LITHOFACIES AND ORGANIC MATTER ENRICHMENT IN MADINGO FORMATION OF BLOCK M, LOWER CONGO BASIN
-
摘要:
以下刚果盆地M区块Madingo组烃源岩为研究对象,通过X-射线衍射、薄片鉴定、背散射、能谱分析、主量元素及有机地化测试等技术手段,分析了烃源岩的矿物组成、古生物与岩相特征,并讨论了烃源岩有机质富集机制。结果表明:Madingo组烃源岩矿物组成以黏土矿物和硅质矿物为主,方解石和长石次之,含有少量的白云石和黄铁矿;有孔虫、放射虫等微古生物发育;根据矿物组成、古生物特征和磷酸盐含量,并结合显微岩石构造,共识别出富有孔虫细粒岩、富放射虫细粒岩、磷质细粒岩、黏土质细粒岩、长英质细粒岩和灰质细粒岩6种岩相类型。研究区Madingo组烃源岩的发育受海平面升降、上升流、古地理和古气候的控制:Madingo组共识别出3期海侵/海退旋回,海平面升降通过控制水体深度、氧化还原条件和沉积物类型,进而控制岩相和烃源岩的发育;富放射虫细粒岩、磷质细粒岩和富有孔虫细粒岩有机质含量较高,推测为两期不同规模的上升流沉积;Madingo组沉积时期,研究区发育与盐底辟活动相关的陆架内部洼陷,相对封闭的水体环境有利于有机质的保存;古气候经历了干旱气候、相对湿润气候和湿润气候3个阶段,通过控制海洋中陆源有机质输入在一定程度上影响烃源岩有机质丰度和有机质类型。
Abstract:The source rock of the Madingo Formation in the Block M of the Lower Congo Basin is selected as the research object of this paper. Mineralogy, paleontology and lithofacies of the source rock were analyzed using X-ray diffraction, thin sections, backscatter and energy spectrum. Special attention is paid to major elements and organic matters, and the enrichment mechanism of organic matters discussed. The results show that the source rock is mainly composed of clay and silica minerals, followed by calcite, feldspar, dolomite and pyrite. Micro fossils and nanofossiles, such as foraminifera and radiolarian, are rather popular. Based on mineralogy, paleontology, phosphate content and microstructure, six types of lithofacies are identified, i.e.: foraminifera-bearing fine deposits, radiolarian-bearing fine deposits, phosphatic fine deposits, argillaceous fine deposits, silty fine deposits and calcareous fine deposits. The deposition of the source rock in Madingo Formation was under the joint control of sea level eustacy, upwelling current, paleo-climate and paleogeography. Several cycles of transgression and regression events are identified in the Formation. Sea level eustacy constrained the deposition of lithofacies through changes in water depth, redox conditions and sediments types. Foraminifera-bearing fine deposits, phosphatic fine deposits and radiolarian-bearing fine deposits with high organic content are formed in two cycles of upwelling. Depressions in the inner shelf were filled with evaporate deposits during the period while the Madingo Formation was deposited. The relatively closed environment benefited the preservation of organic matters. The paleo-climate experienced three stages of change from dry to relatively humid and to humid climate during the period of Madingo Formation. The abundance and types of organic matter were dependent upon to some extent the input of terrigenous organic matter.
