海域天然气水合物开采的地质控制因素和科学挑战

吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2017.05.001
引用本文: 吴能友, 黄丽, 胡高伟, 李彦龙, 陈强, 刘昌岭. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2017.05.001
WU Nengyou, HUANG Li, HU Gaowei, LI Yanlong, CHEN Qiang, LIU Changling. GEOLOGICAL CONTROLLING FACTORS AND SCIENTIFIC CHALLENGES FOR OFFSHORE GAS HYDRATE EXPLOITATION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2017.05.001
Citation: WU Nengyou, HUANG Li, HU Gaowei, LI Yanlong, CHEN Qiang, LIU Changling. GEOLOGICAL CONTROLLING FACTORS AND SCIENTIFIC CHALLENGES FOR OFFSHORE GAS HYDRATE EXPLOITATION[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 1-11. doi: 10.16562/j.cnki.0256-1492.2017.05.001

海域天然气水合物开采的地质控制因素和科学挑战

  • 基金项目:
    国家重点研发计划项目(2017YFC0307600);泰山学者特聘专家项目;青岛海洋与技术国家实验室开放基金项目(QNLM2016ORP0207);中国地质调查局项目(121201005000150016)
详细信息
    作者简介: 吴能友(1965—),男,研究员,博士生导师,主要从事海洋天然气水合物研究,E-mail: wuny@ms.giec.ac.cn
  • 中图分类号: P754

  • 蔡秋蓉编辑

GEOLOGICAL CONTROLLING FACTORS AND SCIENTIFIC CHALLENGES FOR OFFSHORE GAS HYDRATE EXPLOITATION

  • 目前,国际上对天然气水合物产状、分布和特征的认识已取得显著进展,开展了一系列陆地多年冻土区和海域天然气水合物试采,但天然气水合物开采仍面临科学挑战。本文在综述全球天然气水合物勘探开发现状的基础上,阐述了天然气水合物储层分类及其开采的地质控制因素,提出了海域天然气水合物有效经济开采面临的资源评价、开采技术方法、储层地质参数和工程地质风险等4方面的科学挑战。要实现海域天然气水合物的有效经济开采,资源评价是基础,开采技术方法是关键。判定天然气水合物储层是否可采需要精确的储层地质参数,能否实现有效开采取决于工程地质风险的控制。

  • 加载中
  • 图 1  天然气水合物资源金字塔[47, 48]

    Figure 1. 

    图 2  天然气水合物资源量和储量关系图[51]

    Figure 2. 

    图 3  天然气水合物开采能量效率与成本在不同时期的变化趋势[62]

    Figure 3. 

    图 4  开发过程中能量的投入与产出比EROI指标与累计产量的关系[64]

    Figure 4. 

    表 1  全球陆地永久冻土带和海洋中的天然气水合物资源量

    Table 1.  Global estimates of in-situ gas hydrates resources hydrated methane in the permafrost and the ocean

    全球资源量/1015 m3 永久冻土带中的资源量/1014 m3 海洋中的资源量/1016 m3 资料来源
    30.057 0.57 0.3 Trofimuk等, 1981[10]
    301 0.31 30.1 McIver, 1981[11]
    7 634 340 760 Dobrynin等, 1981[12]
    15 Makogon, 1981[13]
    10.1 1.0 1.0 Makogon, 1988[14]
    1 573 Cherskiy等, 1982[15]
    5.057~25.057 0.57 0.5-2.5Trofimuk等, 1977[16]
    40 Kvenvolden和Claypool, 1988[17]
    20 24 1.76 Kvenvolden, 1988[18]
    20 7.4 2.1 MacDonald, 1990[19]
    26.4 Gornitz和Fung, 1994[20]
    45.4 Harvey和Huang, 1995[21]
    1 0.57 0.3 Ginsburg和Soloviev, 1995[22]
    6.8 Holbrook等, 1996[23]
    15 Makogon, 1997[24]
    2.5 Milkov, 2004[25]
    120 440 7.6 Jeffery等, 2005[26]
    下载: 导出CSV

