海底多组分水合物分解气好氧氧化实验研究

李晶, 贺行良, 刘昌岭, 孟庆国, 宁伏龙, 陈宇峰. 海底多组分水合物分解气好氧氧化实验研究[J]. 海洋地质与第四纪地质, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
引用本文: 李晶, 贺行良, 刘昌岭, 孟庆国, 宁伏龙, 陈宇峰. 海底多组分水合物分解气好氧氧化实验研究[J]. 海洋地质与第四纪地质, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
LI Jing, HE Xingliang, LIU Changling, MENG Qingguo, NING Fulong, CHEN Yufeng. EXPERIMENT RESEARCH ON AEROBIC OXIDATION OF MULTICOMPONENT HYDROCARBONS DECOMPOSED FROM MARINE GAS HYDRATES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021
Citation: LI Jing, HE Xingliang, LIU Changling, MENG Qingguo, NING Fulong, CHEN Yufeng. EXPERIMENT RESEARCH ON AEROBIC OXIDATION OF MULTICOMPONENT HYDROCARBONS DECOMPOSED FROM MARINE GAS HYDRATES[J]. Marine Geology & Quaternary Geology, 2017, 37(5): 204-216. doi: 10.16562/j.cnki.0256-1492.2017.05.021

海底多组分水合物分解气好氧氧化实验研究

  • 基金项目:
    国家自然科学基金项目(41406076);中国地质调查局“天然气水合物测试技术与实验模拟”项目(DD2016026);青岛海洋科学与技术国家实验室开放基金(QNLM2016ORP0203)
详细信息
    作者简介: 李晶(1991—),女,博士研究生,主要从事天然气水合物地球化学特征研究,E-mail:839580123@qq.com
    通讯作者: 刘昌岭(1966—),男,博士,研究员,主要从事天然气水合物研究,E-mail:qdliuchangling@163.com
  • 中图分类号: P736.4

  • 周立君编辑

EXPERIMENT RESEARCH ON AEROBIC OXIDATION OF MULTICOMPONENT HYDROCARBONS DECOMPOSED FROM MARINE GAS HYDRATES

More Information
  • 海洋区域蕴藏了丰富的天然气水合物资源,是地球上巨大的碳储库之一。当海洋环境发生变化时,部分水合物会分解释放出大量天然气,其向上运移过程中会发生厌氧或好氧氧化反应,从而减少由海洋向大气的碳排放量,起到消耗截流的作用。本文选取含烷烃好氧氧化菌的海底沉积物进行了水合物分解气的微生物好氧降解模拟实验,实验中用混合气(C1+C2+C3)来模拟多组分水合物分解气。实验结果显示,在微生物作用下烃类混合气发生好氧氧化降解反应至消耗殆尽,反应优先顺序为C1>C2>C3,降解速率C1>C2>C3。且随着烃类组分含量的减少,其碳氢同位素组成发生了微生物降解分馏效应,并呈现出不同程度的富集趋势。C1、C2和C3的碳同位素富集变化量分别为71.05‰、12.03‰和4.61‰,碳同位素分馏系数(εC)的平均值分别为-11.219‰、-2.951‰和-1.539‰;氢同位素富集变化量分别为368.64‰、156.00‰和111.97‰,氢同位素分馏系数(εH)的平均值分别为-56.092‰、-99.696‰和-73.303‰。可见,三者的碳位素富集程度C1>C2>C3,而氢同位素富集程度C2>C3>C1。此外,水合物分解气在微生物降解过程中气体成分组成及碳氢同位素特征发生了改变,对判别气体成因起到一定的干扰作用,因此,利用分解溢出气体样品进行气体溯源时需要适当考虑这一影响因素。

  • 加载中
  • 图 1  烃类气体(C1、C2和C3)含量变化趋势

    Figure 1. 

    图 2  二氧化碳含量变化趋势

    Figure 2. 

    图 3  好氧氧化过程中气体组分的碳同位素分馏特征

    Figure 3. 

    图 4  烃类气体(C1、C2、C3)碳氢同位素分馏系数

    Figure 4. 

    图 5  好氧氧化过程中气体组分的氢同位素分馏特征

    Figure 5. 

