±235
    KIA 30825 420 23 720±190 28 082±255
    下载: 导出CSV
  • [1]

    Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824-828. doi: 10.1038/nature02038

    [2]

    Gordon A L. Oceanography of the Indonesian seas and their throughflow[J]. Oceanography, 2005, 18(4): 14-27. doi: 10.5670/oceanog.2005.01

    [3]

    Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004-2006[J]. Journal of Geophysical Research, 2009, 114(C7): C07001. doi: 10.1029/2008JC005257

    [4]

    Trenberth K E. Recent observed interdecadal climate changes in the northern hemisphere[J]. Bulletin of the American Meteorological Society, 1990, 71(7): 988-993. doi: 10.1175/1520-0477(1990)071<0988:ROICCI>2.0.CO;2

    [5]

    Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11): L11602, doi: 10.1029/2012GL052021.

    [6]

    Lee T, Fukumori I, Menemenlis D, et al. Effects of the Indonesian throughflow on the Pacific and Indian oceans[J]. Journal of Physical Oceanography, 2002, 32(5): 1404-1429. doi: 10.1175/1520-0485(2002)032<1404:EOTITO>2.0.CO;2

    [7]

    Song Q, Vecchi G A, Rosati A J. The role of the indonesian throughflow in the Indo-Pacific climate variability in the GFDL coupled climate model[J]. Journal of Climate, 2007, 20(11): 2434-2451. doi: 10.1175/jcli4133.1

    [8]

    Qu T D, Du Y, Strachan J, et al. Sea surface temperature and its variability in the Indonesian region[J]. Oceanography, 2005, 18(4): 50-61. doi: 10.5670/oceanog.2005.05

    [9]

    Holbourn A, Kuhnt W, Xu J. Indonesian throughflow variability during the last 140 Ka: the Timor sea outflow[J]. Geological Society, London, Special Publications, 2011, 355(1): 283-303, doi: 10.1144/SP355.14.

    [10]

    Martin P A, Lea D W. A simple evaluation of cleaning procedures on fossil benthic foraminiferal Mg/Ca[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(10): 8401, doi: 10.1029/2001GC000280.

    [11]

    Fairbanks R G, Mortlock R A, Chiu T C, et al. Marine radiocarbon calibration curve spanning 0 to 50, 000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24(16-17): 1781-1796. doi: 10.1016/j.quascirev.2005.04.007

    [12]

    Xu J, Kuhnt W, Holbourn A, et al. Indo-Pacific Warm Pool variability during the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2010, 25(4): PA4230, doi: 10.1029/2010PA001934.

    [13]

    Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2): 1050, doi: 10.1029/2002PA000846.

    [14]

    Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations[J]. Paleoceanography, 1998, 13(2): 150-160. doi: 10.1029/98PA00070

    [15]

    Waelbroeck C, Labeyrie L, Michel E, et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records[J]. Quaternary Science Reviews, 2002, 21(1-3): 295-305, doi: 10.1016/S0277-3791(01)00101-9.

    [16]

    Locarnini R A, Mishonov A V, Antonov J I, et al. World ocean atlas 2009, volume 1: temperature[M]//Levitus S. NOAA Atlas NESDIS 68. Washington, DC: U.S. Government Printing Office, 2010: 184.

    [17]

    Antonov J I, Seidov D, Boyer T P, et al. World ocean atlas 2009, volume 2: salinity[M]//Levitus S. NOAA Atlas NESDIS 69. Washington, DC: U.S. Government Printing Office, 2010: 184.

    [18]

    Schlitzer R. Ocean data view: Version 4.6.2[CP/OL]. (2014-03-31). http://odv.awi.de.

    [19]

    Xu J, Holbourn A, Kuhnt W, et al. Centennial changes in the thermocline structure of the Indonesian outflow during terminations Ⅰ and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 273(1-2): 152-162, doi: 10.1016/j.epsl.2008.06.029.

    [20]

    Labeyrie L D, Duplessy J C, Blanc P L. Variations in mode of formation and temperature of oceanic deep waters over the past 1250, 000 years[J]. Nature, 1987, 327(6122): 477-482. doi: 10.1038/327477a0

    [21]

    Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919): 152-155. doi: 10.1038/nature01297

    [22]

    Sagawa T, Yokoyama Y, Ikehara M, et al. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346-347: 120-129. doi: 10.1016/j.palaeo.2012.06.002

    [23]

    Lea D W, Pak D K, Spero H J. Climate impact of late quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485): 1719-1724. doi: 10.1126/science.289.5485.1719

    [24]

    Yan X H, Ho C R, Zheng Q A, et al. Temperature and size variabilities of the western Pacific warm pool[J]. Science, 1992, 258(5088): 1643-1645. doi: 10.1126/science.258.5088.1643

    [25]

    Ayliffe L K, Gagan M K, Zhao J X, et al. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation[J]. Nature Communications, 2013, 4: 2908, doi: 10.1038/ncomms3908.

