天然气水合物试采:从实验模拟到场地实施

刘昌岭, 李彦龙, 孙建业, 吴能友. 天然气水合物试采:从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. doi: 10.16562/j.cnki.0256-1492.2017.05.002
引用本文: 刘昌岭, 李彦龙, 孙建业, 吴能友. 天然气水合物试采:从实验模拟到场地实施[J]. 海洋地质与第四纪地质, 2017, 37(5): 12-26. doi: 10.16562/j.cnki.0256-1492.2017.05.002
LIU Changling, LI Yanlong, SUN Jianye, WU Nengyou. GAS HYDRATE PRODUCTION TEST: FROM EXPERIMENTAL SIMULATION TO FIELD PRACTICE[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26. doi: 10.16562/j.cnki.0256-1492.2017.05.002
Citation: LIU Changling, LI Yanlong, SUN Jianye, WU Nengyou. GAS HYDRATE PRODUCTION TEST: FROM EXPERIMENTAL SIMULATION TO FIELD PRACTICE[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 12-26. doi: 10.16562/j.cnki.0256-1492.2017.05.002

天然气水合物试采:从实验模拟到场地实施

  • 基金项目:
    中国地质调查项目(DD2016026);国家自然科学基金项目(41606078);泰山学者特聘专家项目;青岛海洋科学与技术国家实验室开放基金(QNLM2016ORP0203)
详细信息
    作者简介: 刘昌岭(1966—),男,博士,研究员,主要从事天然气水合物实验研究,E-mail:qdliuchangling@163.com
    通讯作者: 吴能友(1965—),男,博士,研究员,主要从事天然气水合物开采研究, E-mail:wuny@ms.giec.ac.cn
  • 中图分类号: P754

  • 蔡秋蓉编辑

GAS HYDRATE PRODUCTION TEST: FROM EXPERIMENTAL SIMULATION TO FIELD PRACTICE

More Information
  • 天然气水合物研究的终极目标是对其进行有效的开发利用,即实现长期安全、高效地开采,而水合物试采只是迈出了第一步。数十年的室内水合物开采方法实验及其数值模拟研究取得了显著的成果,为天然气水合物试采奠定了坚实的基础。加拿大、美国等国家先后在陆地冻土区进行了水合物试采工作,试验成果为海域水合物试采提供了宝贵的经验。2013年和2017年,日本、中国先后在不同海域实施了天然气水合物试采,并取得了成功,这是天然气水合物研究的一个里程碑式的进步,标志着天然气水合物开采技术研究从室内实验模拟逐步转到产地实施。本文回顾了各种水合物开采方法的原理及其模拟实验成果,简要介绍了水合物开采数值模拟方法与进展,评述了水合物试采的前期关键技术准备及场地实施效果,讨论了每种技术方法的局限性及面临的挑战,并针对海洋天然气水合物开采面临的科学与技术问题提出了建议。

  • 加载中
  • 图 1  天然气水合物开采方法示意图[2]

    Figure 1. 

    图 2  日本2013年试采井及监测井管柱设计示意图

    Figure 2. 

    图 3  天然气水合物试采井筒流动安全评价技术

    Figure 3. 

    图 4  历次水合物试采在天然气水合物资源金字塔中的位置示意图

    Figure 4. 

    表 1  天然气水合物试采和出砂与防砂情况

    Table 1.  Overview of sand production and sand mamagement status during hydrate exploitation

    试采井位 防砂方式 效果
    加拿大Mallik 5L-38(2002) 防砂机械筛管防砂 有砂产出
    加拿大Mallik 2L-38(2007) 射孔完井,未防砂 出砂造成ESP损坏
    加拿大Mallik 2L-38(2008) 机械筛管防砂;泵入口加防砂网 有砂产出
    美国阿拉斯加(2012) 机械筛管防砂 有砂产出
    日本AT1-P(2013) 裸眼砾石充填防砂 出砂造成ESP损坏,试采终止
    日本2017-001* 先期膨胀GeoForm筛管 防砂失败,井筒砂埋
    日本2017-002* 井下膨胀GeoForm筛管 效果较好
    *日本2017年海域天然气水合物试采两口井的具体站位数据目前暂未见报道,因此, 采用2017-001、2017-002代替。
    下载: 导出CSV