    表 1  模拟实验过程中各气体组分含量变化情况

    Table 1.  Content variation of gas components during simulating test

    时间(天) C1/mmol% C2/mmol% C3/mmol% CO2/mmol
    S-1组 S-2组 K-2组 S-1组 S-2组 K-2组 S-1组 S-2组 K-2组 S-1组 S-2组 K-1组
    0 79.96 79.96 79.96 10.04 10.04 10.04 10.00 10.00 10.00 0.000 0.000 0.000
    7 74.92 78.85 77.15 9.52 10.00 9.85 9.23 9.95 9.83 0.033 0.028 0.033
    14 67.21 68.67 77.52 8.43 9.00 9.85 8.66 9.28 9.53 0.053 0.048 0.059
    21 65.36 63.50 77.45 8.17 8.61 9.61 8.43 8.94 9.53 0.059 0.063 0.085
    28 64.25 61.98 77.55 8.00 8.00 9.60 8.00 8.00 9.33 0.077 0.087 0.136
    35 61.65 56.69 77.43 7.84 7.58 9.66 7.31 7.56 9.34 0.085 0.099 0.174
    40 59.01 50.26 77.40 7.53 7.22 9.52 7.30 7.46 9.35 0.090 0.108 0.229
    45 53.39 41.52 77.41 6.58 6.00 9.56 7.29 7.21 9.34 0.095 0.120 0.285
    48 44.50 37.25 77.41 6.39 5.86 9.56 7.29 7.02 9.30 0.097 0.123 0.333
    51 31.00 30.28 77.40 5.79 5.31 9.56 6.78 6.93 9.31 0.106 0.138 0.395
    54 22.22 19.56 77.35 5.50 4.64 9.55 6.73 6.76 9.33 0.110 0.161 0.434
    57 15.00 12.85 77.37 5.00 4.22 9.53 6.53 6.00 9.33 0.137 0.235 0.512
    60 7.97 5.75 77.37 3.00 3.22 9.55 6.12 5.48 9.37 0.168 0.309 0.599
    63 3.67 2.71 77.37 2.00 2.66 9.56 5.93 4.59 9.37 0.163 0.353 0.596
    66 0.59 1.00 77.37 0.93 2.24 9.55 5.58 3.76 9.37 0.159 0.391 0.595
    69 0.00 0.04 77.37 0.43 1.66 9.53 4.23 3.21 9.37 0.158 0.433 0.580
    72 0.00 0.00 77.37 0.00 1.22 9.53 3.12 2.65 9.37 0.156 0.474 0.567
    75 0.00 0.00 77.37 0.00 0.00 9.53 2.03 1.29 9.37 0.170 0.512 0.598
    80 0.00 0.00 77.37 0.00 0.00 9.53 1.50 0.66 9.37 0.130 0.429 0.518
    85 0.00 0.00 77.37 0.00 0.00 9.53 0.41 0.00 9.37 0.130 0.425 0.513
    90 0.00 0.00 77.37 0.00 0.00 9.53 0.00 0.00 9.37 0.133 0.420 0.513
    95 0.00 0.00 77.37 0.00 0.00 9.53 0.00 0.00 9.37 0.138 0.421 0.514
    下载: 导出CSV

    表 2  好氧氧化过程中烃类气体及二氧化碳的碳氢同位素分馏数据/‰

    Table 2.  Carbon and hydrogen isotope fractionation of hydrocarbon and carbon dioxide during aerobic oxidation/‰

