GEOLOGICAL CONTROLLING FACTORS AND SCIENTIFIC CHALLENGES FOR OFFSHORE GAS HYDRATE EXPLOITATION
-
摘要:
目前,国际上对天然气水合物产状、分布和特征的认识已取得显著进展,开展了一系列陆地多年冻土区和海域天然气水合物试采,但天然气水合物开采仍面临科学挑战。本文在综述全球天然气水合物勘探开发现状的基础上,阐述了天然气水合物储层分类及其开采的地质控制因素,提出了海域天然气水合物有效经济开采面临的资源评价、开采技术方法、储层地质参数和工程地质风险等4方面的科学挑战。要实现海域天然气水合物的有效经济开采,资源评价是基础,开采技术方法是关键。判定天然气水合物储层是否可采需要精确的储层地质参数,能否实现有效开采取决于工程地质风险的控制。
Abstract:Significant progresses have been made so far for understanding of the occurrence, distribution and characteristics of natural gas hydrate, and a series of gas production tests from the permafrost and marine hydrate deposits have been carried out all over the world. However, the gas hydrate exploitation is still facing severe scientific challenges. Based on a general review of the global gas hydrate exploration and exploitation, this paper expounded the gas hydrate reservoir classification and geological controlling factors, and put forward four aspects of scientific challenges for the effective economic exploitation, including the resource evaluation, exploitation method and technology, reservoir geological parameters and engineering geological risks. In order to realize the effective economic exploitation of gas hydrate, the resource evaluation is the foundation, and the exploitation method and technology is the key. To determine whether the gas hydrate reservoir can be exploited requires the accurate reservoir geological parameters, and whether the effective exploitation can be realized depends on the control of engineering geological risks.
-
图 2 天然气水合物资源量和储量关系图[51]
Figure 2.
图 3 天然气水合物开采能量效率与成本在不同时期的变化趋势[62]
Figure 3.
图 4 开发过程中能量的投入与产出比EROI指标与累计产量的关系[64]
Figure 4.
表 1 全球陆地永久冻土带和海洋中的天然气水合物资源量
Table 1. Global estimates of in-situ gas hydrates resources hydrated methane in the permafrost and the ocean
全球资源量/1015 m3 永久冻土带中的资源量/1014 m3 海洋中的资源量/1016 m3 资料来源 30.057 0.57 0.3 Trofimuk等, 1981[10] 301 0.31 30.1 McIver, 1981[11] 7 634 340 760 Dobrynin等, 1981[12] 15 — — Makogon, 1981[13] 10.1 1.0 1.0 Makogon, 1988[14] 1 573 — — Cherskiy等, 1982[15] 5.057~25.057 0.57 0.5-2.5 Trofimuk等, 1977[16] 40 — — Kvenvolden和Claypool, 1988[17] 20 24 1.76 Kvenvolden, 1988[18] 20 7.4 2.1 MacDonald, 1990[19] 26.4 — — Gornitz和Fung, 1994[20] 45.4 — — Harvey和Huang, 1995[21] 1 0.57 0.3 Ginsburg和Soloviev, 1995[22] 6.8 — — Holbrook等, 1996[23] 15 — — Makogon, 1997[24] 2.5 — — Milkov, 2004[25] 120 440 7.6 Jeffery等, 2005[26] 表 2 全球天然气水合物试采情况
Table 2. Gas hydrate production tests in the world
时间和地点 试采目标 试采方法 试采状况 天然气水合物赋存特征 2002年,加拿大麦肯齐三角洲 尝试直接从含水合物储层中开采天然气,忽略下伏游离气 加热法,注热盐水,温度高于50 ℃ 125 h,产气468 m3,试验结束后仍产气48 m3 A层段砂岩(892~930 m),渗透率0.1 mD。储层初始温压8.7~9.0 MPa,5.9~6.3 ℃,孔隙度32%~38%,水合物饱和度高达80%[32, 33] 2007年,加拿大麦肯齐三角洲 降压法 12.5 h,产气830 m3, 由于出砂被迫中止 B层段砂岩、粉砂岩互层(942~993 m),渗透率0.01-0.1 mD。储层初始温压9.3~9.7 MPa,7.2~8.3 ℃,孔隙度30%~40%,水合物饱和度40%~80%[34-37] 2008年,加拿大麦肯齐三角洲 降压法 6 d,累计产气1.3万m3, 平均日产2 000~4 000 m3/d C层段砂质粉砂岩(1 070~1 107 m), 渗透率0.1 mD。储层初始温压10.4~10.8 MPa,10.6~12.0 ℃,孔隙度30%~40%,水合物饱和度80%~90%[36, 37] 2012年,美国阿拉斯加北坡Ignik Sikumi 研究CO2-CH4水合物置换开采方法和效率 CO2水合物置换法,13 d,注入4 587 m3N2+1 360 m3CO2(1 420 psia) 5周,累计产气28 300 m3, 平均产气4 955 m3/d,绝大多数N2被回收, CO2回收不到50% 水合物赋存518.2~731.5 m深度范围内的C、D两个砂体层位,其中C层段水合物厚14 m,水合物饱和度75%,水饱和度25%,无游离气,预流体试验测得含水合物储层渗透率0.12~0.17 mD[38-40] 2013年,日本南海海槽 海域砂质水合物储层试采 降压法 6 d,累计产气11.9万m3, 平均日产约2万m3/d 砂质沉积物渗透率1~1 500 mD,水深857~1 405 m赋存深度约300 mbsf,孔隙度39%,水合物饱和度68%[7, 41-45] 2017年,南海海槽 降压法 12 d,累计产气3.5万m3 降压法 24 d,累计产气20万m3 2017,中国南海神狐海域 海域细粒泥质粉砂水合物储层试采 流体抽取法 60 d,累计产气30.9万m3,平均日产5 151 m3 水深1 266 m,水合物赋存深度203~277 mbsf,粉砂质黏土、黏土质粉砂,渗透率0.2~20 mD, 水合物饱和度30%~50%[46] -