    [26]

    Sprintall J, Gordon A L, Koch-Larrouy A, et al. The Indonesian seas and their role in the coupled ocean-climate system[J]. Nature, 2014, 7(7): 487-492. doi: 10.1038/ngeo2188

    [27]

    Xu J. Change of Indonesian throughflow outflow in response to east asian monsoon and ENSO activities since the Last Glacial[J]. Science China Earth Sciences, 2014, 57(4): 791-801, doi: 10.1007/s11430-014-4845-0.

    [28]

    Carton J A, Giese B S. A reanalysis of ocean climate using simple ocean data assimilation (SODA)[J]. Monthly Weather Review, 2008, 136(8): 2999-3017. doi: 10.1175/2007MWR1978.1

    [29]

    Rodbell D T, Seltzer G O, Anderson D M, et al. A ~15, 000-year record of El Ni o-driven alluviation in southwestern Ecuador[J]. Science, 1999, 283(5401): 516-520. http://d.old.wanfangdata.com.cn/NSTLQK/10.1126-science.283.5401.516/

    [30]

    Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Ni o/southern oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162-165. doi: 10.1038/nature01194

    [31]

    Koutavas A, deMenocal P B, Olive G C, et al. Mid-Holocene El Ni o-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments[J]. Geology, 2006, 34(12): 993-996. doi: 10.1130/G22810A.1

    [32]

    Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180.

    [33]

    Liu Z Y, Lu Z Y, Wen X Y, et al. Evolution and forcing mechanisms of El Ni o over the past 21, 000 years[J]. Nature, 2014, 515(7528): 550-553, doi: 10.1038/nature13963.

    [34]

    Qu T D, Mitsudera H, Yamagata T. A climatology of the circulation and water mass distribution near the Philippine coast[J]. Journal of Physical Oceanography, 1999, 29(7): 1488-1505, doi: 10.1175/1520-0485(1999)029<1488:ACOTCA>2.0.CO; 2.

    [35]

    Fine R A, Lukas R, Bingham F M, et al. The western equatorial Pacific: a water mass crossroads[J]. Journal of Geophysical Research, 1994, 99(C12): 25063-25080, doi: 10.1029/94JC02277.

    [36]

    Fine R A, Maillet K A, Sullivan K F, et al. Circulation and ventilation flux of the Pacific Ocean[J]. Journal of Geophysical Research, 2001, 106(10): 22159-22178, doi: 10.1029/1999JC000184.

    [37]

    Gordon A L. Interocean exchange of thermocline water[J]. Journal of Geophysical Research, 1986, 91(C4): 5037-5046. doi: 10.1029/JC091iC04p05037

    [38]

    Mohtadi M, Oppo D W, Lückge A, et al. Reconstructing the thermal structure of the upper ocean: insights from planktic foraminifera shell chemistry and alkenones in modern sediments of the tropical eastern Indian Ocean[J]. Paleoceanography, 2011, 26(3): PA3219, doi: 10.1029/2011PA002132.

    [39]

    Dang H W, Jian Z M, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1): L01701. doi: 10.1029/2011gl050154

    [40]

    Fan W J, Jian Z M, Bassinot F, et al. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: evidences from the Makassar Strait[J]. Global and Planetary Change, 2013, 111: 111-117, doi: 10.1016/j.gloplacha.2013.08.017.

    [41]

    Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533): 1304-1308. doi: 10.1126/science.1059725

    [42]

    Linsley B K, Rosenthal Y, Oppo D W. Holocene evolution of the Indonesian throughflow and the western Pacific warm pool[J]. Nature Geoscience, 2010, 3(8): 578-583. doi: 10.1038/ngeo920

    [43]

    Griffiths M L, Drysdale R N, Gagan M K, et al. Abrupt increase in east Indonesian rainfall from flooding of the Sunda Shelf ~9500 years ago[J]. Quaternary Science Reviews, 2013, 74: 273-279. doi: 10.1016/j.quascirev.2012.07.006

    [44]

    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. doi: 10.1126/science.1064618

    [45]

    Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1698
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2016-06-22
修回日期:  2016-09-06
刊出日期:  2017-06-28

目录