    表 2  全球天然气水合物试采情况

    Table 2.  Gas hydrate production tests in the world

    时间和地点 试采目标 试采方法 试采状况 天然气水合物赋存特征
    2002年,加拿大麦肯齐三角洲 尝试直接从含水合物储层中开采天然气,忽略下伏游离气 加热法,注热盐水,温度高于50 ℃ 125 h,产气468 m3,试验结束后仍产气48 m3 A层段砂岩(892~930 m),渗透率0.1 mD。储层初始温压8.7~9.0 MPa,5.9~6.3 ℃,孔隙度32%~38%,水合物饱和度高达80%[32, 33]
    2007年,加拿大麦肯齐三角洲 降压法 12.5 h,产气830 m3, 由于出砂被迫中止 B层段砂岩、粉砂岩互层(942~993 m),渗透率0.01-0.1 mD。储层初始温压9.3~9.7 MPa,7.2~8.3 ℃,孔隙度30%~40%,水合物饱和度40%~80%[34-37]
    2008年,加拿大麦肯齐三角洲 降压法 6 d,累计产气1.3万m3, 平均日产2 000~4 000 m3/d C层段砂质粉砂岩(1 070~1 107 m), 渗透率0.1 mD。储层初始温压10.4~10.8 MPa,10.6~12.0 ℃,孔隙度30%~40%,水合物饱和度80%~90%[36, 37]
    2012年,美国阿拉斯加北坡Ignik Sikumi 研究CO2-CH4水合物置换开采方法和效率 CO2水合物置换法,13 d,注入4 587 m3N2+1 360 m3CO2(1 420 psia) 5周,累计产气28 300 m3, 平均产气4 955 m3/d,绝大多数N2被回收, CO2回收不到50% 水合物赋存518.2~731.5 m深度范围内的C、D两个砂体层位,其中C层段水合物厚14 m,水合物饱和度75%,水饱和度25%,无游离气,预流体试验测得含水合物储层渗透率0.12~0.17 mD[38-40]
    2013年,日本南海海槽 海域砂质水合物储层试采 降压法 6 d,累计产气11.9万m3, 平均日产约2万m3/d 砂质沉积物渗透率1~1 500 mD,水深857~1 405 m赋存深度约300 mbsf,孔隙度39%,水合物饱和度68%[7, 41-45]
    2017年,南海海槽 降压法 12 d,累计产气3.5万m3
    降压法 24 d,累计产气20万m3
    2017,中国南海神狐海域 海域细粒泥质粉砂水合物储层试采 流体抽取法 60 d,累计产气30.9万m3,平均日产5 151 m3 水深1 266 m,水合物赋存深度203~277 mbsf,粉砂质黏土、黏土质粉砂,渗透率0.2~20 mD, 水合物饱和度30%~50%[46]
    下载: 导出CSV
  • [1]

    Dallimore S R, Wright J F, Nixon F M, et al. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA Mallik Gas Hydrate Production Research Well[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada: ICGH, 2008.

    [2]

    Dallimore S R, Wright J F, Yamamoto K. Appendix D: Update on mallik[C]//Energy from gas hydrates: Assessing the opportunities and challenges for Canada. Ottawa, Canada: Council of Canadian Academies, 2008: 196-200.

    [3]

    Dallimore S R, Yamamoto K, Wright J F, et al. Scientific Results from the JOGMEC/NRCan/Aurora Mallik 2007-2008 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[Z]. S.l.: Geological Survey of Canada, 2012: 294.

    [4]

    Yamamoto K, Dallimore S. Aurora-JOGMEC-NRCan Mallik 2006-2008 Gas Hydrate Research Project progress[EB/OL]. DOE-NETL Fire In the Ice Methane Hydrate Newsletter, 2008: 1-5. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Newsletter/HMNewsSummer08.pdf#Page=1.

