TRACE ELEMENT GEOCHEMISTRY OF SEDIMENTS IN QIONGDONGNAN AREA, THE SOUTH CHINA SEA, AND ITS IMPLICATIONS FOR GAS HYDRATES
-
摘要:
天然气水合物已成为重要的战略资源。为探讨天然气水合物富集区的微量元素特征及其指示意义,对琼东南海域沉积物进行系统采样,分析了样品主、微量元素和TOC地球化学特征,并采用氧化还原状态以及氧化还原敏感元素与TOC相关关系的分析方法进行探讨。结果显示:沉积物相较于上地壳更为富集Sr、Pb、Th、U、Zn、Cu和Mo元素,Th/U和V/Sc比值在纵向上呈系统的变化,表层沉积物处于还原的沉积状态,大量富集Mo和U。初步推断研究区部分沉积物可能处于硫化带,使其出现氧化还原敏感元素(Mo和U)的富集,这些特征或由下部天然气水合物分解释放大量的甲烷所导致。表层沉积物孔隙水中出现的硫化带以及Mo和U元素异常,可作为新的地球化学指标以识别下部可能存在的天然气水合物资源。
Abstract:In order to study the geochemical characteristics of trace elements and their implications for gas hydrate, marine sediment samples were systematically collected from the Qiongdongnan area of the South China Sea.The major and trace elements as well as the TOC of the sediments are analyzed, upon which the redox condition, redox-sensitive elements and their TOC correlation are adopted to describe the geochemistry characteristics of sediments.The results indicate that Sr, Pb, Th, U, Zn, Cu and Mo are enriched in the sediments comparing to the average of upper crust.Systematic variations in Th/U, V/Cr values further indicate that the sediments are under a more reducing condition, and as the results, Mo and U are enriched.Some sediment samples have already dropped into the sulfide zone, leading the enrichment of redox-sensitive elements such as Mo and U, owing to the dissociation of gas hydrate and methane fluxes coming from deeper sediments.Therefore, the existence of the sulfide zone and Mo and U enrichment in sediments may have the significance to trace the gas hydrates in deep.
-
Key words:
- trace elements /
- marine sediments /
- H2S /
- gas hydrate /
- Qiongdongnan area
-
表 1 CL-1站位沉积物主、微量和TOC分析结果(10-6)
Table 1. Major, trace elements and TOC concentrations of sediments at site CL-1(10-6)
样品号 厚度/cm Sr Ba Zr Pb V Th Cu Sc CL-1-1 0 505 402 119 22.8 96.8 12.0 32.3 12.2 CL-1-2 20 577 375 124 21.2 89.5 11.3 32.5 11.1 CL-1-3 45 599 428 118 21.9 89.4 12.1 35.3 11.1 CL-1-4 60 459 471 135 22.9 92.6 13.0 31.3 11.2 CL-1-5 80 335 401 147 24.3 101 14.5 32.9 12.5 CL-1-6 100 281 414 206 21.3 79.0 11.7 21.2 9.51 CL-1-7 120 323 437 211 21.9 83.9 12.4 22.9 10.2 CL-1-8 140 352 400 160 23.8 93.9 13.4 25.9 11.5 CL-1-9 160 281 418 181 24.4 99.4 14.4 28.4 12.7 CL-1-10 180 305 398 171 24.9 102 13.4 28.6 12.6 CL-1-11 200 259 406 197 23.1 92.4 13.5 24.4 12.1 CL-1-12 220 305 483 192 23.2 93.4 13.0 28.1 11.8 CL-1-13 240 228 404 242 21.8 