[1] Dallimore S R, Wright J F, Nixon F M, et al. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA Mallik Gas Hydrate Production Research Well[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada: ICGH, 2008.
[2] Dallimore S R, Wright J F, Yamamoto K. Appendix D: Update on mallik[C]//Energy from gas hydrates: Assessing the opportunities and challenges for Canada. Ottawa, Canada: Council of Canadian Academies, 2008: 196-200.
[3] Dallimore S R, Yamamoto K, Wright J F, et al. Scientific Results from the JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[Z]. S.l.: Geological Survey of Canada, 2012: 294.
[4] Yamamoto K, Dallimore S. Aurora-JOGMEC-NRCan Mallik 2006-2008 Gas Hydrate Research Project progress[EB/OL]. DOE-NETL Fire In the Ice Methane Hydrate Newsletter, 2008: 1-5. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Newsletter/HMNewsSummer08.pdf#Page=1.
[5] Schoderbek D, Martin K L, Howard J, et al. North Slope hydrate field trial: CO2/CH4 exchange[C]//OTC Arctic Technology Conference 2012. Houston, Texas, USA: Offshore Technology Conference, 2012.
[6] Collett T S, Boswell R. Resource and hazard implications of gas hydrates in the Northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg Ⅱ Drilling Expedition[J]. Journal of Marine Petroleum Geology, 2012, 34(1): 1-224. doi: 10.1016/j.marpetgeo.2012.01.002
[7] Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference 2014. Houston, Texas, USA: Offshore Technology Conference, 2014.
[8] Park K P, Bahk J J, Kwon Y, et al. Korean national program expedition confirm rich gas hydrate deposits in the Ulleung Basin, East Sea[EB/OL]. Fire in the Ice Methane Hydrate Newsletter, 2008: 6-9. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Newsletter/HMNewsSpring08.pdf#page=6.
[9] Collett, T S, Riedel M, Cochran, J R, et al. Indian continental margin gas hydrate prospects: results of the Indian National Gas Hydrate Program (NGHP) Expedition 01[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada: ICGH, 2008: 10.
[10] Trofimuk A A, Makogon Y F, Tolkachev M V. Gas hydrate accumulations—new reserve of energy sources[Z]. Geologiya Nefti i Gaza, 1981(10): 15-22.
[11] McIver R D. Gas Hydrate[M]//Meyer R F, Olson J D. Long-Term Energy Resources. Boston: Pitman, 1981: 713-726.
[12] Dobrynin V N M, Korotajev Y P, Plyuschev D V. Gas Hydrates--A Possible Energy Resource[M]//Meyer R F, Olson J D. Long Term Energy Resources. Boston, MA: Pitman, 1981: 727-729.
[13] Makogon Y F. Hydrates of Natural Gas, Moscow, Nedra, Izadatelstro[M]. Cieslesicz W J, trans. Tulsa, Oklahoma: PennWell Books, 1981: 237. (in Russian)
[14] Makogon, Y F. Natural Gas Hydrates: The State of Study in the USSR and Perspectives for Its Use[C]//Paper presented at the Third Chemical Congress of North America. Toronto, Canada, 1988.