    [5]

    Schoderbek D, Martin K L, Howard J, et al. North Slope hydrate field trial: CO2/CH4 exchange[C]//OTC Arctic Technology Conference 2012. Houston, Texas, USA: Offshore Technology Conference, 2012.

    [6]

    Collett T S, Boswell R. Resource and hazard implications of gas hydrates in the Northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg Ⅱ Drilling Expedition[J]. Journal of Marine Petroleum Geology, 2012, 34(1): 1-224. doi: 10.1016/j.marpetgeo.2012.01.002

    [7]

    Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C]//Offshore Technology Conference 2014. Houston, Texas, USA: Offshore Technology Conference, 2014.

    [8]

    Park K P, Bahk J J, Kwon Y, et al. Korean national program expedition confirm rich gas hydrate deposits in the Ulleung Basin, East Sea[EB/OL]. Fire in the Ice Methane Hydrate Newsletter, 2008: 6-9. http://www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Newsletter/HMNewsSpring08.pdf#page=6.

    [9]

    Collett, T S, Riedel M, Cochran, J R, et al. Indian continental margin gas hydrate prospects: results of the Indian National Gas Hydrate Program (NGHP) Expedition 01[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada: ICGH, 2008: 10.

    [10]

    Trofimuk A A, Makogon Y F, Tolkachev M V. Gas hydrate accumulations—new reserve of energy sources[Z]. Geologiya Nefti i Gaza, 1981(10): 15-22.

    [11]

    McIver R D. Gas Hydrate[M]//Meyer R F, Olson J D. Long-Term Energy Resources. Boston: Pitman, 1981: 713-726.

    [12]

    Dobrynin V N M, Korotajev Y P, Plyuschev D V. Gas Hydrates--A Possible Energy Resource[M]//Meyer R F, Olson J D. Long Term Energy Resources. Boston, MA: Pitman, 1981: 727-729.

    [13]

    Makogon Y F. Hydrates of Natural Gas, Moscow, Nedra, Izadatelstro[M]. Cieslesicz W J, trans. Tulsa, Oklahoma: PennWell Books, 1981: 237. (in Russian)

    [14]

    Makogon, Y F. Natural Gas Hydrates: The State of Study in the USSR and Perspectives for Its Use[C]//Paper presented at the Third Chemical Congress of North America. Toronto, Canada, 1988.

    [15]

    Cherskiy N V, Tsaarev V P, Nikitin S P. Investigation and prediction of conditions of accumulation of gas resources in gas hydrate pools[J]. Petroleum Geology, 1982, 21: 65-89.

    [16]

    Trofimuk A A, Cherskiy N V, Tsarev V P. Introduction: The Future Supply of Nature-Made Petroleum and Gas[M]//Meyer R F. The Future Supply of Nature-Made Petroleum and Gas. New York: Pergamon Press, 1977: 919.

    [17]

    Kvenvolden K A, Claypool G E. U. S. Geological Survey Open File Report 88-216, 1988: 50.

    [18]

    Kvenvolden K A. Methane hydrate-A major reservoir of carbon in the shallow geosphere?[J]. Chemical Geology, 1988, 71(1-3): 41-51. doi: 10.1016/0009-2541(88)90104-0

    [19]

    MacDonald G J. Role of methane clathrates in past and future climates[J]. Climatic Change, 1990, 16(3): 247-281. doi: 10.1007/BF00144504

    [20]

    Gornitz V, Fung I. Potential distribution of methane hydrates in the world's oceans[J]. Global Biogeochemical Cycles, 1994, 8(3): 335-347. doi: 10.1029/94GB00766

    [21]

    Harvey L D D, Huang Z. Evaluation of the potential impact of methane clathrate destabilization on future global warming[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D2): 2905-2926. doi: 10.1029/94JD02829

    [22]

    Ginsburg G D, Soloviev V A. 27th Annual Offshore Technology Conference[C]. Richardson, TX: Offshore Technology Conference, 1995.