    天数 δ13C -C1 δ13C -C2 δ13C -C3 δD -C1 δD -C2 δD -C3 δ13C -CO2
    S-1组 S-2组 S-1组 S-2组 S-1组 S-2组 S-1组 S-2组 S-1组 S-2组 S-1组 S-2组 K-1组 S-1组 S-2组
    0 -37.96 -37.96 -30.09 -30.09 -32.93 -32.93 -177.89 -181.17 -378.38 -371.69 -284.95 -290.39 -17.02 -17.31 -17.51
    7 -37.19 -37.18 -30.12 -30.00 -32.87 -32.90 -177.24 -180.01 -371.69 -370.32 -278.25 -291.60 -17.26 -17.56 -17.87
    14 -36.85 -37.19 -29.84 -29.86 -32.92 -32.89 -179.11 -178.55 -371.56 -370.00 -271.45 -290.14 -17.73 -18.00 -18.20
    21 -36.36 -37.12 -29.72 -29.73 -32.96 -32.86 -185.55 -177.82 -371.00 -369.23 -270.11 -289.69 -17.32 -18.11 -18.23
    28 -36.48 -36.72 -29.48 -29.58 -32.89 -32.85 -180.24 -176.28 -365.69 -360.28 -270.96 -290.04 -17.71 -18.20 -18.80
    35 -35.57 -35.91 -29.47 -29.12 -32.77 -32.86 -178.05 -175.56 -362.62 -356.30 -268.64 -289.27 -17.68 -18.28 -19.25
    40 -35.10 -35.88 -29.36 -29.44 -32.81 -32.84 -176.86 -176.03 -361.25 -334.12 -265.50 -288.53 -18.04 -19.00 -20.00
    45 -34.45 -35.51 -29.17 -29.25 -32.86 -32.81 -172.98 -174.93 -352.24 -328.01 -267.06 -289.68 -18.89 -20.18 -21.87
    48 -33.10 -35.14 -29.37 -29.12 -32.69 -32.76 -171.25 -172.21 -339.58 -309.99 -264.78 -288.01 -19.14 -20.34 -22.10
    51 -30.33 -34.50 -28.99 -29.13 -32.69 -32.70 -162.25 -163.49 -336.63 -295.53 -255.35 -287.05 -18.49 -20.72 -22.52
    54 -26.00 -33.12 -28.48 -28.80 -32.67 -32.65 -150.66 -140.83 -337.35 -285.27 -257.32 -287.22 -18.97 -21.00 -22.90
    57 -18.21 -30.08 -26.20 -28.53 -32.65 -32.61 -139.31 -130.10 -326.28 -280.28 -252.42 -272.96 -19.12 -21.43 -23.60
    60 0.03 -20.21 -23.44 -27.14 -32.62 -32.47 -41.96 -109.79 -322.50 -249.94 -245.31 -264.18 -19.12 -22.64 -23.91
    63 32.40 0.55 -23.51 -23.85 -32.61 -32.34 -0.52 0.85 -320.02 -215.69 -244.16 -253.96 -19.38 -23.53 -25.62
    66 33.10 17.95 -19.38 -- -32.44 -32.30 190.75 73.25 -316.00 -- -238.29 -250.62 -19.40 -24.09 -26.74
    69 -- 18.85 -18.09 -- -31.90 -30.31 -- 151.47 -313.67 -- -235.48 -241.68 -- -25.35 -26.94
    72 -- -- -- -- -31.54 -30.02 -- -- -- -- -199.71 -237.29 -- -26.25 -26.32
    75 -- -- -- -- -30.28 -28.33 -- -- -- -- -172.98 -226.36 -- -27.06 -26.17
    80 -- -- -- -- -- -- -- -- -- -- -- -- -- -27.35 -25.97
    85 -- -- -- -- -- -- -- -- -- -- -- -- -- -27.34 -26.28
    "--"低于检出限
    下载: 导出CSV
  • [1]

    Makogon I U. Hydrates of Natural Gas[M]. Tulsa, Oklahoma: PennWell Books, 1981.

    [2]

    Makogon Y F, Holditch S A, Makogon T Y. Natural gas-hydrates-A potential energy source for the 21st Century[J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 14-31. doi: 10.1016/j.petrol.2005.10.009

    [3]

    Liu C L, Meng Q G, He X L, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology, 2015, 61: 14-21. doi: 10.1016/j.marpetgeo.2014.11.006

    [4]

    贺行良, 王江涛, 刘昌岭, 等.天然气水合物客体分子与同位素组成特征及其地球化学应用[J].海洋地质与第四纪地质, 2012, 32(3): 163-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201203020

    HE Xingliang, WANG Jiangtao, LIU Changling, et al. Guest molecular and isotopic compositions of natrual gas hydrates and its geochemical applications[J]. Marine Geology and Quaternary Geology, 2012, 32(3): 163-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201203020

    [5]

    Buffett B, Archer D. Global inventory of methane clathrate: sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3-4): 185-199. doi: 10.1016/j.epsl.2004.09.005

    [6]

    Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective[J]. Earth-Science Reviews, 2011, 106(1-2): 105-130. doi: 10.1016/j.earscirev.2011.01.002

    [7]

    Randall H. Are methane seeps in the Arctic slowing global warming?[J]. Science, 2017-05-08. http://www.sciencemag.org/news/2017/05/are-methane-seeps-arctic-slowing-global-warming.