    表 2  历次天然气水合物试采产气量对比

    Table 2.  Comparison of gas productivity for previous hydrate exploitation tests

    年份 所在区域 试采框体 储层类型 试采方法 生产持续时间 累产气量/m3
    2002 加拿大麦肯齐三角洲 Mallik site 冻土区砂砾层 注热 5 days 516
    2007 降压 12.5 hours 830
    2007-2008 降压 139 hours 13 000
    2007 阿拉斯加北坡 Mt. Elbert Well 降压 11 hours -
    2012 IgnikSikumi CO2置换 6 weeks 24 085
    2013 日本南海海槽 第二渥美海丘边缘 海洋中粗砂储层 降压 6 days 120 000
    2017(01) 12 days 35 000
    2017(02) 24 days 240 000
    2017 中国南海北部 神狐海域 海洋黏土质粉砂储层 流体抽取法 60 days 309 000
    下载: 导出CSV
  • [1]

    Bonnefoy O, Gruy F, Herri J M, et al. Interactions in systems involving gas hydrates[J]. Fluid Phase Equilibria, 2005, 231(2): 176-187. doi: 10.1016/j.fluid.2005.02.004

    [2]

    Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061

    [3]

    Yousif M H, Abass H H, Selim M S, et al. Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE Reservoir Engineering, 1991, 6(1): 69-76. doi: 10.2118/18320-PA

    [4]

    Booth J S, Winters W J, and Dillon W P. Apparatus investigates geological aspects of gas hydrates[J]. Oil and Gas Journal, 1999, 8(4): 63-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc017fb80a21d48dd8e0624f786be8bf

    [5]

    Phelps T J, Peters D J, Marshall S L, et al. A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions[J]. Review of Scientific Instruments, 2001, 72(2): 1514-1521. doi: 10.1063/1.1334628

    [6]

    Kono H O, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing[J]. Powder Technology, 2002, 122(2-3): 239-246. doi: 10.1016/S0032-5910(01)00420-X

    [7]

    Charles E T. Large-volume, high-pressure view vell helps fill gaps in understanding of methane hydrate behavior[Z]. Fire in the Ice Newsletter, Summer. USA: The National Energy Technology Laboratory, 2004: 10-12.

    [8]

    Linga P C, Haligva S C, Nam J A, et al. Recovery of methane from hydrate formed in a variable volume bed of silica sand particles[J]. Energy and Fuels, 2009, 23(11): 5508-5516. doi: 10.1021/ef900543v

    [9]

    孙建业, 业渝光, 刘昌岭, 等.沉积物中天然气水合物减压分解实验[J].现代地质, 2010, 24(3): 614-621. doi: 10.3969/j.issn.1000-8527.2010.03.028

    SUN Jianye, YE Yuguang, LIU Changling, et al. Experimental research of gas hydrate dissociation in sediments by depressurization method[J]. Geoscience, 2010, 24(3): 614-621. doi: 10.3969/j.issn.1000-8527.2010.03.028

    [10]

    唐良广, 肖睿, 李刚, 等.热力法开采天然气水合物的模拟实验研究[J].过程工程学报, 2006, 6(4): 548-553. doi: 10.3321/j.issn:1009-606X.2006.04.007

    TANG Liangguang, XIAO Rui, LI Gang, et al. Experimental investigation of production behavior of gas hydrate under thermal stimulation[J]. The Chinese Journal of Process Engineering, 2006, 6(4): 548-553. doi: 10.3321/j.issn:1009-606X.2006.04.007

    [11]

    李淑霞, 徐新华, 吴锦谨, 等.不同注热水温度下水合物开采实验研究[J].现代地质, 2013, 27(6): 1379-1383. doi: 10.3969/j.issn.1000-8527.2013.06.015

    LI Shuxia, XU Xinhua, WU Jinjin, et al. Experimental investigation of gas hydrate dissociation by hot brine injection with different temperatures[J]. Geoscience, 2013, 27(6): 1379-1383. doi: 10.3969/j.issn.1000-8527.2013.06.015

    [12]

    梁海峰.多孔介质中甲烷水合物降压分解实验与数值模拟[D].大连: 大连理工大学博士学位论文, 2009.

    LIANG Haifeng. Experimental and numerical study of methane hydrate dissociation by depressurization in porous media[D]. Dalian: Doctoral Dissertation of Dalian University of Technology, 2009.