    [23]

    Holbrook W S, Hoskins H, Wood W T, et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science, 1996, 273(5283): 1840-1843. doi: 10.1126/science.273.5283.1840

    [24]

    Makogon Y F. Hydrates of Hydrocarbons[M]. Tulsa, OK: PennWell Publshing Co, 1997: 482.

    [25]

    Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002

    [26]

    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470. doi: 10.1021/ef049798o

    [27]

    Moridis G J, Collett T S. Strategies for gas production from hydrate accumulations under various geologic conditions[C]//Proceeding Tough Symposium. Berkeley, California: Lawrence Berkeley National Laboratory, 2003.

    [28]

    Moridis G J, Collett T S. Gas Production from Class 1 Hydrate Accumulation[M]//Taylor C, Qwan J, eds. Advances in the Study of Gas Hydrates. New York: Kluwer Academic, 2004.

    [29]

    Moridis G J, Reagan M T, Kim S J, et al. Evaluation of the gas production potential of marine hydrate deposits in the Ulleung Basin of the Korean East Sea[J]. SPE Journal, 2009, 14(4): 759-781. doi: 10.2118/110859-PA

    [30]

    Chen D F, Su Z, Cathles L M. Types of gas hydrates in marine environments and their thermodynamic characteristics[J]. Terrestrial Atmospheric and Oceanic Sciences, 2006, 17(4): 723-737. doi: 10.3319/TAO.2006.17.4.723(GH)

    [31]

    苏正, 陈多福.海洋天然气水合物的类型及特征[J].大地构造与成矿学, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016

    SU Zheng, CHEN Duofu. Types of gas hydrates and their characteristics in marine environments[J]. Geotectonica et Metallogenia, 2006, 30(2): 256-264. doi: 10.3969/j.issn.1001-1552.2006.02.016

    [32]

    Boswell R, Collett T S. The gas hydrates resource pyramid[J]. Fire in the Ice, 2006, 6(3): 5-7.

    [33]

    Collett T S, Johnson A H, Knapp C C, et al. Natural Gas Hydrates: A Review[M]//Collett T S, Johnson A H, Knapp C, et al. Natural Gas Hydrate-Energy Resource Potential and Associated Geologic Hazards. Tulsa, OK: AAPG, 2009: 1-219.

    [34]

    Hancock SH, Collett TS, Dallimore SR, et al. Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. S.l.: Geological Survey of Canada, 2005: 135.

    [35]

    Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[Z] [S.l.: Geological Survey of Canada, 2005: 140.

    [36]

    Sloan E D Jr, Koh C A. Clathrate Hydrates of Natural Gases[M].3rd ed. Boca Raton: CRC Press, 2007.

    [37]

    Takahashi H, Yonezawa T, Fercho E. Operation overview of the 2002 Mallik gas hydrate production research well program at Mackenzie delta in the Canadian Arctic[C]//Offshore Technology Conference 2003. Houston, Texas: Offshore Technology Conference, 2003.

    [38]

    Yamamoto K, Dallimore S R. Overview of the 2006-2008 JOGMEC/NRCan/Aurora mallik gas hydrate production test program[C]//AGU Fall Meeting. Washington, DC: AGU, 2008.

    [39]

    Dallimore S R, Wright J F, Nixon F M, et al. Objectives and Operation overview of the 2007 JOGMEC/NRCan/Aurora Mallik 2L-38 Gas Hydrate.

    [40]

    Schoderbek D, Martin K L, Howard J, et al. North Slope hydrate fieldtrial: CO2/CH4 exchange[C]//Proceedings Arctic Technology Conference. Houston, Texas, U S A: Offshore Technology Conference, 2012.