    [8]

    Ehhalt D, Prather M, Dentener F, et al. Atmospheric chemistry and greenhouse gases[R]. Richland, WA, US: Pacific Northwest National Laboratory (PNNL), 2001.

    [9]

    Khalil M A K. Atmospheric Methane: Sources, Sinks, and Role in Global Change[M]. Berlin: Springer Science & Business Media, 1993.

    [10]

    Wahlen M. The global methane cycle[J]. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 407-426. doi: 10.1146/annurev.ea.21.050193.002203

    [11]

    Penkett S A, Blake N J, Lightman P, et al. The seasonal variation of nonmethane hydrocarbons in the free troposphere over the North Atlantic Ocean: Possible evidence for extensive reaction of hydrocarbons with the nitrate radical[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D2): 2865-2885. doi: 10.1029/92JD02162

    [12]

    Donahue N M, Prinn R G. Nonmethane hydrocarbon chemistry in the remote marine boundary layer[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D11): 18387-18411. doi: 10.1029/JD095iD11p18387

    [13]

    Graedel T E, Crutzen P J. Atmospheric Change: an Earth System Perspective[M]. New York: W.H. Freeman and Company, 1993, 302.

    [14]

    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(1): 311-334. doi: 10.1146/annurev.micro.61.080706.093130

    [15]

    Broadgate W J, Liss P S, Penkett S A. Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean[J]. Geophysical Research Letters, 1997, 24(21): 2675-2678. doi: 10.1029/97GL02736

    [16]

    Hinrichs K U, Hayes J M, Bach W, et al. Biological formation of ethane and propane in the deep marine subsurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(40): 14684-14689. doi: 10.1073/pnas.0606535103

    [17]

    Lamontagne R A, Swinnerton J W, Linnenbom V J. C1‐C4 hydrocarbons in the North and South Pacific[J]. Tellus, 1974, 26(1-2): 71-77. doi: 10.3402/tellusa.v26i1-2.9738

    [18]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [19]

    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles[J]. Earth and Planetary Science Letters, 2006, 243(3-4): 354-365. doi: 10.1016/j.epsl.2006.01.041

    [20]

    Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at continental margins and its influence on climate change[J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    [21]

    Rudolph J. The tropospheric distribution and budget of ethane[J]. Journal of Geophysical Research: Atmospheres, 1995, 100(D6): 11369-11381. doi: 10.1029/95JD00693

    [22]

    Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [23]

    Caldwell S L, Laidler J R, Brewer E A, et al. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6791-6799. http://www.ncbi.nlm.nih.gov/pubmed/18853791

    [24]

    Wyrtki K. The oxygen minima in relation to ocean circulation[J]. Deep Sea Research and Oceanographic Abstracts, 1962, 9(1-2): 11-23. doi: 10.1016/0011-7471(62)90243-7

    [25]

    Najjar R G, Keeling R F. Analysis of the mean annual cycle of the dissolved oxygen anomaly in the World Ocean[J]. Journal of Marine Research, 1997, 55(1): 117-151. doi: 10.1357/0022240973224481

    [26]

    Garcia H E, Locarnini R A, Boyer T P, et al. Dissolved oxygen, apparent oxygen utilization, and oxygen saturation[R]. World Ocean Atlas, 2009.

    [27]

    Birgel D, Peckmann J, Klautzsch S, et al. Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA[J]. Geomicrobiology Journal, 2006, 23(7): 565-577. doi: 10.1080/01490450600897369

    [28]

    Kinnaman F S, Valentine D L, Tyler S C. Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 271-283. doi: 10.1016/j.gca.2006.09.007

    [29]

    石强.渤海溶解氧和表观耗氧量季节循环时空模态与机制[J].海洋湖沼通报, 2015(1): 175-186. http://d.old.wanfangdata.com.cn/Periodical/hyhztb201501025

    SHI Qiang. The mechanism and spatial-temporal model on the seasonal cycle of dissolved oxygen and apparent oxygen utilization in Bohai sea[J]. Transactions of Oceanology and Limnology, 2015(1): 175-186. http://d.old.wanfangdata.com.cn/Periodical/hyhztb201501025