-
Key words:
- lower Congo Basin /
- source rock /
- lithofacies /
- sea level eustacy /
- upwelling /
- ancient climate
-
表 1 Madingo组烃源岩X衍射分析数据
Table 1. X-ray diffraction data of source rock in Madingo Formation
深度/m 岩相 全岩矿物含量/ 黏土矿物相对含量/ 石英 长石 黄铁矿 黏土矿物 方解石 白云石 其他 绿泥石 伊利石 高岭石 伊蒙混层 3 580 磷质细粒岩 18 3 7 61 3 0 8 10 25 40 25 3 611 磷质细粒岩 22 14 4 46 2 4 8 10 30 35 25 3 623 磷质细岩 23 16 4 34 15 3 5 10 30 35 25 3 629 磷质细岩 20 6 3 49 13 3 6 5 40 35 20 3 638 磷质细岩 24 6 4 35 18 2 11 20 30 35 15 3 650 质细岩 24 6 4 26 28 3 9 20 20 40 20 3 677 磷质细岩 18 4 3 50 15 5 5 20 25 30 25 3 689 质细岩 17 3 3 33 37 3 4 20 30 30 20 3 716 细岩 26 11 4 32 20 6 1 10 30 30 30 3 728 细岩 25 6 1 53 8 4 3 25 25 20 30 3 740 细岩 30 10 3 47 8 2 0 25 30 25 20 3 749 细岩 23 13 2 53 6 1 2 25 35 15 25 3 764 黏土质细岩 25 7 3 50 12 3 0 25 35 15 25 3 791 质细岩 26 15 2 43 8 2 4 30 45 5 20 3 806 质细岩 27 19 3 36 11 2 2 30 45 0 25 3 818 黏土质细岩 34 7 2 46 5 3 3 30 45 0 25 3 830 黏土质细岩 25 6 2 55 8 1 3 35 45 0 20 3 839 质细岩 32 10 1 45 8 2 2 25 45 15 15 3 845 黏土质细岩 31 5 0 49 11 1 3 25 50 0 25 3 860 黏土质细岩 28 6 2 46 12 3 3 35 45 0 20 3 875 富放射虫细粒岩 23 17 3 36 12 5 4 25 45 15 15 3 881 富放射虫细粒岩 28 16 2 29 17 3 5 15 40 25 20 3 893 放射细岩 32 11 2 20 28 3 4 20 50 20 10 3 899 放射细岩 29 13 3 23 26 3 3 25 55 10 10 3 911 放射细岩 12 2 5 75 6 0 0 20 15 35 30 3 920 放射细岩 20 12 2 46 18 2 0 25 10 30 35 3 941 质细岩 16 19 2 28 31 1 3 10 70 10 10 3 968 质细岩 17 14 2 28 35 1 3 35 55 0 10 3 980 质细岩 15 18 2 22 39 1 3 30 60 0 10 3 998 质细岩 19 22 3 31 20 1 4 35 40 5 20 4 020 质细岩 26 11 4 44 10 0 5 40 45 0 15 -
[1] 姜在兴, 梁超, 吴靖, 等.含油气细粒沉积岩研究的几个问题[J].石油学报, 2013, 34(6): 1031-1039. http://d.old.wanfangdata.com.cn/Periodical/syxb201306001
JIANG Zaixing, LIANG Chao, WU Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039. http://d.old.wanfangdata.com.cn/Periodical/syxb201306001
[2] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059. doi: 10.1306/03281110162
[3] 吴靖.东营凹陷古近系沙四上亚段细粒岩沉积特征与层序地层研究[D].中国地质大学(北京)博士学位论文, 2015.
WU Jing. The study on sedimentary characteristics and sequence stratigraphy of fine-grained rocks of the upper fourth member of Paleogene Shahejie formation, Dongying Depression[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2015.
[4] 梁超, 姜在兴, 杨镱婷, 等.四川盆地五峰组—龙马溪组页岩岩相及储集空间特征[J].石油勘探与开发, 2012, 39(6): 691-698. http://www.cpedm.com/CN/article/searchArticle.do
LIANG Chao, JIANG Zaixing, YANG Yiting, et al. Characteristics of shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6): 691-698. http://www.cpedm.com/CN/article/searchArticle.do
[5] 张顺, 陈世悦, 谭明友, 等.东营凹陷西部沙河街组三段下亚段泥页岩沉积微相[J].石油学报, 2014, 35(4): 633-645. doi: 10.7623/syxb201404003
ZHANG Shun, CHEN Shiyue, TAN Mingyou, et al. Characterization of sedimentary microfacies of shale in the lower third sub-member of Shahejie Formation, western Dongying Sag[J]. Acta Petrolei Sinica, 2014, 35(4): 633-645. doi: 10.7623/syxb201404003
[6] Singh P. Lithofacies and sequence-stratigraphic framework of the Barnett Shale, northeast Texas[D]. Doctor Dissertation of University of Oklahoma, 2008.
