THE APPLICATION OF GRAIN-SIZE END MEMBER ALGORITHM TO PALEOENVIRONMENTAL RECONSTRUCTION ON INNER SHELF OF EAST CHINA SEA
-
摘要:
为了了解不同粒度端元法在东海内陆架古环境重建中的差异性和适用性,本文利用6种粒度端元法(非负矩阵分解、特征向量旋转、分层贝叶斯算法、粒级-标准偏差、理论函数拟合以及粒级主成分因子分析)对东海内陆架北部DC1孔的沉积物进行了粒度端元分离,并对其结果进行了对比和评价,结合沉积学资料评估了不同粒度端元在东海内陆架古环境重建中的差异性和适用性。结果表明,上述6种方法均分离出2个具有沉积学意义的粒度端元(粗粒端元和细粒端元)。除粒级主成分因子分析外,其他5种方法的端元众值粒级大小和端元在钻孔中的含量变化具有很好的一致性,其粗粒端元指示了海侵砂沉积,细粒端元指示了河流细粉砂沉积;而粒级主成分因子分析得到的粗粒和细粒端元可能分别指示了风暴潮沉积和浪流搬运的再悬浮沉积。不同方法得到的粒度端元虽然在粒级分布、端元含量变化等方面有不同程度的差异,但上述6种端元法在东海内陆架古环境重建中都具有良好的适用性,其端元含量的变化均可有效指示末次盛冰期以来海平面波动引起的沉积环境的阶段性变化。
Abstract:In order to assess the difference and applicability of different end-member algorithms in paleoenvironmental reconstruction for the inner shelf of the East China Sea (ECS), six common methods, including nonnegative matrix factorization, eigenvector rotation, hierarchical Bayesian algorithm, grain-size class vs. standard deviation, fitting with theoretical function, and factor analysis, are used to extract the grain-size end members of sediments in core DC1 from the ECS inner shelf. Based on comparison and evaluation of different end members extracted from the above six approaches, their deviations and availabilities are discussed. Two sedimentologically meaningful end members (coarse-grained and fine-grained end members) are deduced by all the six methods. Particle size of mode for the end members from five of the six modeling, except that from factor analysis, are consistent with each other, and the content variations of those end members exhibit fairly uniform downcore pattern along the core DC1. The coarse-grained end members for the five modeling represent transgressive sand deposit, and the fine-grained end members represent fluvial fine-silty deposit. However, the coarse-grained end member from factor analysis indicates storm deposits, and the fine one indicates re-suspended deposits induced by current-wave. Although there are some differences in the particle size distribution and content variation in different end members, the six grain-size end-member approaches have good availabilities for the past environment reconstruction on the ECS inner shelf. The variations in end members are effective to indicate the phase change in hydrodynamic environment caused by the sea-level fluctuation since the last glacial maximum.
-
图 4 DC1孔岩性(图例参照图 2),6种粒度端元法的粗粒(EM3、EMM1、BEM2、80~95 μm敏感端元、E3与F3)、细粒(EM1、EMM2、BEM1、10~13 μm敏感端元、E1与F1)端元随钻孔深度的变化
Figure 4.
图 5 DC1孔的岩性(图例参照图 2)以及粒度参数随钻孔深度的变化
Figure 5.
表 1 DC1钻孔的AMS14C测年结果
Table 1. Accelerator mass spectrometry(AMS)14C dating for core DC1
深度/m 14C年龄/aBP 日历年龄/(2 σ年龄范围) (aBP) 测试材料 8.81~8.86 1 000±30 584(526~641) 底栖有孔虫混合壳 11.15~11.20 2 050±20 1 618(1 544~1 691) 底栖有孔虫混合壳 13.50~13.56 2 640±30 2 326(2 246~2 439) 底栖有孔虫混合壳 18.90~18.96 7 130±30 7 602(7 544~7 668) 软体动物壳体 19.70~19.76 7 720±30 8 190(8 092~8 297) 软体动物壳体 21.92~21.96 10 250±100 11 992(11 602~12 416) 泥炭 表 2 6种粒度端元法的粗粒、细粒端元间的线性相关系数
Table 2. Correlation coefficients between coarse(fine)-grained end members of the six methods
表 3 6种粒度端元法粗粒、细粒端元的相似系数
Table 3. Similarity coefficients of coarse(fine)-grained end members of the six methods
端元方法名称 粗粒端元相似系数α 细粒端元相似系数α 非负矩阵分解 0.07 0.13 特征向量旋转 0.10 0.01 分层贝叶斯 0.11 0.13 粒级-标准偏差 0.11 0.12 理论函数拟合 0.13 0.06 主成分因子分析 4.24 0.48 -
[1] Folk R L, Ward W C. Brazos river bar [Texas]; a study in the significance of grain size parameter[J]. Journal of Sedimentary Research, 1957, 27(1): 3-26. doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D
[2] Mason C C, Folk R L. Differentiation of beach, dune, and Aeolian flat environments by size analysis, Mustang Island, Texas[J]. Journal of Sedimentary Research, 1958, 28(2): 211-226. http://cn.bing.com/academic/profile?id=6ac0e673f449f72470caa559923a107a&encoded=0&v=paper_preview&mkt=zh-cn
[3] Friedman G M. Distinction between dune, beach, and river sands from their textural characteristics[J]. Journal of Sedimentary Research, 1961, 31(4): 514-529. http://cn.bing.com/academic/profile?id=dd91d6b267adbaec40f3aa2dc3aae0d4&encoded=0&v=paper_preview&mkt=zh-cn
[4] Friedman G M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands[J]. Journal of Sedimentary Research, 1967, 37(2): 327-354. doi: 10.1306/74D716CC-2B21-11D7-8648000102C1865D
[5] Visher G S. Fluvial processes as interpreted from ancient and recent fluvial deposits[C]//Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Tulsa, USA: SEPM, 1965: 116-132.