    [41]

    Boswell R, Hunter R, Collett T S et al. Investigation of gas hydrate bearing sandstone reservoirs at the Mount Elbert stratigraphic test well, Milne Point, Alaska[C]//Proceedings of the 6th International Conference on Gas Hydrates (ICGII 2008). Vancouver, British Columbia, Canada: ICGH, 2008.

    [42]

    Collett T S, Lewis R E, Winters W F et al. Downhole well log and core montages from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016

    [43]

    Boswell R. Japan completes first offshore methane hydrate production test-Methane successfully produced from deepwater hydrate layers[J]. Center for Natural Gas and Oil, 2013, 412: 386.

    [44]

    http://www.meti.go.jp/press/2017/06/20170629004/20170629004.html. (in Japanese)

    [45]

    Fujii T M, Nakamizu M, Tsuji Y, et al. Methane-hydrate occurrence and saturation confirmed from core samples, eastern Nankai Trough, Japan[C]//Collett T, Johnson A, Knapp C, et al. Natural Gas Hydrates-Energy Resource Potential and Associated Geologic Hazards. Tulsa, OK: AAPG, 2009: 385-400.

    [46]

    Fujii T, Suzuki K, Takayama T, et al. Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66(2): 310-322. doi: 10.1016/j.marpetgeo.2015.02.037

    [47]

    Suzuki K, Schultheiss P, Nakatsuka Y, et al. Physical properties and sedimentological features of hydrate-bearing samples recovered from the first gas hydrate production test site on Daini-Atsumi Knoll around eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 346-357. doi: 10.1016/j.marpetgeo.2015.02.025

    [48]

    http://finance.sina.com.cn/roll/2017-05-22/doc-ifyfkkmc99 68617.shtml.

    [49]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates[J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [50]

    Sassen R, Sweet S T, Milkov A V, et al. Geology and geochemistry of gas hydrates, central Gulf of Mexico continental slope[J]. GCAGS Transactions, 1999, 49: 462-468.

    [51]

    Collett T S. The evolution of gas hydrate from a gas resource to a gas reserve[C]//Proceedings of the 9th International Conference on Gas Hydrates (ICGH9-2017). Denver, USA: ICGH, 2017.

    [52]

    Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope[J]. Marine and Petroleum Geology, 2003, 20(2): 111-128. doi: 10.1016/S0264-8172(03)00024-2

    [53]

    孙运宝, 赵铁虎, 蔡峰.国外海域天然气水合物资源量评价方法对我国的启示[J].海洋地质前沿, 2013, 29(1): 27-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201301004

    SUN Yunbao, ZHAO Tiehu, CAI Feng. Gas hydrate resource assessment abroad and its implications[J]. Marine Geology Frontiers, 2013, 29(1): 27-35. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201301004

    [54]

    Soloviev V A. Global estimation of gas content in submarine gas hydrate accumulations[J]. Russian Geology and Geophysics, 2002, 43: 609624.

    [55]

    Sain K, Gupta H. Gas hydrate in India: potential and development[J]. Gondwana Research, 2012, 22(2): 645-657. doi: 10.1016/j.gr.2012.01.007

    [56]

    Xu W Y, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Soild Earth, 1999, 104(B3): 5081-5095. doi: 10.1029/1998JB900092

    [57]

    Collett T S. Gas hydrate petroleum systems in marine and arctic permafrost environments[C]//Unconventional Energy Resources: Making the Unconventional Conventional: 29th Annual GCSSEPM Proceedings. Houston, Texas: Gulf Coast Section of the Society of Economic Paleontologists and Mineralogists Foundation, 2009: 6-30.