    [13]

    刘乐乐, 鲁晓兵, 张旭辉.砂土沉积物中甲烷水合物降压分解渗流阵面实验[J].天然气工业, 2013, 33(11): 130-136. doi: 10.3787/j.issn.1000-0976.2013.11.023

    LIU Lele, LU Xiaobing, ZHANG Xuhui. An experimental study of seepage front due to methane hydrate dissociation by depressurization in sandy sediments[J]. Natural Gas Industry, 2013, 33(11): 130-136. doi: 10.3787/j.issn.1000-0976.2013.11.023

    [14]

    Li X S, Yang B, Li G, et al. Experimental study on gas production from methane hydrate in porous media by huff and puff method in Pilot-Scale Hydrate Simulator[J]. Fuel, 2012, 94: 486-494. doi: 10.1016/j.fuel.2011.11.011

    [15]

    粟科华, 孙长宇, 李楠, 等.天然气水合物三维成藏物模实验系统的构建与检验[J].天然气工业, 2013, 33(12): 173-178. http://d.old.wanfangdata.com.cn/Periodical/trqgy201312027

    SU Kehua, SUN Changyu, LI Nan, et al. A large-scale three-dimensional device for simulating natural gas hydrates accumulation and distribution process in sediments[J]. Natural Gas Industry, 2013, 33(12): 173-178. http://d.old.wanfangdata.com.cn/Periodical/trqgy201312027

    [16]

    Nagao J, Konno Y. Development of large scale production system for methane hydrates[C]// Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013.

    [17]

    Spangenberg E, Priegnitz M, Heeschen K, et al. How close are laboratory formed pore-filling hydrate systems to nature[C]//Proceedings of the 8th International Conference on Gas Hydrates. Beijing, China, 2014.

    [18]

    Yousif M H, Sloan E D. Experimental investigation of hydrate formation and dissociation in consolidated porous media[J]. SPE Reservoir Engineering, 1991, 6(4): 452-458. doi: 10.2118/20172-PA

    [19]

    Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101

    [20]

    Zhou Y, Castaldi M J, Yegulalp T M. Experimental investigation of methane gas production from methane hydrate[J]. Industrial & Engineering Chemistry Research, 2009, 48(6): 3142-3149. doi: 10.1021/ie801004z

    [21]

    Tang L G, Li X S, Feng Z P, et al. Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs[J]. Energy Fuels 2007, 21(1): 227-233. doi: 10.1021/ef0601869

    [22]

    孙建业.海洋沉积物中天然气水合物开采实验研究[D].青岛: 中国海洋大学博士学位论文, 2011.

    SUN Jianye. Experimental research of gas hydrates exploitation in marine sediments[D]. Qingdao: Doctoral Dissertation of Ocean University of China, 2011.

    [23]

    Taewoong A, Lee J, Lee J Y, et al. Depresurization-induced production behavior of methane hydrate in a meter-scale alternate layer of sand and mud[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.

    [24]

    Sakamoto Y, Komai T, Kawabe Y, et al. Gas hydrate extraction from marine sediments by heat stimulation method[C]//The Fourteenth International Offshore and Polar Engineering Conference. Toulon: International Society of Offshore and Polar Engineers, 2004: 52-55.

    [25]

    Castaldi M J, Zhou Y, Yegulalp T M. Down-hole combustion method for gas production from methane hydrates[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 176-185. doi: 10.1016/j.petrol.2006.03.031

    [26]

    李栋梁, 樊栓狮.微波作用下天然气水合物分解的研究及应用[J].化工进展, 2003, 22(3): 280-282. doi: 10.3321/j.issn:1000-6613.2003.03.013

    LI Dongliang, FAN Shuanshi. Research on natural gas hydrate with microwave and its application[J]. Chemical Industry and Engineering Progress, 2003, 22(3): 280-282. doi: 10.3321/j.issn:1000-6613.2003.03.013

    [27]

    Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70~?~radius silica gel pore[J]. The Journal of Physical Chemistry, 1992, 96(21): 8599-8603. doi: 10.1021/j100200a071

    [28]

    Li S X, Wang Z Q, Xu X H, et al. Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection[J]. Journal of Natural Gas Science and Engineering, 2017, doi: 10.1016/j.jngse.2017.07.032.