[15] Cherskiy N V, Tsaarev V P, Nikitin S P. Investigation and prediction of conditions of accumulation of gas resources in gas hydrate pools[J]. Petroleum Geology, 1982, 21: 65-89.
[16] Trofimuk A A, Cherskiy N V, Tsarev V P. Introduction: The Future Supply of Nature-Made Petroleum and Gas[M]//Meyer R F. The Future Supply of Nature-Made Petroleum and Gas. New York: Pergamon Press, 1977: 919.
[17] Kvenvolden K A, Claypool G E. U. S. Geological Survey Open File Report 88-216, 1988: 50.
[18] Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 1988, 71(1-3): 41-51. doi: 10.1016/0009-2541(88)90104-0
[19] MacDonald G J. Role of methane clathrates in past and future climates[J]. Climatic Change, 1990, 16(3): 247-281. doi: 10.1007/BF00144504
[20] Gornitz V, Fung I. Potential distribution of methane hydrates in the world's oceans[J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347. doi: 10.1029/94GB00766
[21] Harvey L D D, Huang Z. Evaluation of the potential impact of methane clathrate destabilization on future global warming[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D2): 2905-2926. doi: 10.1029/94JD02829
[22] Ginsburg G D, Soloviev V A. 27th Annual Offshore Technology Conference[C]. Richardson, TX: Offshore Technology Conference, 1995.
[23] Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science, 1996, 273(5283): 1840-1843. doi: 10.1126/science.273.5283.1840
[24] Makogon Y F. Hydrates of Hydrocarbons[M]. Tulsa, OK: PennWell Publshing Co, 1997: 482.
[25] Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002
[26] Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470. doi: 10.1021/ef049798o
[27] Moridis G J, Collett T S. Strategies for gas production from hydrate accumulations under various geologic conditions[C]//Proceeding Tough Symposium. Berkeley, California: Lawrence Berkeley National Laboratory, 2003.
[28] Moridis G J, Collett T S. Gas Production from Class 1 Hydrate Accumulation[M]//Taylor C, Qwan J, eds. Advances in the Study of Gas Hydrates. New York: Kluwer Academic, 2004.
[29] Moridis G J, Reagan M T, Kim S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal, 2009, 14(4): 759-781. doi: 10.2118/110859-PA
[30] Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4): 723-737. doi: 10.3319/TAO.2006.17.4.723(GH)
[31] 苏正, 陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016
SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments[J]. Geotectonica et Metallogenia, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016
[32] Boswell R, Collett T S. The gas hydrates resource pyramid[J]. Fire in the Ice, 2006, 6(3): 5-7.
[33] Collett T S, Johnson A H, Knapp C C, et al. Natural Gas Hydrates: A Review[M]//Collett T S, Johnson A H, Knapp C, et al. Natural Gas Hydrate-Energy Resource Potential and Associated Geologic Hazards. Tulsa, OK: AAPG, 2009: 1-219.
[34] Hancock SH, Collett TS, Dallimore SR, et al. Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. S.l.: Geological Survey of Canada, 2005: 135.
[35] Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[Z] [S.l.: Geological Survey of Canada, 2005: 140.
[36] Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M].3rd ed. Boca Raton: CRC Press, 2007.
[37] Takahashi H, Yonezawa T, Fercho E. Operation overview of the 2002 Mallik gas hydrate production research well program at Mackenzie delta in the Canadian Arctic[C]//Offshore Technology Conference 2003. Houston, Texas: Offshore Technology Conference, 2003.
[38] Yamamoto K, Dallimore S R. Overview of the 2006-2008 JOGMEC/NRCan/Aurora mallik gas hydrate production test program[C]//AGU Fall Meeting. Washington, DC: AGU, 2008.
[39] Dallimore S R, Wright J F, Nixon F M, et al. Objectives and Operation overview of the 2007 JOGMEC/NRCan/Aurora Mallik 2L-38 Gas Hydrate.
[40] Schoderbek D, Martin K L, Howard J, et al. North Slope hydrate fieldtrial: CO2/CH4 exchange[C]//Proceedings Arctic Technology Conference. Houston, Texas, U S A: Offshore Technology Conference, 2012.
[41] Boswell R, Hunter R, Collett T S et al. Investigation of gas hydrate bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGII 2008). Vancouver, British Columbia, Canada: ICGH, 2008.