    [30]

    何海清, 王兆云, 韩品龙.渤海湾盆地深层油气藏类型及油气分布规律[J].石油勘探与开发, 1998, 25(3): 6-9. http://d.old.wanfangdata.com.cn/NSTLQK/10.1002-jcc.21769/

    HE Haiqing, WANG Zhaoyun, HAN Pinlong. Deep zone reservoir type and oil-gas distribution pattern in Bohai bay basin[J]. Petroleum Expliration and Development, 1998, 25(3): 6-9. http://d.old.wanfangdata.com.cn/NSTLQK/10.1002-jcc.21769/

    [31]

    徐守余, 严科.渤海湾盆地构造体系与油气分布[J].地质力学学报, 2005, 11(3): 259-265. doi: 10.3969/j.issn.1006-6616.2005.03.007

    XU Shouyu, YAN Ke. Structural system and hydrocarbon distribution in the Bohai gulf basin[J]. Journal of Geomechanics, 2005, 11(3): 259-265. doi: 10.3969/j.issn.1006-6616.2005.03.007

    [32]

    http://en.wikipedia.org/wiki/Seawater.

    [33]

    贺行良.天然气水合物气体组成分析方法研究与应用[D].青岛: 中国海洋大学硕士学位论文, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10423-1012505178.htm

    HE Xingliang. Study and application of analytical method for gas compositions of natural gas hydrate[D]. Qingdao: Master's Thesis of Ocean University of China, 2012.

    [34]

    贺行良, 刘昌岭, 王江涛, 等.气相色谱-同位素比值质谱法测定天然气水合物气体单体碳氢同位素[J].岩矿测试, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021

    HE Xingliang, LIU Changling, WANG Jiangtao, et al. Measurement of carbon and hydrogen isotopes of natural gas hydrate bound gases by gas chromatography-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(1): 154-158. doi: 10.3969/j.issn.0254-5357.2012.01.021

    [35]

    李广之, 胡斌, 袁子艳, 等.轻烃的吸附与解吸模型[J].天然气地球科学, 2006, 17(4): 552-558. doi: 10.3969/j.issn.1672-1926.2006.04.026

    LI Guangzhi, HU Fu, YUAN Ziyan, et al. The model of light hydrocarbons adsoption and desorption[J]. Natural Gas Geoscience, 2006, 17(4): 552-558. doi: 10.3969/j.issn.1672-1926.2006.04.026

    [36]

    陈立雷, 贺行良, 赵青芳, 等.轻烃在海洋沉积物中的吸附与解吸行为研究[J].天然气地球科学, 2013, 24(4): 798-802. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201304020

    CHEN Lilei, HE Xingliang, ZHAO Qiangfang, et al. Experimental research on the behavior of the absorption and desorption of light hydrocarbons in marine sediments[J]. Natural Gas Geoscience, 2013, 24(4): 798-802. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201304020

    [37]

    陈立雷, 李双林, 赵青芳, 等.海洋油气微生物好氧降解轻烃模拟试验[J].海洋环境科学, 2013, 32(6): 922-925. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201306026

    CHEN Lilei, LI Shuanglin, ZHAO Qingfang, et al. Simulating test of aerobic marine oil and gas microbial degradation of light hydrocarbons[J]. Marine Environmental Science, 2013, 32(6): 922-925. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201306026

    [38]

    Canfield D E. Organic matter oxidation in marine sediments[M]//Wollast R, Mackenzie F T, Chou L, et al. Interactions of C, N, P and S biogeochemical Cycles and Global Change. Berlin, Heidelberg: Springer, 1993: 333-363.

    [39]

    Weiss R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas[J]. Marine Chemistry, 1974, 2(3): 203-215. doi: 10.1016/0304-4203(74)90015-2

    [40]

    Ferris F G, Fyfe W S, Beveridge T J. Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment[J]. Chemical Geology, 1987, 63(3-4): 225-232. doi: 10.1016/0009-2541(87)90165-3

    [41]

    匡耀求, 黄宁生, 邹毅, 等.论二氧化碳在大气-海洋-沉积物相互作用过程中的迁移转化[C]//中国矿物岩石地球化学学会第13届学术年会论文集.广州: 中国矿物岩石地球化学学会, 2011.http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001500.htm

    KUANG Yaoqiu, HUANG Ningsheng, ZOU Yi, et al. Comment on migration and transformation of carbon dioxide in the process of interaction among atmosphere-marine-sediment[C]//Chinese Sociey of Mineralogy, Petrology and Geochemistry 13th Academic Annual Conference Proceedings. Guangzhou: Chinese Sociey of Mineralogy, Petrology and Geochemistry, 2011.