    [29]

    孙建业, 业渝光, 刘昌岭, 等.沉积物中天然气水合物合成及开采模拟实验研究[J].中国海洋大学学报:自然科学版, 2009, 39(6): 1289-1294. doi: 10.3969/j.issn.1672-5174.2009.06.017

    SUN Jianye, YE Yuguang, LIU Changling, et al. Simulation experiment of gas hydrates formation and exploitation in sediments[J]. Periodical of Ocean University of China, 2009, 39(6): 1289-1294. doi: 10.3969/j.issn.1672-5174.2009.06.017

    [30]

    Fan S S, Zhang Y Z, Tian G L, et al. Natural gas hydrate dissociation by presence of ethylene glycol[J]. Energy and Fuels 2005, 20(1): 324-326. doi: 10.1021/ef0502204

    [31]

    Ruppel C, Dickens G R, Castellini, D G, et al. Heat and salt inhibition of gas hydrate formation in the northern Gulf of Mexico[J]. Geophysical Research Letters, 2005, 32(4): L04605. doi: 10.1029/2004gl021909

    [32]

    Dong F H, Zang X Y, Li D L, et al. Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection[J]. Energy and Fuels, 2009, 23(3): 1563-1567. doi: 10.1021/ef800660m

    [33]

    Sira J H, Patil S L, Kamath V A. Study of hydrate dissociation by methanol and glycol injection[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana: Society of Petroleum Engineers, 1990: 977-984.

    [34]

    Lee J. Experimental study on the dissociation behavior and productivity of gas hydrate by brine injection scheme in porous rock[J]. Energy and Fuels, 2009, 24(1): 456-463.

    [35]

    Bhattacharjee G, Barmecha V, Pandey N K, et al. A study of natural gas hydrate dissociation in the presence of novel benign additives[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.

    [36]

    Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2[J]. Fluid Phase Equilibria, 2005, 228-229: 553-559. doi: 10.1016/j.fluid.2004.10.002

    [37]

    McGrail B P, Zhu T, Hunter R B, et al. A new method for enhanced production of gas hydrates with CO2[C]//AAPG Hedberg Conference: "Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards". Vancouver, BC: AAPG, 2004.

    [38]

    Schicks J M. From lab to field, from micro to macro-test of technologies for the production of hydrate bonded CH4 via CO2 sequestration in hydrates[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.

    [39]

    Lee Y, Seo Y. Experimental verification of CH4-CO2 or CH4-flue gas replacementthat occurs in various gas hydrate structures[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.

    [40]

    Ota M. Replacement of CH4 in the hydrate by use of liquid CO2[J]. Energy Conversion and Management, 2005, 46(11-12): 1680-1691. doi: 10.1016/j.enconman.2004.10.002

    [41]

    He Y, Rudolph E S J, Zitha P L J, et al. Recovery of methane hydrates by CO2 injection: experimental investigation[C]//Proceedings of the 7th International Conference on Gas Hydrates. United Kingdom, 2011.

    [42]

    Masuda Y, Maruta H, Naganawa S, et al. Methane recovery from hydrate-bearing sediments by N2-CO2 gas mixture injection: experimental investigation on CO2-CH4 exchange ratio[C]//Proceedings of the 7th International Conference on Gas Hydrates. United Kingdom, 2011.

    [43]

    孙建业, 刘乐乐, 王小文, 等.沉积物中甲烷水合物的CO2置换实验[J].天然气工业, 2015, 35(8): 56-62. doi: 10.3787/j.issn.1000-0976.2015.08.008

    SUN Jianye, LIU Lele, WANG Xiaowen, et al. Experimental study on the replacement of methane hydrate in sediments with CO2[J]. Natural Gas Industry, 2015, 35(8): 56-62. doi: 10.3787/j.issn.1000-0976.2015.08.008

    [44]

    沈志远, 冯自平, 唐良广, 等.海洋渗漏型天然气水合物气力提升特性模型分析[J].能源工程, 2007(2): 17-20. doi: 10.3969/j.issn.1004-3950.2007.02.004

    SHEN Zhiyuan, FENG Ziping, TANG Liangguang, et al. Modeling studies on the production process of offshore seepage gas hydrate by airlifting[J]. Energy Engineering, 2007(2): 17-20. doi: 10.3969/j.issn.1004-3950.2007.02.004

    [45]

    张旭辉, 鲁晓兵, 刘乐乐.天然气水合物开采方法研究进展[J].地球物理学进展, 2014, 29(2): 858-869. doi: 10.6038/pg20140252

    ZHANG Xuhui, LU Xiaobing, LIU Lele. Advances in natural gas hydrate recovery methods[J]. Process in Geophysics, 2014, 29(2): 858-869. doi: 10.6038/pg20140252

    [46]

    Dong H, Wu K S, Wu B, et al. Modular production system with decomposing natural gas hydrate and separating the sediments from NGH slurry on seabed[C]//Proceedings of the 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.

