神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测

胡高伟, 李彦龙, 吴能友, 陈强, 刘昌岭, 刘振纹. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5): 151-158. doi: 10.16562/j.cnki.0256-1492.2017.05.015
引用本文: 胡高伟, 李彦龙, 吴能友, 陈强, 刘昌岭, 刘振纹. 神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测[J]. 海洋地质与第四纪地质, 2017, 37(5): 151-158. doi: 10.16562/j.cnki.0256-1492.2017.05.015
HU Gaowei, LI Yanlong, WU Nengyou, Chen Qiang, LIU Changling, LIU Zhenwen. UNDRAINED SHEAR STRENGTH ESTIMATION OF THE COVER LAYER OF HYDRATE AT SITE W18/19 OF SHENHU AREA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 151-158. doi: 10.16562/j.cnki.0256-1492.2017.05.015
Citation: HU Gaowei, LI Yanlong, WU Nengyou, Chen Qiang, LIU Changling, LIU Zhenwen. UNDRAINED SHEAR STRENGTH ESTIMATION OF THE COVER LAYER OF HYDRATE AT SITE W18/19 OF SHENHU AREA[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 151-158. doi: 10.16562/j.cnki.0256-1492.2017.05.015

神狐海域W18/19站位天然气水合物上覆层不排水抗剪强度预测

  • 基金项目:
    国家自然科学基金(41606078,41474119);国家重点研发计划项目(2017YFC0307600);中国地质调查项目(121201005000150016);青岛海洋科学与技术国家实验室开放基金项目(QNLM2016ORP0207);泰山学者特聘专家项目
详细信息
    作者简介: 胡高伟(1982—),男,博士, 副研究员,主要从事海洋地球物理、天然气水合物研究,E-mail: hgw-623@163.com
    通讯作者: 吴能友(1965—),男,博士,研究员,主要从事海洋地质、天然气水合物研究,E-mail: wuny@ms.giec.ac.cn
  • 中图分类号: P751

  • 蔡秋蓉编辑

UNDRAINED SHEAR STRENGTH ESTIMATION OF THE COVER LAYER OF HYDRATE AT SITE W18/19 OF SHENHU AREA

More Information
  • 天然气水合物上覆层不排水抗剪强度是水合物试采过程中导管喷射设计、地层沉降和井壁稳定性分析的关键参数。孔压静力触探(CPTU)为地层强度参数纵向分布规律研究提供了有效途径。本文基于南海北部神狐海域W18/19站位水合物上覆层的CPTU测试结果和室内实验数据,建立了该区经验锥头系数的确定方法,并基于确定的经验锥头系数求解上覆层不排水抗剪强度。结果表明:W18/19站位水合物上覆层由上至下为强度逐渐增大的钙质黏土,基于总锥尖阻力、有效锥尖阻力、超孔隙压力求解钙质黏土不排水抗剪强度的经验锥头系数分别为13.8、4.2、14.4。水合物上覆层不排水抗剪强度随着深度的增加逐渐增大。基于CPTU建立的不排水抗剪强度计算方法能反映钙质黏土不排水抗剪强度的纵向分布规律。

  • 加载中
  • 图 1  W18/19站位位置[29]

    Figure 1. 

    图 2  W18/19站位CPTU测试结果

    Figure 2. 

    图 3  基于总锥尖阻力确定W18/19站位上覆土经验锥头系数

    Figure 3. 

    图 4  基于有效锥尖阻力确定W18/19站位上覆土经验锥头系数

    Figure 4. 

    图 5  基于超孔隙压力确定W18/19站位上覆土经验锥头系数

    Figure 5. 

    图 6  基于CPTU参数的W18/19站位上覆土不排水抗剪强度

    Figure 6. 

