PORE WATER GEOCHEMISTRY OF THE GAS HYDRATE BEARING ZONE ON NORTHERN SLOPE OF THE SOUTH CHINA SEA
-
摘要:
孔隙水地球化学异常是天然气水合物勘探的重要工具之一,南海北部陆坡地区拥有良好的天然气水合物成藏潜力,孔隙水地球化学异常在南海的天然气水合物勘探中发挥了重要作用。其中与水合物直接相关的氯离子含量异常被用于识别神狐及东沙海域钻探区的水合物层和计算水合物饱和度。除直接指标外,浅表层沉积物中的硫酸盐含量及其他与早期成岩作用有关的地球化学异常作为间接指标可用于水合物的找矿预测,研究者们通过对硫酸盐还原过程的判别、硫酸盐甲烷接触界面的计算等方面对南海北部陆坡不同海域的沉积物甲烷通量进行了评估,预测出水合物可能的成藏区域。其他如碘含量、氧化还原敏感元素、氯同位素、地球化学模型等新的地球化学指标和计算机手段也被应用于南海北部陆坡区水合物成藏研究并取得了不错的成效。
Abstract:Geochemical anomalies of pore water may serve as important tracers in gas hydrate (GH) exploration. Anomaly in pore water salinity is a direct proxy for GH occurrence and can be further used for calculation of saturation for GH in sediments. Meanwhile, sulfate contents in shallow sediments, as well as other early-diagenesis-related chemical anomalies are widely employed to prospect for GH. In the investigation of the northern slope of the South China Sea, a land of great potential in GH accumulation, geochemical anomalies of pore water have played an important role. Recognition of GH zone, as well as calculation of GH saturation in sediments of the Shenhu and Dongsha areas were performed based on Cl- abundances. identification of reduction process, calculation of sulfate-methane interface are integrated to estimate the methane flux in this region and further delineated areas with high GH potential. Besides, iodine abundance, redox-sensitive elements, Cl isotopes, geochemical modeling also work as promising tools in gas hydrate prospecting.
-
Key words:
- pore water /
- gas hydrate /
- geochemistry /
- northern slope of the South China Sea
-
图 1 神狐海域SH2、SH3、SH7站位孔隙水氯离子含量及水合物饱和度随深度变化[32]
Figure 1.
图 2 神狐海域SMI区域分布[53]
Figure 2.
图 3 东沙海域SiteA与SiteB站位硫酸盐、碱度以及溶解无机碳碳同位素随深度变化[38]
Figure 3.
图 4 硫酸盐消耗量与溶解无机碳生成量相关关系图解[39]
Figure 4.
图 5 西沙海槽C9与C14站位孔隙水硫酸盐硫同位素与硫酸盐浓度相关关系[40]
Figure 5.
图 6 琼东南盆地HQ-01站位孔隙水硫酸盐含量与碘含量相关关系[51]
Figure 6.
图 7 西沙海槽C14站位POC、硫酸盐、硫酸盐硫同位素、甲烷以及溶解无机碳模拟结果[68]
Figure 7.
-
[1] Kvenvolden K A. GAS hydrates-geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187. doi: 10.1029/93rg00268
[2] Lu H L, Seo Y T, Lee J W, et al. Complex gas hydrate from the Cascadia margin[J]. Nature, 2007, 445(7125): 303-306. doi: 10.1038/nature05463
[3] Cragg B A, Parkes R J, Fry J C, et al. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin)[J]. Earth and Planetary Science Letters, 1996, 139(3-4): 497-507. doi: 10.1016/0012-821X(95)00246-9
[4] Borowski W S, Paull C K, Ussler Ⅲ W. Carbon cycling within the upper methanogenic zone of continental rise sediments; An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits[J]. Marine Chemistry, 1997, 57(3-4): 299-311. doi: 10.1016/S0304-4203(97)00019-4
[5] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy, 2016, 162: 1633-1652. doi: 10.1016/j.apenergy.2014.12.061
[6] Boswell R, Collett T S. Current perspectives on gas hydrate resources[J]. Energy and Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H
[7] Choi J, Kim J, Torres M E, et al. Gas origin and migration in the Ulleung Basin, East Sea: results from the Second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2)[J]. Marine and Petroleum Geology, 2013, 47: 113-124. doi: 10.1016/j.marpetgeo.2013.05.022
[8] Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface: what have we learned in the past decade?[J]. Earth-Science Reviews, 2003, 61(1-2): 149-179. doi: 10.1016/S0012-8252(02)00117-4
[9] Borowski W S, Paull C K, Ussler Ⅲ W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3
[10] Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients[J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9
[11] Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1-2): 225-241. doi: 10.1016/j.epsl.2004.07.029
[12] Tomaru H, Torres M E, Matsumoto R, et al. Effect of massive gas hydrate formation on the water isotopic fractionation of the gas hydrate system at Hydrate Ridge, Cascadia margin, offshore Oregon[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): Q10001. doi: 10.1029/2005GC001207