84.8 12.5 22.3 11.0 CL-1-14 260 338 427 173 23.1 94.5 12.7 27.1 12.1 CL-1-15 280 322 388 205 21.7 82.8 12.4 20.5 10.4 CL-1-16 300 411 355 208 21.8 71.0 10.8 17.3 7.23 CL-1-17 320 411 366 230 19.8 58.6 10.5 13.5 6.85 CL-1-18 340 441 341 215 19.9 57.7 10.2 12.1 6.46 CL-1-19 360 570 589 140 20.9 74.7 10.8 22.2 8.84 CL-1-20 380 498 461 117 24.1 97.4 12.7 35.1 11.3 CL-1-21 400 455 477 126 24.4 103 14.0 35.1 12.8 CL-1-22 420 428 471 126 24.9 105 13.2 35.1 12.5 CL-1-23 440 415 499 127 23.9 108 13.8 36.4 12.8 CL-1-24 460 446 502 124 22.7 101 13.6 36.5 12.5 CL-1-25 480 449 507 124 24.0 102 13.6 35.1 12.4 CL-1-26 500 439 432 124 24.2 97.3 13.5 33.5 12.0 CL-1-27 520 462 458 120 23.4 100 13.4 35.6 12.0 CL-1-28 540 465 466 116 23.3 99.3 13.1 35.1 12.1 CL-1-29 560 467 514 116 23.5 102 13.1 36.7 12.4 CL-1-30 580 476 503 117 22.2 98.9 12.4 34.8 11.9 CL-1-31 600 507 516 119 21.0 99.8 12.1 33.7 11.9 CL-1-32 620 480 549 121 21.7 99.2 12.4 31.7 12.3 CL-1-33 640 506 522 122 19.8 98.9 12.4 32.3 12.0 CL-1-34 660 503 533 119 21.5 95.4 11.9 30.7 11.6 CL-1-35 680 492 550 117 20.8 96.4 11.8 30.1 11.7 CL-1-36 700 497 596 120 20.9 98.1 12.3 30.3 12.4 CL-1-37 720 469 591 121 22.8 99.0 12.9 30.1 12.4 CL-1-38 740 454 567 119 21.9 97.0 12.8 29.9 12.4 CL-1-39 760 466 608 119 22.1 102 12.7 31.7 12.5 CL-1-40 780 446 597 121 22.7 97.8 13.3 29.4 12.7 样品号 Cr Ni Zn U Mo Al/% TOC/% Th/U V/Cr CL-1-1 69.9 55.0 119 12.1 9.31 6.72 1.29 0.99 1.38 CL-1-2 63.5 47.2 104 11.4 7.54 6.25 1.31 0.99 1.41 CL-1-3 63.8 49.5 109 12.3 6.45 6.36 1.47 0.98 1.40 CL-1-4 66.8 44.8 104 9.65 6.18 6.87 1.50 1.35 1.39 CL-1-5 88.8 46.7 109 7.99 4.76 7.50 1.60 1.81 1.14 CL-1-6 56.1 34.1 83.8 4.55 3.00 5.85 1.08 2.57 1.41 CL-1-7 67.6 33.9 81.7 4.58 2.36 6.13 1.29 2.71 1.24 CL-1-8 70.8 37.4 95.3 5.60 3.20 6.88 1.62 2.39 1.33 CL-1-9 75.6 39.8 103 4.50 2.12 7.42 1.60 3.20 1.31 CL-1-10 82.6 41.4 101 4.39 1.88 7.17 1.60 3.05 1.23 CL-1-11 82.9 36.4 95.3 3.87 1.51 7.05 1.50 3.49 1.11 CL-1-12 79.6 38.8 99.2 4.69 1.64 6.73 1.51 2.77 1.17 CL-1-13 78.4 32.6 91.0 2.97 0.99 6.35 1.26 4.21 1.08 CL-1-14 74.7 37.0 98.0 4.01 1.51 6.91 1.57 3.17 1.27 CL-1-15 68.9 32.1 85.3 3.98 1.89 6.16 1.36 3.12 1.20 CL-1-16 57.0 23.5 64.4 2.46 1.61 4.27 2.64 4.39 1.25 CL-1-17 59.0 22.6 58.9 2.70 1.51 4.24 1.52 3.89 0.99 CL-1-18 48.8 21.2 62.3 3.11 1.58 4.10 1.54 3.28 1.18 CL-1-19 52.3 37.5 82.0 3.55 1.13 5.23 1.30 3.04 1.43 CL-1-20 66.2 49.6 113 5.50 1.00 6.71 1.44 2.31 1.47 