    [42]

    Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9(1): 18-27. doi: 10.3402/tellusa.v9i1.9075

    [43]

    Coleman D D, Risatti J B, Schoell M. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria[J]. Geochimica et Cosmochimica Acta, 1981, 45(7): 1033-1037. doi: 10.1016/0016-7037(81)90129-0

    [44]

    Mariotti A, Germon J C, Hubert P, et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes[J]. Plant and Soil, 1981, 62(3): 413-430. doi: 10.1007/BF02374138

    [45]

    Chu K H, Mahendra S, Song D L, et al. Stable carbon isotope fractionation during aerobic biodegradation of chlorinated ethenes[J]. Environmental Science and Technology, 2004, 38(11): 3126-3130. doi: 10.1021/es035238c

    [46]

    徐立恒.天然气碳同位素分馏作用及其在徐家围子地区的应用[D].大庆: 大庆石油学院硕士学位论文, 2006.http://cdmd.cnki.com.cn/Article/CDMD-10220-2006058422.htm

    XU Lihuan. Carbon isotope fractional distillation of natural gas and its application in Xujiaweizi area[D]. Daqing: Master's Thesis of Northeast Petroleum University, 2006.

    [47]

    Biastoch A, Treude T, Rüpke L H, et al. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification[J]. Geophysical Research Letters, 2011, 38(8): L08602. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221672885/

    [48]

    Skarke A, Ruppel C, Kodis M, et al. Widespread methane leakage from the sea floor on the northern US Atlantic margin[J]. Nature Geoscience, 2014, 7(9): 657-661. doi: 10.1038/ngeo2232

    [49]

    Zachos J C, Röhl U, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum[J]. Science, 2005, 308(5728): 1611-1615. doi: 10.1126/science.1109004

    [50]

    赵祖斌, 杨木壮, 沙志彬.天然气水合物气体成因及其来源[J].海洋地质动态, 2001, 17(7): 38-41. doi: 10.3969/j.issn.1009-2722.2001.07.009

    ZHAO Zubin, YANG Muzhuang, SHA Zhibin. Genesis and source of hydrocarbon from natural gas hydrates[J]. Marine Geology Letters, 2001, 17(7): 38-41. doi: 10.3969/j.issn.1009-2722.2001.07.009

    [51]

    Milkov A V. Molecular and stable isotope compositions of natural gas hydrates: A revised global dataset and basic interpretations in the context of geological settings[J]. Organic Geochemistry, 2005, 36(5): 681-702. doi: 10.1016/j.orggeochem.2005.01.010

    [52]

    Kim J H, Park M H, Chun J H, et al. Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane[J]. Geo-Marine Letters, 2011, 31(1): 37-49. doi: 10.1007/s00367-010-0214-y

    [53]

    Pape T, Bahr A, Rethemeyer J, et al. Molecular and isotopic partitioning of low-molecular-weight hydrocarbons during migration and gas hydrate precipitation in deposits of a high-flux seepage site[J]. Chemical Geology, 2010, 269(3-4): 350-363. doi: 10.1016/j.chemgeo.2009.10.009

    [54]

    Waseda A, Uchida T. Origin of methane in natural gas hydrates from Mackenzie Delta and Nankai Trough[C]//Proceedings of the Fourth International Conference on Gas Hydrates. Yokohama: Hiyoshi, 2002: 174.

    [55]

    Matsumoto R, Uchida T, Waseda A, et al. 2. Occurrence, structure, and composition of natural gas hydrate recovered from the Blake Ridge, Northwest Atlantic[C]//Proceedings of the Ocean Drilling Program, Scientific Results. United States: National Science Foundation, 2000, 164: 13-28.

    [56]

    Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate[J]. Organic Geochemistry, 1995, 23(11-12): 997-1008. doi: 10.1016/0146-6380(96)00002-2

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1811
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2017-08-09
修回日期:  2017-09-23
刊出日期:  2017-10-28

目录