[6] Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3): 1074-1106. http://cn.bing.com/academic/profile?id=1e120e29729084319e3ec98bdaa2f676&encoded=0&v=paper_preview&mkt=zh-cn
[7] Passega R. Texture as characteristic of clastic deposition[J]. AAPG Bulletin, 1957, 41(9): 1952-1984. http://cn.bing.com/academic/profile?id=548da65c8633bd39ebec32127d3b44d6&encoded=0&v=paper_preview&mkt=zh-cn
[8] Passega R. Grain size representation by CM patterns as a geologic tool[J]. Journal of Sedimentary Research, 1964, 34(4): 830-847. doi: 10.1306/74D711A4-2B21-11D7-8648000102C1865D
[9] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4494-4506, doi: 10.1002/2015GC006070.
[10] Weltje G J. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503-549. doi: 10.1007/BF02775085
[11] Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244: 169-180. doi: 10.1016/j.sedgeo.2011.09.014
[12] Yu S Y, Colman S M, Li L X. BEMMA: a hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 2016, 48(6): 723-741. doi: 10.1007/s11004-015-9611-0
[13] Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3-4): 263-277. doi: 10.1016/S0037-0738(02)00082-9
[14] Boulay S, Colin C, Trentesaux A, et al. Mineralogy and Sedimentology of Pleistocene Sediment in the South China Sea (ODP Site 1144)[C]//Prell W L, Wang P, Blum P, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 2003.
[15] Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603
[16] Xu K H, Li A C, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176-191. doi: 10.1016/j.margeo.2011.06.003
[17] Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023
[18] Hartmann K, Wünnemann B. Hydrological changes and Holocene climate variations in NW China, inferred from lake sediments of Juyanze palaeolake by factor analyses[J]. Quaternary International, 2009, 194(1-2): 28-44. doi: 10.1016/j.quaint.2007.06.037
[19] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904
[20] Reimer P J, Bard E, Bayliss A, et al. Intcal13 and marine13 radiocarbon age calibration curves 0-50, 000 YEARS CAL BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
[21] Qin J G, Wu G X, Zheng H B, et al. The palynology of the First Hard Clay Layer (late Pleistocene) from the Yangtze delta, China[J]. Review of Palaeobotany and Palynology, 2008, 149(1-2): 63-72. doi: 10.1016/j.revpalbo.2007.10.003
[22] 胡刚, 刘健, 时连强. 2008年洪水期长江口滨外区悬浮泥沙特征[J].海洋地质前沿, 2011, 27(9): 6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201109002
HU Gang, LIU Jian, SHI Lianqiang. The characteristics of suspended deposits in the offshore area of the Changjiang estuary during flood season[J]. Marine Geology Frontiers, 2011, 27(9): 6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201109002
[23] 李军, 高抒, 曾志刚, 等.长江口悬浮体粒度特征及其季节性差异[J].海洋与湖沼, 2003, 34(5): 499-510. doi: 10.3321/j.issn:0029-814X.2003.05.005
LI Jun, GAO Shu, ZENG Zhigang, et al. Particle-size characteristics and seasonal variability of suspended particulate matters in the Changjiang river estuary[J]. Oceanologia et Limnologia Sinica, 2003, 34(5): 499-510. doi: 10.3321/j.issn:0029-814X.2003.05.005
[24] 李军, 高抒, 贾建军, 等. 1998年11月长江河口悬浮体粒度特征的空间分布[J].海洋通报, 2003, 22(6): 21-29. doi: 10.3969/j.issn.1001-6392.2003.06.004
LI Jun, GAO Shu, JIA Jianjun, et al. Spatial variation of the suspended particulate matter grain-size in the Yangtze Estuary[J]. Marine Science Bulletin, 2003, 22(6): 21-29. doi: 10.3969/j.issn.1001-6392.2003.06.004
[25] 肖尚斌, 李安春.东海内陆架泥区沉积物的环境敏感粒度组分[J].沉积学报, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016
XIAO Shangbin, LI Anchun. A study on environmentally sensitive grain-size population in inner shelf of the East China Sea[J]. Acta Sedimentologica Sinica, 2005, 23(1): 122-129. doi: 10.3969/j.issn.1000-0550.2005.01.016
[26] 王可, 郑洪波, Prins M, 等.东海内陆架泥质沉积反映的古环境演化[J].海洋地质与第四纪地质, 2008, 28(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200804001
WANG Ke, ZHENG Hongbo, Prins M, et al. High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf[J]. Marine Geology and Quaternary Geology, 2008, 28(4): 1-10. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200804001
[27] 胡日军, 吴建政, 朱龙海, 等.东海舟山群岛海域表层沉积物运移特性[J].中国海洋大学学报, 2009, 39(3): 495-500, 442. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200903027
HU Rijun, WU Jianzheng, ZHU Longhai, et al. Characteristic of surface sediment transport in Zhoushan Archipelago sea area, East China Sea[J]. Periodical of Ocean University of China, 2009, 39(3): 495-500, 442. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200903027
[28] Bian C W, Jiang W S, Greatbatch R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(11): 5908-5923. doi: 10.1002/2013JC009116
[29] Bian C W, Jiang W S, Greatbatch R J, et al. The Suspended Sediment Concentration Distribution in the Bohai Sea, Yellow Sea and East China Sea[J]. Journal of Ocean University of China, 2013, 12(3): 345-354. doi: 10.1007/s11802-013-1916-3
[30] Hoshika A, Tanimoto T, Mishima Y, et al. Variation of turbidity and particle transport in the bottom layer of the East China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2003, 50(2): 443-455. doi: 10.1016/S0967-0645(02)00462-9