CL-1-21 83.0 49.7 110 4.72 0.97 7.27 1.42 2.97 1.24 CL-1-22 75.8 46.2 112 4.85 0.93 7.55 1.48 2.72 1.39 CL-1-23 75.1 47.6 114 4.65 0.90 7.77 1.45 2.97 1.44 CL-1-24 70.2 50.6 114 5.03 0.89 7.44 1.57 2.70 1.44 CL-1-25 78.6 50.2 117 4.82 0.99 7.30 1.57 2.82 1.30 CL-1-26 78.8 45.5 112 4.74 0.89 7.15 1.52 2.85 1.23 CL-1-27 69.4 46.7 112 4.55 0.83 7.30 1.51 2.95 1.44 CL-1-28 67.1 46.1 113 5.05 0.65 7.13 1.49 2.59 1.48 CL-1-29 70.9 50.0 116 4.79 0.77 7.10 1.51 2.73 1.44 CL-1-30 71.5 46.9 113 4.73 0.67 6.93 1.44 2.62 1.38 CL-1-31 65.7 47.9 113 4.89 0.68 6.75 1.28 2.47 1.52 CL-1-32 72.9 47.5 108 4.26 0.70 6.89 1.28 2.91 1.36 CL-1-33 68.2 44.9 109 4.70 0.67 6.83 1.18 2.64 1.45 CL-1-34 71.7 46.0 108 4.69 0.66 6.77 1.22 2.54 1.33 CL-1-35 78.4 44.7 110 4.52 0.60 6.75 1.20 2.61 1.23 CL-1-36 88.3 44.9 111 4.46 0.59 6.94 1.22 2.76 1.11 CL-1-37 76.7 45.4 113 4.67 0.65 7.01 1.23 2.76 1.29 CL-1-38 81.0 44.1 114 4.34 0.63 7.10 1.21 2.95 1.20 CL-1-39 77.7 49.7 120 4.55 0.67 7.15 1.28 2.79 1.31 CL-1-40 80.2 45.5 109 4.47 0.64 7.26 1.22 2.98 1.22 表 2 CL-2站位沉积物主、微量和TOC分析结果(10-6)
Table 2. Major, trace elements and TOC concentrations of sediments at site CL-2(10-6)
样品号 厚度/cm Sr Ba Zr Pb V Th Cu Sc CL-2-1 0 968 222 81.5 19.4 57.3 8.90 19.0 7.16 CL-2-2 20 583 309 112 21.7 85.1 11.8 25.6 10.2 CL-2-3 40 282 384 149 25.3 107 15.0 34.4 13.8 CL-2-4 60 316 385 177 24.8 104 14.4 29.6 13.5 CL-2-5 80 644 344 146 22.4 88.1 12.3 23.4 10.8 CL-2-6 100 786 338 172 22.6 86.8 12.3 25.4 10.8 CL-2-7 250 468 371 124 23.4 99.0 13.1 33.2 12.3 CL-2-8 270 413 368 131 22.9 103 13.7 34.2 12.9 CL-2-9 280 433 379 124 23.2 103 13.1 33.9 12.6 CL-2-10 300 497 375 118 22.4 99.5 12.8 33.9 12.0 CL-2-11 320 518 384 112 22.4 96.1 12.4 33.2 12.0 CL-2-12 340 544 387 114 22.5 97.3 12.5 34.1 11.8 CL-2-13 360 522 389 112 22.5 98.5 12.3 36.6 11.6 CL-2-14 380 499 393 111 23.5 101 12.5 36.0 11.7 CL-2-15 400 534 416 120 23.7 101 12.6 37.5 12.1 CL-2-16 420 520 398 117 23.2 102 12.1 36.4 11.9 CL-2-17 440 503 398 125 21.9 102 12.6 36.4 12.3 CL-2-18 460 476 381 121 22.5 96.5 11.5 31.9 11.6 CL-2-19 480 510 404 119 22.1 99.5 11.8 32.0 12.0 CL-2-20 495 519 391 115 20.7 97.8 11.4 32.1 11.7 样品号 Cr Ni Zn U Mo Al/% TOC/% Th/U V/Cr CL-2-1 38.2 26.0 71.4 8.90 3.43 3.75 0.97 1.00 8.00 CL-2-2 65.2 34.0 87.4 7.13 3.01 6.06 1.34 1.65 8.34 CL-2-3 105 44.9 109 5.86 2.08 8.26 1.76 2.56 7.75 CL-2-4 95.0 40.6 106 5.96 2.32 7.83 1.71 2.42 7.70 CL-2-5 77.7 33.3 