[7] Abouelresh M O, Slatt R M. Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas[J]. AAPG Bulletin, 2012, 96(1): 1-22. doi: 10.1306/04261110116
[8] Slatt R M, Rodriguez N D. Comparative sequence stratigraphy and organic geochemistry of gas shales: Commonality or coincidence?[J]. Journal of Natural Gas Science and Engineering, 2012, 8: 68-84. doi: 10.1016/j.jngse.2012.01.008
[9] 吴靖, 姜在兴, 童金环, 等.东营凹陷古近系沙河街组四段上亚段细粒沉积岩沉积环境及控制因素[J].石油学报, 2016, 37(4): 464-473. doi: 10.7623/syxb201604005
WU Jing, JIANG Zaixing, TONG Jinhuan, et al. Sedimentary environment and control factors of fine-grained sedimentary rocks in the upper fourth Member of Paleogene Shahejie Formation, Dongying Sag[J]. Acta Petrolei Sinica, 2016, 37(4): 464-473. doi: 10.7623/syxb201604005
[10] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601. doi: 10.1306/11020606059
[11] 黄文彪, 邓守伟, 卢双舫, 等.泥页岩有机非均质性评价及其在页岩油资源评价中的应用——以松辽盆地南部青山口组为例[J].石油与天然气地质, 2014, 35(5): 704-711. doi: 10.11743/ogg20140516
HUANG Wenbiao, DENG Shouwei, LU Shuangfang, et al. Shale organic heterogeneity evaluation method and its application to shale oil resource evaluation—a case study from Qingshankou Formation, southern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(5): 704-711. doi: 10.11743/ogg20140516
[12] Demaison G J, Moore G T. Anoxic environments and oil source bed genesis[J]. AAPG Bulletin, 1980, 64(8): 1179-1209.
[13] Pedersen T F, Calvert S E. Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. AAPG Bulletin, 1990, 74(4): 454-466. http://d.old.wanfangdata.com.cn/Periodical/zgnykx-e201607022
[14] 张宝民, 张水昌, 边立曾, 等.浅析中国新元古—下古生界海相烃源岩发育模式[J].科学通报, 2007, 52(增刊): 58-69. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2007S1007.htm
ZHANG Baomin, ZHANG Shuichang, BIAN Lizeng, et al. Developmental modes of the Neoproterozoic-Lower Paleozoic marine hydrocarbon source rocks in China[J]. Chinese Science Bulletin, 2007, 52(S1): 77-91. http://www.cnki.com.cn/Article/CJFDTotal-KXTB2007S1007.htm
[15] 张水昌, 张宝民, 边立曾, 等.中国海相烃源岩发育控制因素[J].地学前缘, 2005, 12(3): 39-48. doi: 10.3321/j.issn:1005-2321.2005.03.006
ZHANG Shuichang, ZHANG Baomin, BIAN Lizeng, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48. doi: 10.3321/j.issn:1005-2321.2005.03.006
[16] 刘峰, 蔡进功, 吕炳全, 等.下扬子五峰组上升流相烃源岩沉积特征[J].同济大学学报:自然科学版, 2011, 39(3): 440-444. doi: 10.3969/j.issn.0253-374x.2011.03.024
LIU Feng, CAI Jingong, LV Bingquan, et al. Sedimentary characters of Wufeng Formation upwelling facies source rock in lower Yangtze area[J]. Journal of Tongji University: Natural Science, 2011, 39(3): 440-444. doi: 10.3969/j.issn.0253-374x.2011.03.024
[17] 林俊峰, 郝芳, 胡海燕, 等.廊固凹陷沙河街组烃源岩沉积环境与控制因素[J].石油学报, 2015, 36(2): 163-173. doi: 10.7623/syxb201502004
LIN Junfeng, HAO Fang, HU Haiyan, et al. Depositional environment and controlling factors of source rock in the Shahejie Formation of Langgu sag[J]. Acta Petrolei Sinica, 2015, 36(2): 163-173. doi: 10.7623/syxb201502004
[18] 曹军, 钟宁宁, 邓运华, 等.下刚果盆地海相烃源岩地球化学特征、成因及其发育的控制因素[J].地球科学与环境学报, 2014, 36(4): 87-98. doi: 10.3969/j.issn.1672-6561.2014.04.008
CAO Jun, ZHONG Ningning, DENG Yunhua, et al. Geochemical characteristics, origin and factors controlling formation of marine source rock in lower Congo Basin[J]. Journal of Earth Sciences and Environment, 2014, 36(4): 87-98. doi: 10.3969/j.issn.1672-6561.2014.04.008
[19] Cole G A, Requejo A G, Ormerod D, et al. Petroleum geochemical assessment of the lower Congo Basin[M]//Mello M R, Katz B J. Petroleum Systems of South Atlantic Margins. Tulsa: AAPG, 2000, 73: 325-339.