    [58]

    Kamath V A, Holder G D. Dissociation heat transfer characteristics of methane hydrates[J]. AIChE J, 1987, 33(2): 347-350. doi: 10.1002/aic.690330228

    [59]

    Ji Chuang, Ahmadi G, Smith D H, et al. Natural gas production from hydrate decomposition by depressurization[J]. Chemical Engineering Science, 2001, 56(20): 5801-5814. doi: 10.1016/S0009-2509(01)00265-2

    [60]

    Dong F H, Zang X Y, Li D L, et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy & Fuels, 2009, 23(3): 1563-1567. doi: 10.1021/ef800660m

    [61]

    Yuan Q, Sun C Y, Liu B, et al, Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2[J]. Energy Conversion and Management, 2013, 67: 257-264. doi: 10.1016/j.enconman.2012.11.018

    [62]

    Chen J, Wang Y H, Lang X M, et al. Energy-efficient methods for production methane from natural gas hydrates[J]. Journal of Energy Chemistry, 2015, 24(5): 552-558. doi: 10.1016/j.jechem.2015.08.014

    [63]

    Cottrell W F. Energy and Society: The Relation Between Energy, Social Change, and Economic Development[M]. New York: McGraw-Hill, 1955.

    [64]

    Dale M, Krumdieck S, Bodger P. Net energy yield from production of conventional oil[J]. Energy Policy, 2011, 39(11): 7095-7102. doi: 10.1016/j.enpol.2011.08.021

    [65]

    Reagan M. Sensitivity analysis of gas production from Class 2 and Class 3 hydrate deposits[C]//Offshore Technology Conference 2009. Houston, Texas: Offshore Technology Conference, 2009.

    [66]

    Zhang Y, Li X S, Chen Z Y, et al. Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2627-2637. doi: 10.1021/ie5042885

    [67]

    Feng J C, Wang Y, Li X S, et al. Influence of hydrate saturation on methane hydrate dissociation by depressurization in conjunction with warm water stimulation in the silica sand reservoir[J]. Energy & Fuels, 2015, 29(12): 7875-7884. doi: 10.1021/acs.energyfuels.5b01970

    [68]

    Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy & Fuels, 2007, 21(1): 227-233. doi: 10.1021/ef0601869

    [69]

    Zhao J F, Fan Z, Dong H, et al. Influence of reservoir permeability on methane hydrate dissociation by depressurization[J]. International Journal of Heat and Mass Transfer, 2016, 103: 265-276. doi: 10.1016/j.ijheatmasstransfer.2016.05.111

    [70]

    Li D X, Ren S R, Zhang L, et al. Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors[J]. Journal of Petroleum Science and Engineering, 2016, 146: 552-560. doi: 10.1016/j.petrol.2016.07.014

    [71]

    Huang L, Su Z, Wu N Y. Evaluation on the gas production potential of different lithological hydrate accumulations in marine environment[J]. Energy, 2015, 91: 782-798. doi: 10.1016/j.energy.2015.08.092

    [72]

    Huang L, Su Z, Wu N Y, et al. Analysis on geologic conditions affecting the performance of gas production from hydrate deposits[J]. Marine and Petroleum Geology, 2016, 77: 19-29. doi: 10.1016/j.marpetgeo.2016.05.034

    [73]

    Yamamoto K, Nakatsuka Y, Sato R, et al. Geohazard Risk Evaluation and Related Data Acquisition and Sampling Program for the Methane Hydrate Offshore Production Test[M]//Meyer F. Frontiers in Offshore Geotechnics Ⅲ. London: CRC Press, 2015.

    [74]

    Freij-Ayoub R, Tan C, Clennell B, et al. A wellbore stability model for hydrate bearing sediments[J]. Journal of Petroleum Science and Engineering, 2007, 57(1-2): 209-220. doi: 10.1016/j.petrol.2005.10.011

    [75]

    Rutqvist J, Moridis G J, Grover T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012, 92-93: 65-81. doi: 10.1016/j.petrol.2012.06.004

    [76]

    Kakumoto M, Yoneda J, Miyazaki K, et al. Basic study on the frictional strength between the casing and cement in a methane hydrate production well: basic studies of well stability for methane hydrate development (Part 1)[J]. Journal of the Mining & Materials Processing Institute of Japan, 2013, 129(4): 116-123.