88.0 6.89 3.24 6.29 1.44 1.79 8.16 样品号 厚度/cm Sr Ba Zr Pb V Th Cu Sc CL-2-6 67.8 37.7 90.6 7.88 2.97 6.22 1.36 1.56 8.04 CL-2-7 99.0 50.0 103 8.99 2.81 7.08 1.53 1.46 8.05 CL-2-8 83.6 47.7 111 7.14 2.89 7.56 1.51 1.92 7.98 CL-2-9 75.3 45.6 110 6.78 1.89 7.51 1.44 1.93 8.17 CL-2-10 80.0 44.9 107 7.06 2.04 7.03 1.54 1.81 8.29 CL-2-11 77.3 46.6 105 6.67 1.06 6.90 1.49 1.86 8.01 CL-2-12 66.9 45.6 111 6.38 0.87 6.71 1.42 1.96 8.25 CL-2-13 72.2 47.3 110 5.51 0.78 6.98 1.35 2.23 8.49 CL-2-14 76.9 47.7 110 5.38 0.77 7.09 1.32 2.32 8.63 CL-2-15 77.4 49.0 117 5.77 0.80 7.07 1.34 2.18 8.35 CL-2-16 73.6 50.1 115 6.47 0.70 6.84 1.33 1.87 8.57 CL-2-17 78.7 53.0 113 6.14 2.01 6.94 1.32 2.05 8.29 CL-2-18 73.2 45.3 105 5.77 0.89 6.74 1.27 1.99 8.32 CL-2-19 85.6 45.9 108 6.09 0.82 6.79 1.30 1.94 8.29 CL-2-20 64.6 43.1 107 5.79 0.65 6.68 1.16 1.97 8.36 -
[1] Lu H L, Seo Y T, Lee J W, et al.Complex gas hydrate from the Cascadia margin[J].Nature, 2007, 445(7125): 303-306. doi: 10.1038/nature05463
[2] 李艳菊, 史建南, 朱利东, 等.羌塘盆地双湖地区冷泉碳酸盐岩的发现及其天然气水合物成藏地质意义[J].海洋地质与第四纪地质, 2013, 33(2): 105-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201302013
LI Yanju, SHI Jiannan, ZHU Lidong, et al.The discovery of cold seep carbonate in Shuanghu region, Qiangtang basin and its implications for gas hydrate accumulation[J].Marine Geology and Quaternary Geology, 2013, 33(2): 105-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201302013
[3] 杨胜雄, 梁金强, 陆敬安, 等.南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J].地学前缘, 2017, 24(4): 1-14. doi: 10.13745/j.esf.yx.2016-12-43
YANG Shengxiong, LIANG Jinqiang, LU Jing'an, et al.New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the Northern slope of the South China Sea[J].Earth Science Frontiers, 2017, 24(4): 1-14. doi: 10.13745/j.esf.yx.2016-12-43
[4] Borowski W S, Paull C K, Ussler W I.Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J].Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[5] Suess E, Torres M E, Bohrmann G, et al.Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin[J].Earth and Planetary Science Letters, 1999, 170(1-2): 1-15. doi: 10.1016/S0012-821X(99)00092-8
[6] Hesselbo S P, Gr?cke D R, Jenkyns H C.Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J].Nature, 2000, 406(6794): 392-395. doi: 10.1038/35019044
[7] Ecker C, Dvorkin J, Nur A M.Estimating the amount of gas hydrate and free gas from marine seismic data[J].Geophysics, 2000, 65(2): 565-573. doi: 10.1190/1.1444752