[13] Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 860-872. doi: 10.1016/j.marpetgeo.2008.01.022
[14] Solomon E A, Kastner M, Jannasch H, et al. Dynamic fluid flow and chemical fluxes associated with a seafloor gas hydrate deposit on the northern Gulf of Mexico slope[J]. Earth and Planetary Science Letters, 2008, 270(1-2): 95-105. doi: 10.1016/j.epsl.2008.03.024
[15] Torres M E, Tréhu A M, Cespedes N, et al. Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311[J]. Earth and Planetary Science Letters, 2008, 271(1-4): 170-180. doi: 10.1016/j.epsl.2008.03.061
[16] Ussler Ⅲ W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles[J]. Earth and Planetary Science Letters, 2008, 266(3-4): 271-287. doi: 10.1016/j.epsl.2007.10.056
[17] Hesse R, Schacht U. Early diagenesis of deep-sea sediments[J]. Developments in Sedimentology, 2011, 63: 557-713. doi: 10.1016/B978-0-444-53000-4.00009-3
[18] Torres M E, Collett T S, Rose K K, et al. Pore fluid geochemistry from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 332-342. doi: 10.1016/j.marpetgeo.2009.10.001
[19] Kim J H, Torres M E, Hong W L, et al. Pore fluid chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2): source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 99-112. doi: 10.1016/j.marpetgeo.2012.12.011
[20] 姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪地质, 2005, 25(2): 81-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200502012
YAO Bochu. The forming condition and distribution characteristics of the gas hydrate in the South China Sea[J]. Marine Geology and Quaternary Geology, 2005, 25(2): 81-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200502012
[21] 陈多福, 李绪宣, 夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
[22] 姚伯初.南海天然气水合物的形成条件和分布特征[J].海洋石油, 2007, 27(1): 1-10. doi: 10.3969/j.issn.1008-2336.2007.01.001
YAO Bochu. The forming condition and distribution characteristics of the gas hydrate in the South China Sea[J]. Offshore Oil, 2007, 27(1): 1-10. doi: 10.3969/j.issn.1008-2336.2007.01.001
[23] 王宏斌, 张光学, 杨木壮, 等.南海陆坡天然气水合物成藏的构造环境[J].海洋地质与第四纪地质, 2003, 23(1): 81-86. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200301013
WANG Hongbin, ZHANG Guangxue, YANG Muzhuang, et al. Structural circumstance of gas hydrate deposition in the continent margin, the South China Sea[J]. Marine Geology and Quaternary Geology, 2003, 23(1): 81-86. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200301013
[24] 祝有海, 饶竹, 刘坚, 等.南海西沙海槽S14站位的地球化学异常特征及其意义[J].现代地质, 2005, 19(1): 39-44. doi: 10.3969/j.issn.1000-8527.2005.01.006
ZHU Youhai, RAO Zhu, LIU Jian, et al. Geochemical anomalies and their implication from site 14, the Xisha Trough, the South China Sea[J]. Geoscience, 2005, 19(1): 39-44. doi: 10.3969/j.issn.1000-8527.2005.01.006
[25] 徐行, 李亚敏, 罗贤虎, 等.南海北部陆坡水合物勘探区典型站位不同类型热流对比[J].地球物理学报, 2012, 55(3): 998-1006. doi: 10.6038/j.issn.0001-5733.2012.03.030
XU Xing, LI Yamin, LUO Xianhu, et al. Comparison of different-type heat flows at typical sites in natural gas hydrate exploration area on the northern slope of the South China Sea[J]. Chinese Journal of Geophysics, 2012, 55(3): 998-1006. doi: 10.6038/j.issn.0001-5733.2012.03.030
[26] 吴能友, 张光学, 梁金强, 等.南海北部陆坡天然气水合物研究进展[J].新能源进展, 2013, 1(1): 80-94. doi: 10.3969/j.issn.2095-560X.2013.01.008
WU Nengyou, ZHANG Guangxue, LIANG Jinqiang, et al. Progress of gas hydrate research in northern South China Sea[J]. Advances in New and Renewable Energy, 2013, 1(1): 80-94. doi: 10.3969/j.issn.2095-560X.2013.01.008
[27] 苏新, 陈芳, 于兴河, 等.南海陆坡中新世以来沉积物特性与气体水合物分布初探[J].现代地质, 2005, 19(1): 1-13. doi: 10.3969/j.issn.1000-8527.2005.01.001
SU Xin, CHEN Fang, YU Xinghe, et al. A pilot study on Miocene through Holocene sediments from the continental slope of the South China Sea in correlation with possible distribution of gas hydrates[J]. Geoscience, 2005, 19(1): 1-13. doi: 10.3969/j.issn.1000-8527.2005.01.001