    表 1  不同实验手段得到的W18/19站位经验锥头系数

    Table 1.  Empirical cone factors for site W18/19 based on the different test methods

    超孔隙
    压力
    总锥尖
    阻力
    有效锥
    尖阻力
    袖珍贯入仪 17.3 17.1 5.07
    手动十字板 16.3 15.2 4.64
    微型电动十字板 12.0 11.6 4.0
    三轴不排水不固结剪切实验 11.8 11.1 3.11
    下载: 导出CSV
  • [1]

    Kvenvolden K A. A primer on the geological occurrence of gas hydrate[J]. Geological Society, London, Special Publications, 1998, 137(1): 9-30. doi: 10.1144/GSL.SP.1998.137.01.02

    [2]

    Yang S, Zhang M, Liang J, et al. Preliminary results of China's third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Fire in the Ice, 2015, 15(2): 1-5.

    [3]

    梁金强, 张光学, 陆敬安, 等.南海东北部陆坡天然气水合物富集特征及成因模式[J].天然气工业, 2016, 36(10): 157-162. doi: 10.3787/j.issn.1000-0976.2016.10.020

    LIANG Jinqiang, ZHANG Guangxue, LU Jing'an, et al. Accumulation characteristics and genetic models of natural gas hydrate reservoirs in the NE slope of the South China Sea[J]. Natural Gas Industry, 2016, 36(10): 157-162. doi: 10.3787/j.issn.1000-0976.2016.10.020

    [4]

    李彦龙, 刘昌岭, 刘乐乐, 等.水合物沉积物三轴试验存在的关键问题分析[J].新能源进展, 2016, 4(4): 279-285. http://d.old.wanfangdata.com.cn/Periodical/xnyjz201604004

    LI Yanlong, LIU Changling, LIU Lele, et al. Key issues for triaxial test of hydrate-bearing sediment[J]. Advances in New and Renewable Energy, 2016, 4(4): 279-285. http://d.old.wanfangdata.com.cn/Periodical/xnyjz201604004

    [5]

    杨溢军, 童立元, 朱宁, 等.基坑中基于CPTU软土不排水强度确定及应用[J].地下空间与工程学报, 2016, 12(4): 1095-1101. http://d.old.wanfangdata.com.cn/Periodical/dxkj201604036

    YANG Yijun, TONG Liyuan, ZHU Ning, et al. Evaluation and Application of undrained shear strength in excavation from piezocone tests (CPTU)[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(4): 1095-1101. http://d.old.wanfangdata.com.cn/Periodical/dxkj201604036

    [6]

    王淑云, 楼志刚.海洋粉质黏土在波浪荷载作用后的不排水抗剪强度衰化特性[J].海洋工程, 2000, 18(1): 38-43. doi: 10.3969/j.issn.1005-9865.2000.01.007

    WANG Shuyun, LOU Zhigang. Degradation of undrained shear strength of marine silty clay after undrained cyclic loading[J]. Ocean Engineering, 2000, 18(1): 38-43. doi: 10.3969/j.issn.1005-9865.2000.01.007

    [7]

    Strózyk J, Tankiewicz M. The undrained shear strength of overconsolidated clays[J]. Procedia Engineering, 2014, 91: 317-321. doi: 10.1016/j.proeng.2014.12.067

    [8]

    Westerberg B, Müller R, Larsson S. Evaluation of undrained shear strength of Swedish fine-grained sulphide soils[J]. Engineering Geology, 2015, 188: 77-87. doi: 10.1016/j.enggeo.2015.01.007

    [9]

    Grozic J L H, Nadim F, Kvalstad T J. On the undrained shear strength of gassy clays[J]. Computers and Geotechnics, 2005, 32(7): 483-490. doi: 10.1016/j.compgeo.2005.10.002

    [10]

    Juang C H, Liu C N, Chen C H, et al. Calibration of liquefaction potential index: a re-visit focusing on a new CPTU model[J]. Engineering Geology, 2008, 102(1-2): 19-30. doi: 10.1016/j.enggeo.2008.06.005

    [11]