[8] 吴能友, 杨胜雄, 王宏斌, 等.南海北部陆坡神狐海域天然气水合物成藏的流体运移体系[J].地球物理学报, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
WU Nengyou, YANG Shengxiong, WANG Hong bin, et al.Gas-bearing fluid influx sub-system for gas hydrate geological system in Shenhu area, Northern South China Sea[J].Chinese Journal of Geophysics, 2009, 52(6): 1641-1650. doi: 10.3969/j.issn.0001-5733.2009.06.027
[9] 张光学, 张明, 杨胜雄, 等.海洋天然气水合物地震检测技术及其应用[J].海洋地质与第四纪地质, 2011, 31(4): 51-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201104009
ZHANG Guangxue, ZHANG Ming, YANG Shengxiong, et al.Application of seismic detecting technique to marine gas hydrate survey[J].Marine Geology and Quaternary Geology, 2011, 31(4): 51-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201104009
[10] 吴庐山, 杨胜雄, 梁金强, 等.南海北部琼东南海域HQ-48PC站位地球化学特征及对天然气水合物的指示意义[J].现代地质, 2010, 24(3): 534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018
WU Lushan, YANG Shengxiong, LIANG Jinqiang, et al.Geochemical characteristics of sediments at site HQ-48PC in Qiongdongnan area, the North of the South China Sea, and their implication for gas hydrates[J].Geoscience, 2010, 24(3): 534-544. doi: 10.3969/j.issn.1000-8527.2010.03.018
[11] 吴能友, 叶瑛, 邬黛黛, 等.南海琼东南盆地沉积物地球化学特征及其反映的甲烷微渗漏作用[J].南海地质研究, 2007(1): 40-47.
WU Nengyou, YE Ying, WU Daidai, et al.Geochemical characteristics of sediments from Southeast Hainan basin, South China Sea and micro-methane-seep activity[J].Geological Research of South China Sea, 2007(1): 40-47.
[12] Hiruta A, Snyder G T, Tomaru H, et al.Geochemical constraints for the formation and dissociation of gas hydrate in an area of high methane flux, eastern margin of the Japan Sea[J].Earth and Planetary Science Letters, 2009, 279(3-4): 326-339. doi: 10.1016/j.epsl.2009.01.015
[13] Kim J H, Torres M E, Hong W L, et al.Pore fluid chemistry from the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2): source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea[J].Marine and Petroleum Geology, 2013, 47: 99-112. doi: 10.1016/j.marpetgeo.2012.12.011
[14] Yang T, Jiang S Y, Yang J H, et al.Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea[J].Journal of Oceanography, 2008, 64(2): 303-310. doi: 10.1007/s10872-008-0024-2
[15] Wu N Y, Zhang H Q, Yang S X, et al.Gas hydrate system of Shenhu Area, northern South China Sea: geochemical results[J].Journal of Geological Research, 2011: 370298.