[20] 朱伟林, 陈书平, 王春修, 等.非洲含油气盆地[M].北京:科学出版社, 2013: 205-229.
ZHU Weilin, CHEN Shuping, WANG Chunxiu, et al. African Petroliferous Basins[M]. Beijing: Science Press, 2013: 205-229.
[21] 刘琼, 陶维祥, 于水, 等.西非下刚果-刚果扇盆地圈闭类型和分布特征[J].地质科技情报, 2013, 32(3): 107-112, 117.
LIU Qiong, TAO Weixiang, YU Shui, et al. Trap types and distribution of Lower Congo-Congo Fan Basin in west Africa[J]. Geological Science and Technology Information, 2013, 32(3): 107-112, 117.
[22] 郑应钊.西非海岸盆地带油气地质特征与勘探潜力分析[D].中国地质大学(北京)博士学位论文, 2012.
ZHENG Yingzhao. Petroleum geology features and exploration potential analysis in the coastal basins of west Africa[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2012.
[23] 石油地质勘探专业标准化委员会. SY/T 6210-1996沉积岩中黏土矿物总量和常见非黏土矿物X射线衍射定量分析方法[S].北京: 石油工业出版社, 1996.
Petroleum Geological Exploration Professional Standardization Committee. SY/T 6210-1996 Quantitative analysis method of clay mineral total quantity and common non-clay mineral in sedimentary rock by X-ray diffraction[S]. Beijing: Petroleum Industry Press, 1996.
[24] 石油地勘探专业标准化委员会. SY/T 5163-1995沉积岩粘土矿物相对含量X射线衍射分析方法[S].北京: 石油工业出版社, 1996.
Petroleum Geological Exploration Professional Standardization Committee. SY/T 5163-1995 Analysis method of clay mineral relative content in sedimentary rock by X-ray diffraction[S]. Beijing: Petroleum Industry Press, 1996.
[25] 徐冠军, 高瑛, 董淑红, 等. GB/T 19145-2003沉积岩中总有机碳的测定[S].北京: 中国标准出版社, 2003.
XU Guanjun, GAO Ying, DONG Shuhong, et al. GB/T 19145-2003 Determination of total organic carbon in sedimentary rock[S]. Beijing: Standards Press of China, 2003.