    [47]

    Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada[M]. Geological Survey of Canada, 2005.

    [48]

    Anderson B I, Collett T S, Lewis R E, et al. Using open hole and cased-hole resistivity logs to monitor gas hydrate dissociation during a thermal test in the Mallik 5L-38 research well, Mackenzie Delta, Canada[J]. Petrophysics, 2008, 49(3): 285-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cadca00a017911bc2196dc18e1cde5f8

    [49]

    Kurihara M, Funatsu K, Ouchi H, et al. Analysis of the JOGMEC/NRCan/Aurora Mallik gas hydrate production test through numerical simulation[C]//Proceedings of the 6th International Conference on Gas Hydrates. Vancouver, British Columbia, Canada, 2008.

    [50]

    Cyranoski D. Japanese test coaxes fire from ice[J]. Nature, 2013, 496(7446): 409. doi: 10.1038/496409a

    [51]

    Takahashi H, Yonezawa T, Fercho E. Operation overview of the 2002 Mallik gas hydrate production research well program at the Mackenzie Delta in the Canadian Arctic[C]//Proceedings of the Offshore Technology Conference. Houston, Texas, USA: Offshore Technology Conference, 2003.

    [52]

    Collett T S, Lewis R E, Winters W F, et al. Downhole well log and core montages from the Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope[J]. Journal of Marine and Petroleum Geology, 2011, 28(2): 561-577. doi: 10.1016/j.marpetgeo.2010.03.016

    [53]

    Kvamme B. Feasibility of simultaneous CO2 storage and CH4 production from natural gas hydrate using mixtures of CO2 and N2[J]. Canadian Journal of Chemistry, 2015, 93(8): 897-905. doi: 10.1139/cjc-2014-0501

    [54]

    Song Y C, Cheng C X, Zhao J F, et al. Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods[J]. Applied Energy, 2015, 145: 265-277. doi: 10.1016/j.apenergy.2015.02.040

    [55]

    Falser S, Uchida S, Palmer A C, et al. Increased gas production from hydrates by combining depressurization with heating of the wellbore[J]. Energy and Fuels, 2012, 26(10): 6259-6267. doi: 10.1021/ef3010652

    [56]

    Kurihara M, Sato A, Ouchi H, et al. Prediction of gas productivity from eastern Nankai Trough methane-hydrate reservoirs[C]//Offshore Technology Conference 2008. Houston, Texas, USA: Offshore Technology Conference, 2008.

    [57]

    Moridis G J. Numerical studies of gas production from methane hydrates[J]. SPE Journal, 2003, 8(4): 359-370. doi: 10.2118/87330-PA

    [58]

    Moridis G J, Collett T S, Dallimore S R, et al. Numerical studies of gas production from several CH4 hydrate zones at the Mallik site, Mackenzie Delta, Canada[J]. Journal of Petroleum Science and Engineering, 2004, 43(3-4): 219-238. doi: 10.1016/j.petrol.2004.02.015

    [59]

    Myshakin E M, Ajayi T, Anderson B J, et al. Anderson Numerical simulations of depressurization-induced gas production from gas hydrates using 3-D heterogeneous models of L-Pad, Prudhoe Bay Unit, North Slope Alaska[J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1336-1352. doi: 10.1016/j.jngse.2016.09.070

    [60]

    苏正, 吴能友, 张可霓.南海北部陆坡神狐天然气水合物开发潜力[J].海洋地质前沿, 2011(6): 16-23. http://d.old.wanfangdata.com.cn/Conference/8138063

    SU Zheng, WU Nengyou, ZHANG Keni. Assessment of gas production potential of hydrate deposits at Shenhu area on northern continental slope of South China Sea[J]. Marine Geology Letters, 2011(6): 16-23. http://d.old.wanfangdata.com.cn/Conference/8138063

    [61]