[16] Formolo M J, Lyons T W.Sulfur biogeochemistry of cold seeps in the Green Canyon region of the Gulf of Mexico[J].Geochimica et Cosmochimica Acta, 2013, 119: 264-285. doi: 10.1016/j.gca.2013.05.017
[17] 陆红锋, 刘坚, 吴庐山, 等.南海天然气水合物钻孔自生黄铁矿硫同位素特征[J].地学前缘, 2015, 22(2): 200-206. doi: 10.13745/j.esf.2015.02.017
LU Hongfeng, LIU Jian, WU Lushan, et al.Sulfur isotopes of authigenic pyrites in the sediments of gas-hydrate drilling sites, Shenhu area, South China Sea[J].Earth Science Frontiers, 2015, 22(2): 200-206. doi: 10.13745/j.esf.2015.02.017
[18] 陈芳, 陆红锋, 刘坚, 等.南海东北部陆坡天然气水合物多期次分解的沉积地球化学响应[J].地球科学, 2016, 41(10): 1619-1629. doi: 10.3799/dqkx.2016.120
CHEN Fang, LU Hongfeng, LIU Jian, et al.Sedimentary geochemical response to gas hydrate episodic release on the northeastern slope of the South China Sea[J].Earth Science, 2016, 41(10): 1619-1629. doi: 10.3799/dqkx.2016.120
[19] Tomaru H, Lu Z L, Fehn U, et al.Age variation of pore water iodine in the eastern Nankai Trough, Japan: evidence for different methane sources in a large gas hydrate field[J].Geology, 2007, 35(11): 1015-1018. doi: 10.1130/G24198A.1
[20] Lu Z L, Tomaru H, Fehn U.Iodine ages of pore waters at Hydrate Ridge (ODP Leg 204), Cascadia Margin: implications for sources of methane in gas hydrates[J].Earth and Planetary Science Letters, 2008, 267(3-4): 654-665. doi: 10.1016/j.epsl.2007.12.015
[21] 蒋少涌, 凌洪飞, 杨竞红, 等.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志[J].海洋地质与第四纪地质, 2003, 23(1): 87-94. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200301014
JIANG Shaoyong, LING Hongfei, YANG Jinghong, et al.Geochemical anomaly of marine gas hydrates from shallow sediments and pore waters[J].Marine Geology and Quaternary Geology, 2003, 23(1): 87-94. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200301014
[22] Dickens G R.Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir[J].Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1
[23] 冯东, 陈多福.海底沉积物孔隙水钡循环对天然气渗漏的指示[J].地球科学进展, 2007, 22(1): 49-57. doi: 10.3321/j.issn:1001-8166.2007.01.007
FENG Dong, CHEN Duofu.Barium cycling in pore water of seafloor sediment: indicator of methane fluxes[J].Advances in Earth Science, 2007, 22(1): 49-57. doi: 10.3321/j.issn:1001-8166.2007.01.007
[24] Snyder G T, Dickens G R, Castellini D G.Labile barite contents and dissolved barium concentrations on Blake Ridge: new perspectives on barium cycling above gas hydrate systems[J].Journal of Geochemical Exploration, 2007, 95(1-3): 48-65. doi: 10.1016/j.gexplo.2007.06.001
[25] Feng D, Chen D F, Roberts H H.Petrographic and geochemical characterization of seep carbonate from Bush Hill (GC 185) gas vent and hydrate site of the Gulf of Mexico[J].Marine and Petroleum Geology, 2009, 26(7): 1190-1198. doi: 10.1016/j.marpetgeo.2008.07.001
[26] Hu Y, Feng D, Peckmann J, et al.New insights into cerium anomalies and mechanisms of trace metal enrichment in authigenic carbonate from hydrocarbon seeps[J].Chemical Geology, 2014, 381: 55-66. doi: 10.1016/j.chemgeo.2014.05.014
[27] Hu Y, Feng D, Liang Q Y, et al.Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea[J].Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012
[28] Chen F, Hu Y, Feng D, et al.Evidence of intense methane seepages from molybdenum enrichments in gas hydrate-bearing sediments of the northern South China Sea[J].Chemical Geology, 2016, 443: 173-181. doi: 10.1016/j.chemgeo.2016.09.029
[29] Liang Q Y, Hu Y, Feng D, et al.Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J].Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015
[30] 陈多福, 李绪宣, 夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
CHEN Duofu, LI Xuxuan, XIA Bin.Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan Basin of the South China Sea[J].Chinese Journal of Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
[31] 傅飘儿, 曹珺, 刘纪勇, 等.南海北部孔隙水碘与天然气水合物成藏关系研究[J].地质论评, 2016, 62(5): 1344-1351. doi: 10.16509/j.georeview.2016.05.017
FU Piaoer, CAO Jun, LIU Jiyong, et al.Tracing the gas hydrate reservoirs in the Northern South China Sea by iodine concentrations in pore waters from marine sediments[J].Geological Review, 2016, 62(5): 1344-1351. doi: 10.16509/j.georeview.2016.05.017
[32] Taylor S R, McLennan S M.The Continental Crust: Its Composition and Evolution[M].London: Blackwell, 1985: 57-72.