    Sivrikaya O, Togrol E. Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey[J]. Engineering Geology, 2006, 86(1): 52-69. doi: 10.1016/j.enggeo.2006.05.002

    [12]

    Ebrahimian B, Movahed V, Pasha A Y. Evaluation of undrained shear strength of marine clay using cone penetration resistance at South Pars field in Iran[J]. Ocean Engineering, 2012, 54: 182-195. doi: 10.1016/j.oceaneng.2012.07.018

    [13]

    储团结, 黄俊杰, 王中华.静力触探试验确定软黏性土不排水抗剪强度研究[J].路基工程, 2005(6): 1-4. doi: 10.3969/j.issn.1003-8825.2005.06.001

    CHU Tuanjie, HUANG Junjie, WANG Zhonghua. Research on determination for undrainage shear strength of soft cohesive soil using the cone penetration test[J]. Subgrade Engineering, 2005(6): 1-4. doi: 10.3969/j.issn.1003-8825.2005.06.001

    [14]

    季福东, 贾永刚, 刘晓磊, 等.海底沉积物工程力学性质原位测量方法[J].海洋地质与第四纪地质, 2016, 36(3): 191-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201603023

    JI Fudong, JIA Yonggang, LIU Xiaolei, et al. In situ measurement of the engineering mechanical properties of seafloor sediment[J]. Marine Geology and Quaternary Geology, 2016, 36(3): 191-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201603023

    [15]

    马海鹏, 陈祖煜, 于沭.上海地区土体抗剪强度与静力触探比贯入阻力相关关系研究[J].岩土力学, 2014, 35(2): 536-542. http://d.old.wanfangdata.com.cn/Periodical/ytlx201402034

    MA Haipeng, CHEN Zuyu, YU Shu. Correlations of soil shear strength with specific penetration resistance of CPT in Shanghai area[J]. Rock and Soil Mechanics, 2014, 35(2): 536-542. http://d.old.wanfangdata.com.cn/Periodical/ytlx201402034

    [16]

    刘维正, 石名磊, 徐林荣.考虑软黏土结构性损伤的圆柱孔扩张弹塑性分析[J].岩土工程学报, 2013, 35(3): 487-494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201303011

    LIU Weizheng, SHI Minglei, XU Linrong. Elastoplastic analysis of cylindrical cavity expansion in natural sedimentary soft clay with structure damage[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 487-494. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytgcxb201303011

    [17]

    Lunne T, Christoffersen H P, Tjelta T I. Engineering use of piezocone data in North Sea clays[C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. Oslo, Norwegian: Norwegian Geotechnical Institute, 1985.

    [18]

    Senneset K, Janbu N, Svano G. Strength and deformation parameters from cone penetration tests[C]//Proceedings of the 2nd European Symposium on Penetration Testing. Amsterdam, Netherlands: ESOPT Ⅱ, 1982.

    [19]

    Tong L Y, Wang Q, Du G Y, et al. Determination of undrained shear strength using piezocone penetration test in clayey soil for bridge foundation[J]. Journal of Southeast University (English Edition), 2011, 27(2): 201-205.

    [20]

    安彦勇, 郭燕沫, 李向凤.孔压静力触探确定软黏土地基强度方法分析[J].勘察科学技术, 2009(3): 8-12. doi: 10.3969/j.issn.1001-3946.2009.03.002

    AN Yanyong, GUO Yanmo, LI Xiangfeng. Analysis of pore pressure static cone penetration test to determine soft clay strength[J]. Site Investigation Science and Technology, 2009(3): 8-12. doi: 10.3969/j.issn.1001-3946.2009.03.002

    [21]

    王虎刚, 周松望.利用落锥试验确定深水软黏土的不排水抗剪强度[J].海岸工程, 2016, 35(2): 25-32. doi: 10.3969/j.issn.1002-3682.2016.02.004