[42] Collett T S, Lewis R E, Winters W F et al. Downhole well log and core montages from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016
[43] Boswell R. Japan completes first offshore methane hydrate production test-Methane successfully produced from deepwater hydrate layers[J]. Center for Natural Gas and Oil, 2013, 412: 386.
[44] http://www.meti.go.jp/press/2017/06/20170629004/20170629004.html. (in Japanese)
[45] Fujii T M, Nakamizu M, Tsuji Y, et al. Methane-hydrate occurrence and saturation confirmed from core samples, eastern Nankai Trough, Japan[C]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. Tulsa, OK: AAPG, 2009: 385-400.
[46] Fujii T, Suzuki K, Takayama T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(2): 310-322. doi: 10.1016/j.marpetgeo.2015.02.037
[47] Suzuki K, Schultheiss P, Nakatsuka Y, et al. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 346-357. doi: 10.1016/j.marpetgeo.2015.02.025
[48] http://finance.sina.com.cn/roll/2017-05-22/doc-ifyfkkmc99 68617.shtml.
[49] Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0
[50] Sassen R, Sweet S T, Milkov A V, et al. Geology and geochemistry of gas hydrates, central Gulf of Mexico continental slope[J]. GCAGS Transactions, 1999, 49: 462-468.
[51] Collett T S. The evolution of gas hydrate from a gas resource to a gas reserve[C]//Proceedings of the 9th International Conference on Gas Hydrates (ICGH9-2017). Denver, USA: ICGH, 2017.
[52] Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20(2): 111-128. doi: 10.1016/S0264-8172(03)00024-2
[53] 孙运宝, 赵铁虎, 蔡峰.国外海域天然气水合物资源量评价方法对我国的启示[J].海洋地质前沿, 2013, 29(1): 27-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201301004
SUN Yunbao, ZHAO Tiehu, CAI Feng. Gas hydrate resource assessment abroad and its implications[J]. Marine Geology Frontiers, 2013, 29(1): 27-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201301004
[54] Soloviev V A. Global estimation of gas content in submarine gas hydrate accumulations[J]. Russian Geology and Geophysics, 2002, 43: 609624.
[55] Sain K, Gupta H. Gas hydrate in India: potential and development[J]. Gondwana Research, 2012, 22(2): 645-657. doi: 10.1016/j.gr.2012.01.007
[56] Xu W Y, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Soild Earth, 1999, 104(B3): 5081-5095. doi: 10.1029/1998JB900092
[57] Collett T S. Gas hydrate petroleum systems in marine and arctic permafrost environments[C]//Unconventional Energy Resources: Making the Unconventional Conventional: 29th Annual GCSSEPM Proceedings. Houston, Texas: Gulf Coast Section of the Society of Economic Paleontologists and Mineralogists Foundation, 2009: 6-30.
[58] Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates[J]. AIChE J, 1987, 33(2): 347-350. doi: 10.1002/aic.690330228
[59] Ji Chuang, Ahmadi G, Smith D H, et al. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. doi: 10.1016/S0009-2509(01)00265-2
[60] Dong F H, Zang X Y, Li D L, et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy & Fuels, 2009, 23(3): 1563-1567. doi: 10.1021/ef800660m
[61] Yuan Q, Sun C Y, Liu B, et al, Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2[J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018
[62] Chen J, Wang Y H, Lang X M, et al. Energy-efficient methods for production methane from natural gas hydrates[J]. Journal of Energy Chemistry, 2015, 24(5): 552-558. doi: 10.1016/j.jechem.2015.08.014
[63] Cottrell W F. Energy and Society: The Relation Between Energy, Social Change, and Economic Development[M]. New York: McGraw-Hill, 1955.
[64] Dale M, Krumdieck S, Bodger P. Net energy yield from production of conventional oil[J]. Energy Policy, 2011, 39(11): 7095-7102. doi: 10.1016/j.enpol.2011.08.021
[65] Reagan M. Sensitivity analysis of gas production from Class 2 and Class 3 hydrate deposits[C]//Offshore Technology Conference 2009. Houston, Texas: Offshore Technology Conference, 2009.