[33] 何家雄, 卢振权, 张伟, 等.南海北部珠江口盆地深水区天然气水合物成因类型及成矿成藏模式[J].现代地质, 2015, 29(5): 1024-1034. doi: 10.3969/j.issn.1000-8527.2015.05.005
HE Jiaxiong, LU Zhenquan, ZHANG Wei, et al.Biogenetic and sub-biogenetic gas resource and genetic types of natural gas hydrates in Pearl River Mouth basin, Northern area of South China Sea[J].Geoscience, 2015, 29(5): 1024-1034. doi: 10.3969/j.issn.1000-8527.2015.05.005
[34] Reeburgh W S.Oceanic methane biogeochemistry[J].Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[35] Yarincik K M, Murray R W, Lyons T W, et al.Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578, 000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe)[J].Paleoceanography, 2000, 15(6): 593-604. doi: 10.1029/1999PA000401
[36] Guo Q J, Shields G A, Liu C Q, et al.Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: implications for organosedimentary metal enrichment and Silici?cation in the early Cambrian[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1-2): 194-216. doi: 10.1016/j.palaeo.2007.03.016
[37] 邓义楠, 郭庆军, 朱茂炎, 等.湘西下寒武统牛蹄塘组黑色岩系的微量元素地球化学特征[J].矿物岩石地球化学通报, 2015, 34(2): 410-418. doi: 10.3969/j.issn.1007-2802.2015.02.025
DENG Yinan, GUO Qingjun, ZHU Maoyan, et al.Trace element geochemistry characteristics of Niutitang Formation from lower Cambrian black rock series in Western Hunan[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2): 410-418. doi: 10.3969/j.issn.1007-2802.2015.02.025
[38] Algeo T J, Maynard J B.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J].Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009
[39] Calvert S E, Pedersen T F.Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record[J].Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T
[40] Tribovillard N, Algeo T J, Lyons T, et al.Trace metals as paleoredox and paleoproductivity proxies: an update[J].Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
[41] Wignall P B, Twitchett R J.Oceanic anoxia and the end Permian mass extinction[J].Science, 1996, 272(5265): 1155-1158. doi: 10.1126/science.272.5265.1155
[42] Kimura H, Watanabe Y.Ocean anoxia at the Precambrian-Cambrian boundary[J].Geology, 2001, 29(11): 995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
[43] Rimmer S M.Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J].Chemical Geology, 2004, 206(3-4): 373-391. doi: 10.1016/j.chemgeo.2003.12.029
[44] Morford J L, Russell A D, Emerson S.Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J].Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2
[45] Guo Q J, Deng Y N, Hippler D, et al.REE and trace element patterns from organic-rich rocks of the Ediacaran-Cambrian transitional interval[J].Gondwana Research, 2016, 36: 94-106. doi: 10.1016/j.gr.2016.03.012
[46] Scott C, Lyons T W.Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies[J].Chemical Geology, 2012, 324-325: 19-27. doi: 10.1016/j.chemgeo.2012.05.012
[47] Boetius A, Ravenschlag K, Schubert C J, et al.A marine microbial consortium apparently mediating anaerobic oxidation of methane[J].Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[48] Peketi A, Mazumdar A, Joshi R K, et al.Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: an application of C-S-Mo systematics[J].Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007. doi: 10.1029/2012GC004288
[49] Sato H, Hayashi K I, Ogawa Y, et al.Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: insights into the effect of anaerobic oxidation of methane[J].Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013
[50] Sha Z B, Liang J Q, Zhang G X, et al.A seepage gas hydrate system in northern South China Sea: seismic and well log interpretations[J].Marine Geology, 2015, 366: 69-78. doi: 10.1016/j.margeo.2015.04.006
[51] Zhang G X, Liang J Q, Lu J A, et al.Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J].Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021