[28] 张光学, 张明, 杨胜雄, 等.海洋天然气水合物地震检测技术及其应用[J].海洋地质与第四纪地质, 2011, 31(4): 51-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201104009
ZHANG Guangxue, ZHANG Ming, YANG Shengxiong, et al. Application of seismic detecting technique to marine gas hydrate survey[J]. Marine Geology and Quaternary Geology, 2011, 31(4): 51-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201104009
[29] 于晓果, 韩喜球, 李宏亮, 等.南海东沙东北部甲烷缺氧氧化作用的生物标志化合物及其碳同位素组成[J].海洋学报, 2008, 30(3): 77-84. doi: 10.3321/j.issn:0253-4193.2008.03.010
YU Xiaoguo, HAN Xiqiu, LI Hongliang, et al. Biomarkers and carbon isotope composition of anaerobic oxidation of methane in sediments and carbonates of northeastern part of Dongsha, South China Sea[J]. Acta Oceanologica Sinica, 2008, 30(3): 77-84. doi: 10.3321/j.issn:0253-4193.2008.03.010
[30] 业渝光, 刘昌岭.天然气水合物实验技术及应用[J].海洋地质与第四纪地质, 2011, 31(1): 164.
YE Yuguang, LIU Changling. Application of experimental techniques for gas hydrate[J]. Marine Geology and Quaternary Geology, 2011, 31(1): 164.
[31] 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
WU Nengyou, YANG Shengxiong, WANG Hongbin, et al. Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu Area, Northern South China Sea[J]. Chinese Journal of Geophysics, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
[32] Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu Area, Northern South China Sea: geochemical results[J]. Journal of Geological Research, 2011, 2011: 370298.
[33] Zhang G X, Liang J Q, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021
[34] Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
[35] Kim J H, Torres M E, Choi J, et al. Inferences on gas transport based on molecular and isotopic signatures of gases at acoustic chimneys and background sites in the Ulleung Basin[J]. Organic Geochemistry, 2012, 43: 26-38. doi: 10.1016/j.orggeochem.2011.11.004
[36] Tomaru H, Lu Z L, Fehn U, et al. Age variation of pore water iodine in the eastern Nankai Trough, Japan: evidence for different methane sources in a large gas hydrate field[J]. Geology, 2007, 35(11): 1015-1018. doi: 10.1130/G24198A.1
[37] Uchida T, Lu H L, Tomaru H. Subsurface occurrence of natural gas hydrate in the Nankai Trough Area: implication for gas hydrate concentration[J]. Resource Geology, 2004, 54(1): 35-44. doi: 10.1111/j.1751-3928.2004.tb00185.x
[38] Ye H, Yang T, Zhu G R, et al. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea[J]. Marine and Petroleum Geology, 2016, 75: 68-82. doi: 10.1016/j.marpetgeo.2016.03.010
[39] Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122(SI): 84-94. doi: 10.1016/j.dsr2.2015.06.012
[40] Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018
[41] Lapham L L, Alperin M, Chanton J, et al. Upward advection rates and methane fluxes, oxidation, and sources at two Gulf of Mexico brine seeps[J]. Marine Chemistry, 2008, 112(1-2): 65-71. doi: 10.1016/j.marchem.2008.06.001
[42] Feng D, Cheng M, Kiel S, et al. Using Bathymodiolus tissue stable carbon, nitrogen and sulfur isotopes to infer biogeochemical process at a cold seep in the South China Sea[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2015, 104: 52-59. doi: 10.1016/j.dsr.2015.06.011
[43] Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea[J]. Journal of Asian Earth Sciences, 2016, 123: 213-223. doi: 10.1016/j.jseaes.2016.04.007
[44] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009
[45] 叶鸿, 杨涛, 朱国荣, 等.海底天然气水合物生长的数值模拟研究及进展[J].海洋地质与第四纪地质, 2013, 33(2): 143-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201302018
YE Hong, YANG Tao, ZHU Guorong, et al. Advances in numerical modeling of gas hydrate formation in marine sediments[J]. Marine Geology and Quaternary Geology, 2013, 33(2): 143-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201302018
[46] Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: a numerical modeling perspective[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B9): B09103. doi: 10.1029/2011JB008290