    [77]

    Milkov A V, Dickens G R, Claypool G E, et al. Co-existence of gas hydrate, free gas, and brine within the regional gas hydrate stability zone at Hydrate Ridge (Oregon margin): evidence from prolonged degassing of a pressurized core[J]. Earth and Planetary Science Letters, 2004, 222(3-4): 829-843. doi: 10.1016/j.epsl.2004.03.028

    [78]

    Wegner S A, Campbell K J. Drilling hazard assessment for hydrate bearing sediments including drilling through the bottom-simulating reflectors[J]. Marine and Petroleum Geology, 2014, 58: 382-405. doi: 10.1016/j.marpetgeo.2014.08.007

    [79]

    Khabibullin T, Falcone G, Teodoriu C. Drilling through gas-hydrate sediments: managing wellbore-stability risks[J]. SPE Drilling & Completion, 2011, 26(2): 287-294. doi: 10.2118/131332-pa

    [80]

    Hao S Q. A study to optimize drilling fluids to improve borehole stability in natural gas hydrate frozen ground[J]. Journal of Petroleum Science and Engineering, 2011, 76(3-4): 109-115. doi: 10.1016/j.petrol.2011.01.014

    [81]

    Digby A J. Assessment and Quantification of the Hydrate Geohazard[C]//Offshore Technology Conference 2005. Houston, Texas: Offshore Technology Conference, 2005.

    [82]

    Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009

    [83]

    李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005

    LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: A review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005

    [84]

    Akaki T, Kimoto S, Oka F. Dynamic analysis of hydrate-bearing seabed sediments considering methane gas production induced by depressurization[J]. Japanese Geotechnical Society Special Publication, 2016, 2(18): 676-680. doi: 10.3208/jgssp.JPN-134

    [85]

    房臣, 张卫东.天然气水合物的分解导致海底沉积层滑坡的力学机理及相关分析[J].海洋科学集刊, 2010(50): 154-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001981600

    FANG Cheng, ZHANG Weidong. Mechanism and analysis of landslide on the seabed due to the decomposition of gas hydrate[J]. Studia Marina Sinica, 2010(50): 154-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001981600

    [86]

    Hyodo M, Nakata Y, Yoshimoto N. Challenge for methane hydrate production by geotechnical engineering[J]. Japanese Geotechnical Society Special Publication, 2015, 2(1): 62-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_1736058

    [87]

    Hyodo M, Yoneda J, Yoshimoto N, et al. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J]. Soils and Foundations, 2015, 53(2): 299-314. doi: 10.1016/j.sandf.2013.02.010

    [88]

    McMullen N. How Hydrate Plugs are Remediated[M]//Sloan D, Koh C, Sum A K, et al. Natural Gas Hydrates in Flow Assurance. Amsterdam: Elsevier, 2011: 49-86.

    [89]

    魏合龙, 孙治雷, 王利波, 等.天然气水合物系统的环境效应[J].海洋地质与第四纪地质, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007

    WEI Helong, SUN Zhilei, WANG Libo, et al. Perspective of the environmental effect of natural gas hydrate system[J]. Marine Geology and Quaternary Geology, 2016, 36(1): 1-13. http://d.old.wanfangdata.com.cn/Periodical/hyjs201302007

    [90]

    Moridis G J, Reagan M T, Boswell R, et al. Preliminary evaluation of the production potential of recently discovered hydrate deposits in the Gulf of Mexico[C]//Offshore Technology Conference 2010. Houston, Texas: Offshore Technology Conference, 2010.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  4315
  • PDF下载数:  94
  • 施引文献:  0
出版历程
收稿日期:  2017-09-16
修回日期:  2017-09-26
刊出日期:  2017-12-28

目录