    WANG Hugang, ZHOU Songwang. Determination of undrained shear strength of Deepwater soft clays through fall cone test[J]. Coastal Engineering, 2016, 35(2): 25-32. doi: 10.3969/j.issn.1002-3682.2016.02.004

    [22]

    周杨锐, 王建华, 李书兆.南海荔湾深水重塑沉积物的静、动力特性[J].海洋通报, 2013, 32(5): 521-526. http://d.old.wanfangdata.com.cn/Periodical/hytb201305007

    ZHOU Yangrui, WANG Jianhua, LI Shuzhao. Static and cyclic behaviors of Remoulded Deepwater sediments of Liwan in South China Sea[J]. Marine Science Bulletin, 2013, 32(5): 521-526. http://d.old.wanfangdata.com.cn/Periodical/hytb201305007

    [23]

    张毅, 何丽娟, 徐行, 等.南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究[J].地球物理学进展, 2009, 24(1): 183-194. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200901024

    ZHANG Yi, HE Lijuan, XU Xing, et al. The disagreement between BSRs and the base of methane hydrate stability zones in the Shenhu area North of the South China Sea[J]. Progress in Geophysics, 2009, 24(1): 183-194. http://d.old.wanfangdata.com.cn/Periodical/dqwlxjz200901024

    [24]

    梁劲, 王明君, 王宏斌, 等.南海神狐海域天然气水合物声波测井速度与饱和度关系分析[J].现代地质, 2009, 23(2): 217-223. doi: 10.3969/j.issn.1000-8527.2009.02.004

    LIANG Jin, WANG Mingjun, WANG Hongbin, et al. Relationship between the sonic logging velocity and saturation of gas hydrate in Shenhu Area, northern slope of South China Sea[J]. Geoscience, 2009, 23(2): 217-223. doi: 10.3969/j.issn.1000-8527.2009.02.004

    [25]

    McDonnell S L, Max M D, Cherkis N Z, et al. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17(8): 929-936. doi: 10.1016/S0264-8172(00)00023-4

    [26]

    Wang P X, Prell W L, Blum P. Ocean Drilling Program Leg 184 Scientific Prospectus South China Sea, Site 1144[M]//Wang P, Prell W L, Blum P. Proceedings of the Ocean Drilling Program, Initial Reports. TX, USA: Ocean Drilling Program, College Station, 2000, 184: 1-97.

    [27]

    王宏语, 孙春岩, 张洪波, 等.西沙海槽潜在天然气水合物成因及形成地质模式[J].海洋地质与第四纪地质, 2005, 25(4): 85-91. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504014

    WANG Hongyu, SUN Chunyan, ZHANG Hongbo, et al. Origin and genetic model of potential gas hydrates in Xisha trough, South China Sea[J]. Marine Geology and Quaternary Geology, 2005, 25(4): 85-91. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504014

    [28]

    傅宁, 米立军, 张功成.珠江口盆地白云凹陷烃源岩及北部油气成因[J].石油学报, 2007, 28(3): 32-38. http://d.old.wanfangdata.com.cn/Periodical/syxb200703007

    FU Ning, MI Lijun, ZHANG Gongcheng. Source rocks and origin of oil and gas in the northern Baiyun Depression of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2007, 28(3): 32-38. http://d.old.wanfangdata.com.cn/Periodical/syxb200703007

    [29]

    苏明, 杨睿, 吴能友, 等.南海北部陆坡区神狐海域构造特征及对水合物的控制[J].地质学报, 2014, 88(3): 318-326. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201403002

    SU Ming, YANG Rui, WU Nengyou, et al. Structural characteristics in the Shenhu Area, northern continental slope of South China Sea, and their influences on gas hydrate[J]. Acta Geologica Sinica, 2014, 88(3): 318-326. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201403002

  • 加载中

(6)

(1)

计量
  • 文章访问数:  2082
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2017-04-21
修回日期:  2017-06-03
刊出日期:  2017-10-28

目录