[47] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances[J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. doi: 10.1016/S0016-7037(03)00127-3
[48] Luff R, Wallmann K, Aloisi G. Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities[J]. Earth and Planetary Science Letters, 2004, 221(1-4): 337-353. doi: 10.1016/S0012-821X(04)00107-4
[49] Jiang S Y, Yang T, Ge L, et al. Geochemistry of pore waters from the Xisha Trough, northern South China Sea and their implications for gas hydrates[J]. Journal of Oceanography, 2008, 64(3): 459-470. doi: 10.1007/s10872-008-0039-8
[50] 蒋少涌, 杨涛, 薛紫晨, 等.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J].现代地质, 2005, 19(1): 45-54. doi: 10.3969/j.issn.1000-8527.2005.01.007
JIANG Shaoyong, YANG Tao, XUE Zichen, et al. Chlorine and sulfate concentrations in pore waters from marine sediments in the north margin of the South China Sea and their implications for gas hydrate exploration[J]. Geoscience, 2005, 19(1): 45-54. doi: 10.3969/j.issn.1000-8527.2005.01.007
[51] Yang T, Jiang S Y, Ge L, et al. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration[J]. Science China Earth Sciences, 2013, 56(4): 521-529. doi: 10.1007/s11430-012-4560-7
[52] 蒋少涌, 杨涛, 薛紫晨, 等.南海北部海区海底沉积物中孔隙水的Cl-和SO42-浓度异常特征及其对天然气水合物的指示意义[J].现代地质, 2005, 19(1): 45-54. doi: 10.3969/j.issn.1000-8527.2005.01.007
JIANG Shaoyong, YANG Tao, XUE Zichen, et al. Chlorine and sulfate concentrations in pore waters from marine sediments in the north margin of the South China Sea and their implications for gas hydrate exploration[J]. Geoscience, 2005, 19(1): 45-54. doi: 10.3969/j.issn.1000-8527.2005.01.007
[53] Wu L S, Yang S X, Liang J Q, et al. Variations of pore water sulfate gradients in sediments as indicator for underlying gas hydrate in Shenhu Area, the South China Sea[J]. Science China Earth Sciences, 2013, 56(4): 530-540. doi: 10.1007/s11430-012-4545-6
[54] Yang T, Jiang S Y, Ge L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2
[55] 邬黛黛, 吴能友, 张美, 等.东沙海域SMI与甲烷通量的关系及对水合物的指示[J].地球科学-中国地质大学学报, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128
WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship of sulfate-methane interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1309-1320. doi: 10.3799/dqkx.2013.128
[56] 孟宪伟, 张俊, 夏鹏, 等.南海北部陆坡沉积物硫酸盐-甲烷反应界面深度的空间变化及其对甲烷水合物赋存状态差异性的指示意义[J].海洋学报, 2013, 35(6): 190-194. doi: 10.3969/j.issn.0253-4193.2013.06.020
MENG Xianwei, ZHANG Jun, XIA Peng, et al. Spatial variation in depth of sulfate-methane interface in sediments of the northern slope of the South China Sea and its implication for occurring status of methane hydrate[J]. Acta Oceanologica Sinica, 2013, 35(6): 190-194. doi: 10.3969/j.issn.0253-4193.2013.06.020
[57] 邬黛黛, 叶瑛, 吴能友, 等.琼东南盆地与甲烷渗漏有关的早期成岩作用和孔隙水化学组分异常[J].海洋学报, 2009, 31(2): 86-96. doi: 10.3321/j.issn:0253-4193.2009.02.012
WU Daidai, YE Ying, WU Nengyou, et al. Early diagenesis records and chemical composition abnormalities in pore water for methane-seep in sediments from the southern Qiongdong Basin[J]. Acta Oceanologica Sinica, 2009, 31(2): 86-96. doi: 10.3321/j.issn:0253-4193.2009.02.012
[58] 吴庐山, 杨胜雄, 梁金强, 等.南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J].现代地质, 2010, 24(3): 534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018
WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al. Geochemical characteristics of sediments at site HQ-48PC in Qiongdongnan Area, the North of the South China Sea, and their implication for gas hydrates[J]. Geoscience, 2010, 24(3): 534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018
[59] Borowski W S. Data report: dissolved sulfide concentration and sulfur isotopic composition of sulfide and sulfate in pore waters, ODP Leg 204, Hydrate Ridge and vicinity, Cascadia margin, offshore Oregon[C]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 2006: 1-13.