[26] 周洋, 陈芳, 孙桂华, 等.台湾海峡西北部表层沉积物中有孔虫分布对沿岸上升流存在的响应[J].海洋地质与第四纪地质, 2015, 35(1): 111-119. http://d.old.wanfangdata.com.cn/Conference/8250401
ZHOU Yang, CHEN Fang, SUN Guihua, et al. Foraminiferal distribution in surface sediments of the northwestern Taiwan strait and its response to the coastal upwelling current[J]. Marine Geology and Quaternary Geology, 2015, 35(1): 111-119. http://d.old.wanfangdata.com.cn/Conference/8250401
[27] 吴蓝宇, 胡东风, 陆永潮, 等.四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J].石油勘探与开发, 2016, 43(2): 189-197. doi: 10.11698/PED.2016.02.04
WU Lanyu, HU Dongfeng, LU Yongchao, et al. Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(2): 189-197. doi: 10.11698/PED.2016.02.04
[28] 赵建华, 金之钧, 金振奎, 等.四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J].石油学报, 2016, 37(5): 572-586. doi: 10.7623/syxb201605002
ZHAO Jianhua, JIN Zhijun, JIN Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586. doi: 10.7623/syxb201605002
[29] 王志峰, 张元福, 梁雪莉, 等.四川盆地五峰组—龙马溪组不同水动力成因页岩岩相特征[J].石油学报, 2014, 35(4): 623-632. doi: 10.7623/syxb201404002
WANG Zhifeng, ZHANG Yuanfu, LIANG Xueli, et al. Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2014, 35(4): 623-632. doi: 10.7623/syxb201404002
[30] 刘传联.琼东南盆地渐新统烃源岩微观沉积特征与沉积环境[J].石油学报, 2010, 31(4): 573-578. doi: 10.7623/syxb201004009
LIU Chuanlian. Sedimentary environment and micro-sediment characteristics of Oligocene source rocks in Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2010, 31(4): 573-578. doi: 10.7623/syxb201004009
[31] 吕炳全, 王红罡, 胡望水, 等.扬子地块东南古生代上升流沉积相及其与烃源岩的关系[J].海洋地质与第四纪地质, 2004, 24(4): 29-35. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200404005
LV Bingquan, WANG Honggang, HU Wangshui, et al. Relationship between Paleozoic upwelling facies and hydrocarbon in southeastern marginal Yangtze block[J]. Marine Geology and Quaternary Geology, 2004, 24(4): 29-35. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200404005
[32] Broucke O, Temple F, Rouby D, et al. The role of deformation processes on the geometry of mud-dominated turbiditic systems, Oligocene and Lower-Middle Miocene of the Lower Congo basin (West African Margin)[J]. Marine and Petroleum Geology, 2004, 21(3): 327-348. doi: 10.1016/j.marpetgeo.2003.11.013
[33] 吕炳全, 胡望水, 王红罡, 等.华北地块中—上元古界上升流沉积相及其与油气的关系[J].海洋地质与第四纪地质, 2005, 25(3): 83-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200503011
LV Bingquan, HU Wangshui, WANG Honggang, et al. Neoproterozoic-Mesoproterozoic upwelling facies and its relationship with hydrocarbon in north China[J]. Marine Geology and Quaternary Geology, 2005, 25(3): 83-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200503011
[34] Piper D Z, Link P K. An upwelling model for the Phosphoria sea: A Permian, ocean-margin sea in the northwest United States[J]. AAPG Bulletin, 2002, 86(7): 1217-1235.
[35] Valle P J, Gjelberg J G, Helland-Hansen W, et al. Tectonostratigraphic development in the eastern Lower Congo Basin, offshore Angola, West Africa[J]. Marine and Petroleum Geology, 2001, 18(8): 909-927. doi: 10.1016/S0264-8172(01)00036-8
[36] Wagner T. Late Cretaceous to early Quaternary organic sedimentation in the eastern Equatorial Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 179(1-2): 113-147. doi: 10.1016/S0031-0182(01)00415-1
[37] Jaillard E, Dumont T, Ouali J, et al. The Albian Tectonic "crisis" in Central Tunisia: Nature and chronology of the deformations[J]. Journal of African Earth Sciences, 2013, 85: 75-86. doi: 10.1016/j.jafrearsci.2013.04.008
[38] De Wever P, Dumitrica P, Caulet J P, et al. Radiolarians in the Sedimentary Record[M]. Amsterdam: Gordon and Breach Science Publishers, 2001: 69-72.
[39] Alsharhan A S, Nairn A E M. Sedimentary Basins and Petroleum Geology of the Middle East[M]. Amsterdam: Elsevier Science, 1997: 297-392.
[40] 杨群慧, 张富元, 林振宏, 等.南海东北部晚更新世以来沉积环境演变的矿物-地球化学记录[J].海洋学报, 2004, 26(2): 72-80. doi: 10.3321/j.issn:0253-4193.2004.02.008
YANG Qunhui, ZHANG Fuyuan, LIN Zhenhong, et al. On mineralogical and geochemical records of paleosedimentary environmental variation in the northeastern South China Sea since the late Pleistocene[J]. Acta Oceanologica Sinica, 2004, 26(2): 72-80. doi: 10.3321/j.issn:0253-4193.2004.02.008