    苏正, 何勇, 吴能友.南海北部神狐海域天然气水合物热激发开采潜力的数值模拟分析[J].热带海洋学报, 2012, 31(5): 74-82. doi: 10.3969/j.issn.1009-5470.2012.05.011

    SU Zheng, HE Yong, WU Nengyou. Numerical simulation on production potential of hydrate deposits by thermal stimulation[J]. Journal of Tropical Oceanography, 2012, 31(5): 74-82. doi: 10.3969/j.issn.1009-5470.2012.05.011

    [62]

    Jin G R, Xu T F, Xin X, et al. Numerical evaluation of the methane production from unconfined gashydrate-bearing sediment by thermal stimulation and depressurization in Shenhu area, South China Sea[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 497-508. doi: 10.1016/j.jngse.2016.05.047

    [63]

    Sun J X, Ning F L, Li S, et al. Numerical simulation of gas production from hydrate- bearing sediments[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 23-33. doi: 10.1016/j.juogr.2015.08.003

    [64]

    http://mp.weixin.qq.com/s?biz=MzI4NzE3NjgxOA==&mid=2649792947&idx=2&sn=e9f910556eae7eb0d2cbb4fbb33f13a7&chksm=f3d5a0aec4a229b8bcee0149a29dabbff8a42e91b965ae781028bd4e35ea30d21535532e510f&mpshare=1&scene=23&srcid=08209Y97pXpO9D4GTvfMHQWj#rd

    [65]

    Collett T S, Boswell R M. Gas Hydrate Research Site Selection and Operational Research Plans[M]. Washington, DC: American Geophysical Union, 2009.

    [66]

    Fujii T, Noguchi S, Takayama T, et al. Site selection and formation evaluation at the 1st offshore methane hydrate production test site in the eastern Nankai Trough, Japan[C]//75th EAGE Conference and Exhibition., London, UK: EAGE, 2013.

    [67]

    Heeschen K U, Abendroth S, Priegnitz M, et al. Gas production from methane hydrate: a laboratory simulation of the multistage depressurization test in mallik, Northwest Territories, Canada[J]. Energy and Fuels, 2016, 30(8): 6210-6219. doi: 10.1021/acs.energyfuels.6b00297

    [68]

    Terao Y, Lay K, Yamamoto K. Design of the surface flow test system for 1st offshore production test of methane hydrate[C]//Offshore Technology Conference-Asia 2014. Kuala Lumpur, Malaysia: Offshore Technology Conference, 2014.

    [69]

    Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86: 303-316. doi: 10.1016/j.ijrmms.2016.04.009

    [70]

    Terao Y, Lay K, Yamamoto K. Design of the surface flow test system for 1st offshore production test of methane hydrate[C]//Offshore Technology Conference-Asia 2014. Kuala Lumpur, Malaysia: Offshore Technology Conference, 2014.

    [71]

    李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005

    LI Yanlong, LIU Lele, LIU Changling, et al. Sanding prediction and sand-control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7): 36-43. doi: 10.16028/j.1009-2722.2016.07005

    [72]

    Uchida S, Klar A, Charas Z, et al. Thermo-hydro-mechanical sand production model in hydrate-bearing sediments[C]//EAGE International Workshop on Geomechanics and Energy-The Ground as Energy Source and Storage. Lausanne, Switzerland: EAGE, 2013.

    [73]

    Sun J X, Zhang L, Ning F L, et al. Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea: A preliminary feasibility study[J]. Marine and Petroleum Geology, 2017, 86: 447-473. doi: 10.1016/j.marpetgeo.2017.05.037

    [74]

    Lee J, Ahn T, Lee J Y, et al. Laboratory test to evaluate the performance of sand control screens during hydrate dissociation process by depressurization[C]//Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium. Szczecin, Poland: International Society of Offshore and Polar Engineers, 2013.

    [75]

    Yamamoto K, Terao Y, Fujii T, et al. Operational overview of the first offshore production test of methane hydrates in the eastern Nankai Trough[C]//Offshore Technology Conference 2014. Houston, Texas: Offshore Technology Conference, 2014.