[60] Yang T, Jiang S Y, Yang J H, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea[J]. Journal of Oceanography, 2008, 64(2): 303-310. doi: 10.1007/s10872-008-0024-2
[61] Cao C, Lei H Y. Geochemical characteristics of pore water in shallow sediments from north continental slope of South China Sea and their significance for natural gas hydrate occurrence[J]. Procedia Environmental Sciences, 2012, 12: 1017-1023. doi: 10.1016/j.proenv.2012.01.381
[62] 林安均.南海北部西沙和东沙海区浅表层沉积物孔隙水地球化学特征及对天然气水合物成矿的指示意义[D].南京大学硕士学位论文, 2014.
LIN Anjun. Geochemical characteristics of pore waters from the shallow sediments in the Xisha and Dongsha areas of the northern south China Sea: implication for gas hydrate occurrences[D]. Master's Thesis of Nanjing University, 2014.
[63] 傅飘儿, 曹珺, 刘纪勇, 等.南海北部孔隙水碘与天然气水合物成藏关系研究[J].地质论评, 2016, 62(5): 1344-1351. doi: 10.16509/j.georeview.2016.05.017
FU Piaoer, CAO Jun, LIU Jiyong, et al. Tracing the gas hydrate reservoirs in the northern south China Sea by iodine concentrations in pore waters from marine sediments[J]. Geological Review, 2016, 62(5): 1344-1351. doi: 10.16509/j.georeview.2016.05.017
[64] Li Y P, Jiang S Y, Yang T. Br/Cl, I/Cl and chlorine isotopic compositions of pore water in shallow sediments: implications for the fluid sources in the Dongsha area, northern South China Sea[J]. Acta Oceanologica Sinica, 2017, 36(4): 31-36. doi: 10.1007/s13131-017-1013-3
[65] Su Z, Cao Y C, Yang R, et al. Analytical research on evolution of methane hydrate deposits at Shenhu Area, northern South China Sea[J]. Chinese Journal of Geophysics, 2012, 55(5): 1764-1774. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201205034
[66] 曹运诚, 陈多福.海洋天然气水合物发育顶界的模拟计算[J].地球物理学报, 2014, 57(2): 618-627. doi: 10.6038/cjg20140225
CAO Yuncheng, CHEN Duofu. Modeling calculation of top occurrence of marine gas hydrates[J]. Chinese Journal of Geophysics, 2014, 57(2): 618-627. doi: 10.6038/cjg20140225
[67] 丛晓荣, 曹运诚, 苏正, 等.南海北部东沙海域浅层沉积物孔隙水地球化学示踪深部水合物发育特征[J].地球化学, 2017, 46(3): 292-300. doi: 10.3969/j.issn.0379-1726.2017.03.008
CONG Xiaorong, CAO Yuncheng, SU Zheng, et al. Gas hydrate occurrence in subsurface near the Dongsha area at northern South China Sea inferred from the pore water geochemistry of shallow sediments[J]. Geochimica, 2017, 46(3): 292-300. doi: 10.3969/j.issn.0379-1726.2017.03.008
[68] Luo M, Dale A W, Wallmann K, et al. Estimating the time of pockmark formation in the SW Xisha Uplift (South China Sea) using, reaction-transport modeling[J]. Marine Geology, 2015, 364: 21-31. doi: 10.1016/j.margeo.2015.03.006
[69] Ye H, Yang T, Zhu G R, et al. An object-oriented diagnostic model for the quantification of porewater geochemistry in marine sediments[J]. Journal of Earth Science, 2015, 26(5): 648-660. doi: 10.1007/s12583-015-0586-z