[66] Zhang Y, Li X S, Chen Z Y, et al. Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2627-2637. doi: 10.1021/ie5042885
[67] Feng J C, Wang Y, Li X S, et al. Influence of hydrate saturation on methane hydrate dissociation by depressurization in conjunction with warm water stimulation in the silica sand reservoir[J]. Energy & Fuels, 2015, 29(12): 7875-7884. doi: 10.1021/acs.energyfuels.5b01970
[68] Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy & Fuels, 2007, 21(1): 227-233. doi: 10.1021/ef0601869
[69] Zhao J F, Fan Z, Dong H, et al. Influence of reservoir permeability on methane hydrate dissociation by depressurization[J]. International Journal of Heat and Mass Transfer, 2016, 103: 265-276. doi: 10.1016/j.ijheatmasstransfer.2016.05.111
[70] Li D X, Ren S R, Zhang L, et al. Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors[J]. Journal of Petroleum Science and Engineering, 2016, 146: 552-560. doi: 10.1016/j.petrol.2016.07.014
[71] Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. doi: 10.1016/j.energy.2015.08.092
[72] Huang L, Su Z, Wu N Y, et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits[J]. Marine and Petroleum Geology, 2016, 77: 19-29. doi: 10.1016/j.marpetgeo.2016.05.034
[73] Yamamoto K, Nakatsuka Y, Sato R, et al. Geohazard Risk Evaluation and Related Data Acquisition and Sampling Program for the Methane Hydrate Offshore Production Test[M]//Meyer F. Frontiers in Offshore Geotechnics Ⅲ. London: CRC Press, 2015.
[74] Freij-Ayoub R, Tan C, Clennell B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1-2): 209-220. doi: 10.1016/j.petrol.2005.10.011
[75] Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012, 92-93: 65-81. doi: 10.1016/j.petrol.2012.06.004
[76] Kakumoto M, Yoneda J, Miyazaki K, et al. Basic study on the frictional strength between the casing and cement in a methane hydrate production well: basic studies of well stability for methane hydrate development (Part 1)[J]. Journal of the Mining & Materials Processing Institute of Japan, 2013, 129(4): 116-123.
[77] Milkov A V, Dickens G R, Claypool G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 829-843. doi: 10.1016/j.epsl.2004.03.028
[78] Wegner S A, Campbell K J. Drilling hazard assessment for hydrate bearing sediments including drilling through the bottom-simulating reflectors[J]. Marine and Petroleum Geology, 2014, 58: 382-405. doi: 10.1016/j.marpetgeo.2014.08.007
[79] Khabibullin T, Falcone G, Teodoriu C. Drilling through gas-hydrate sediments: managing wellbore-stability risks[J]. SPE Drilling & Completion, 2011, 26(2): 287-294. doi: 10.2118/131332-pa
[80] Hao S Q. A study to optimize drilling fluids to improve borehole stability in natural gas hydrate frozen ground[J]. Journal of Petroleum Science and Engineering, 2011, 76(3-4): 109-115. doi: 10.1016/j.petrol.2011.01.014
[81] Digby A J. Assessment and Quantification of the Hydrate Geohazard[C]//Offshore Technology Conference 2005. Houston, Texas: Offshore Technology Conference, 2005.
[82] Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009
[83] 李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005
LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: A review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005
[84] Akaki T, Kimoto S, Oka F. Dynamic analysis of hydrate-bearing seabed sediments considering methane gas production induced by depressurization[J]. Japanese Geotechnical Society Special Publication, 2016, 2(18): 676-680. doi: 10.3208/jgssp.JPN-134
[85] 房臣, 张卫东.天然气水合物的分解导致海底沉积层滑坡的力学机理及相关分析[J].海洋科学集刊, 2010(50): 154-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001981600
FANG Cheng, ZHANG Weidong. Mechanism and analysis of landslide on the seabed due to the decomposition of gas hydrate[J]. Studia Marina Sinica, 2010(50): 154-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001981600
[86] Hyodo M, Nakata Y, Yoshimoto N. Challenge for methane hydrate production by geotechnical engineering[J]. Japanese Geotechnical Society Special Publication, 2015, 2(1): 62-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_1736058
[87] Hyodo M, Yoneda J, Yoshimoto N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2015, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010
[88] McMullen N. How Hydrate Plugs are Remediated[M]//Sloan D, Koh C, Sum A K, et al. Natural Gas Hydrates in Flow Assurance. Amsterdam: Elsevier, 2011: 49-86.
[89] 魏合龙, 孙治雷, 王利波, 等.天然气水合物系统的环境效应[J].海洋地质与第四纪地质, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007
WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007
[90] Moridis G J, Reagan M T, Boswell R, et al. Preliminary evaluation of the production potential of recently discovered hydrate deposits in the Gulf of Mexico[C]//Offshore Technology Conference 2010. Houston, Texas: Offshore Technology Conference, 2010.