    [76]

    Yoneda J, Kakumoto M, Miyazaki K, et al. Evaluation of frictional properties for methane-hydrate-well completion and production[J]. SPE Drilling and Completion, 2014, 29(1): 115-124. doi: 10.2118/169897-PA

    [77]

    祝道平, 宁正福.利用高能气体压裂技术开采天然气水合物可行性分析[J].重庆科技学院学报:自然科学版, 2009, 11(3): 37-39. doi: 10.3969/j.issn.1673-1980.2009.03.011

    ZHU Daoping, NING Fuzheng. High-energy gas fracturing technique to exploit natural gas hydrate reservoir[J]. Journal of Chongqing University of Science and Technology: Natural Sciences Edition, 2009, 11(3): 37-39. doi: 10.3969/j.issn.1673-1980.2009.03.011

    [78]

    孙小辉, 孙宝江, 王志远.超临界CO2压裂裂缝温度场模型[J].石油学报, 2015, 36(12): 1586-1592. doi: 10.7623/syxb201512014

    SUN Xiaohui, SUN Baojiang, WANG Zhiyuan. Fissure temperature field model of supercritical CO2 fracturing[J]. Acta Pretrolei Sinica, 2015, 36(12): 1586-1592. doi: 10.7623/syxb201512014

    [79]

    Seol Y, Myshakin E. Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor[J]. Energy and Fuels, 2011, 25(3): 1099-1110. doi: 10.1021/ef1014567

    [80]

    Liu Z J, Zerpa L E. Preliminary study of liquid loading problems for gas hydrate wells and selection of artificial lift methods[C]//SPE Western Regional Meeting. Anchorage, Alaska, USA: Society of Petroleum Engineers, 2016.

    [81]

    隋秀香, 郭旗, 李相方.油气井测试出砂监测技术[J].天然气工业, 2004, 24(5): 110-112. doi: 10.3321/j.issn:1000-0976.2004.05.036

    SUI Xiuxiang, GUO Qi, LI Xiangfang. Sand production monitoring techniques of oil and gas wells[J]. Natural Gas Industry, 2004, 24(5): 110-112. doi: 10.3321/j.issn:1000-0976.2004.05.036

    [82]

    Wilson A. System monitors sandface for deepwater offshore gas-hydrate production[J]. Journal of Petroleum Technology, 2014, 66(9): 102-105. doi: 10.2118/0914-0102-JPT

    [83]

    Kurihara M, Sato A, Funatsu K, et al. Analysis of production data for 2007/2008 mallik gas hydrate production tests in Canada[C]//International Oil & Gas Conference & Exhibition in China. Beijing: Society of Petroleum Engineers, 2010.

    [84]

    Dubreuil-Boisclair C, Gloaguen E, Bellefleur G, et al. Non-Gaussian gas hydrate grade simulation at the Mallik site, Mackenzie Delta, Canada[J]. Marine and Petroleum Geology, 2012, 35(1): 20-27. doi: 10.1016/j.marpetgeo.2012.02.020

    [85]

    Schoderbek D, Farrell H, Hester K, et al. Conoco- Phillips gas hydrate production test final technical report[R]. United States Department of Energy, 2013.

    [86]

    Nagao J, Jin Y, Konno Y, et al. Characterization of sediment cores containing methane hydrate recovered from the Eastern Nankai Trough[C]//AGU Fall Meeting Abstracts. Washington, DC: AGU, 2013.

    [87]

    Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H

    [88]

    Haberer R M, Kai M, Wilkes H, et al. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)[J]. Organic Geochemistry, 2006, 37(5): 519-538. doi: 10.1016/j.orggeochem.2006.01.004

    [89]

    Hancock S H, Collett T S, Dallimore S R, et al. Overview of thermal-stimulation production-test results for the JAPEX/JNOC/GSC et al. Mallik 5L-38 Gas Hydrate Production Research Well[M]. Dallimore S R, Collett T S. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, 2005.

    [90]

    Hunter R B, Collett T S, Boswell R, et al. Mount Elbert gas hydrate stratigraphic test well, Alaska north slope: overview of scientific and technical program[J]. Marine and Petroleum Geology, 2011, 28(2): 295-310. doi: 10.1016/j.marpetgeo.2010.02.015

    [91]

    Collett T, Bahk J J, Frye M, et al. Historical methane hydrate project review[R]. 2013.

    [92]

    http://www.meti.go.jp/press/2017/06/20170629004/20170629004.html.

    [93]

    http://www.cgs.gov.cn/ddztt/jqthd/trqshw/.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  3906
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2017-08-28
修回日期:  2017-09-12
刊出日期:  2017-10-28

目录