冲绳海槽岩心沉积物稀土元素特征及物源指示

胡思谊, 曾志刚, 殷学博, 朱博文, 方雪, 齐海燕. 冲绳海槽岩心沉积物稀土元素特征及物源指示[J]. 海洋地质与第四纪地质, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301
引用本文: 胡思谊, 曾志刚, 殷学博, 朱博文, 方雪, 齐海燕. 冲绳海槽岩心沉积物稀土元素特征及物源指示[J]. 海洋地质与第四纪地质, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301
HU Siyi, ZENG Zhigang, YIN Xuebo, ZHU Bowen, FANG Xue, QI Haiyan. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301
Citation: HU Siyi, ZENG Zhigang, YIN Xuebo, ZHU Bowen, FANG Xue, QI Haiyan. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance[J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82. doi: 10.16562/j.cnki.0256-1492.2017082301

冲绳海槽岩心沉积物稀土元素特征及物源指示

  • 基金项目:
    国家自然科学基金项目“海底热液活动研究”(41325021);全球变化与海气相互作用专项“菲律宾板块西边界及东南边界俯冲系统的岩浆构造演化”(GASI-GEOGE-02);国家重点基础研究发展计划“典型弧后盆地热液活动及其成矿机理”(2013CB429700);中国科学院国际合作局对外合作重点项目“冲绳海槽热液活动成矿机理及其沉积效应”(133137KYSB20170003);泰山学者工程专项(ts201511061);青岛海洋科学与技术国家实验室“鳌山人才”计划项目(2015ASTP-0S17);创新人才推进计划(2012RA2191);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2015ASKJ03, 2016ASKJ13)
详细信息
    作者简介: 胡思谊(1993—), 男, 博士研究生, 主要从事海洋地球化学研究, E-mail:niudun2901@163.com
    通讯作者: 曾志刚(1968—), 男, 研究员, 主要从事海洋地球化学研究, E-mail: zgzeng@ms.qdio.ac.cn
  • 中图分类号: P736.4

  • 周立君编辑

Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance

More Information
  • 通过对比研究了冲绳海槽南部、中部、北部岩心沉积物的稀土元素(REEs)组成和分异特征, 揭示了冲绳海槽不同区域的物源差异。由于火山物质和周围河流携带的陆源物质贡献程度不同, 各岩心沉积物REE组成存在显著差异。∑REE、∑LREE具由南至北递减的趋势, 北部具相对更高的∑HREE, 南部次之。LREEs与HREEs间的分馏程度, LREEs、HREEs内部分馏程度均由南至北依次减小。从粒度、微量元素和稀土特征参数的垂向变化来看, 岩心S3物源相对单一, 沉积环境随时间变化较小, 主要受长江和台湾河流沉积物控制。岩心S10、S9沉积物来源更为复杂多样(特别是S9), 沉积环境在时间尺度上发生了较大的变迁。岩心S10层位1主要受黄河和长江沉积物控制, 层位2具黄河沉积物和火山物质混合的特征, 岩心S9层位1是黄河沉积物和火山物质混合的结果, 层位2主要受黄河沉积物控制。

  • 加载中
  • 图 1  冲绳海槽S3、S10和S9岩心站位图(洋流模式据文献[4]修改)

    Figure 1. 

    图 2  岩心S3、S10[29]和S9[30]沉积物类型剖面

    Figure 2. 

    图 3  岩心S3、S10[29]和S9[30]的平均粒径、稀土参数和微量元素垂向变化图解

    Figure 3. 

    图 4  岩心S3、S10[29]、S9[30]∑LREE-∑HREE关系图(a)以及球粒陨石标准化后的δCe-δEu关系图(b)

    Figure 4. 

    图 5  长江[22]、黄河[22]、台湾河流[32]沉积物,S3、S10[29]、S9[30]岩心沉积物和海槽岩石[33]REEs球粒陨石[35]标准化图解(a)以及上地壳[36]标准化图解(b)

    Figure 5. 

    图 6  岩心沉积物(S3, S10[29], S9[30]),河流沉积物(长江[22, 31], 黄河[22, 31], 台湾河流[32]),海槽岩石[33](La/Yb)UCC-(Gd/Yb)UCC、(La/Yb)UCC-(La/Sm)UCC差异图解

    Figure 6. 

    表 1  各岩心沉积物和潜在源区物质稀土元素组成(单位:μg/g)

    Table 1.  REEs compositions of sediments in different cores and possible sources

    μg/g
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    南部S3
    (n=210)
    最大值 41.26 80.44 9.09 33.31 6.52 1.41 5.81 0.86 4.55 0.98 2.67 0.42 2.58 0.39
    最小值 30.75 60.56 6.69 25.05 4.89 1.04 4.46 0.66 3.51 0.73 1.96 0.30 1.80 0.27
    平均值 36.10 71.23 7.97 29.72 5.70 1.23 5.09 0.76 4.06 0.88 2.38 0.37 2.25 0.34
    标准偏差 1.56 3.09 0.35 1.22 0.24 0.07 0.21 0.04 0.19 0.04 0.12 0.02 0.14 0.02
    中部S10[29]
    (n=280)
    最大值 33.05 63.65 7.30 27.21 5.39 1.23 5.40 0.91 4.89 1.13 3.19 0.52 3.31 0.51
    最小值 20.08 41.93 5.01 20.28 4.14 0.87 4.13 0.55 3.01 0.66 1.81 0.28 1.74 0.26
    平均值 28.57 54.62 6.33 24.07 4.74 1.05 4.68 0.68 3.69 0.81 2.22 0.35 2.17 0.33
    标准偏差 2.55 4.60 0.45 1.39 0.24 0.07 0.22 0.05 0.25 0.07 0.20 0.04 0.25 0.04
    北部S9[30]
    (n=226)
    最大值 31.59 60.20 6.86 26.19 5.30 1.24 5.35 0.90 5.02 1.14 3.15 0.54 3.43 0.52
    最小值 14.68 35.73 4.31 16.91 3.55 0.79 3.42 0.55 3.12 0.70 1.95 0.31 1.91 0.29
    平均值 26.07 52.48 6.06 23.30 4.85 1.08 4.70 0.74 4.07 0.91 2.51 0.41 2.56 0.39
    标准偏差 3.26 4.91 0.46 1.37 0.18 0.07 0.18 0.07 0.38 0.10 0.28 0.05 0.36 0.06
    长江沉
    积物[22, 31]
    (n=30)
    最大值 44.18 89.73 9.87 37.53 7.27 1.47 6.80 0.95 5.41 1.13 3.13 0.42 2.85 0.41
    最小值 33.54 68.15 7.68 29.17 5.61 1.10 5.06 0.67 3.90 0.73 2.28 0.29 1.86 0.28
    平均值 39.92 80.34 9.05 34.26 6.60 1.32 5.91 0.85 4.66 0.96 2.76 0.37 2.41 0.36
    黄河沉
    积物[22, 31]
    (n=42)
    最大值 51.92 106.09 12.27 45.62 8.29 1.32 7.81 1.01 5.95 1.13 3.53 0.50 3.43 0.50
    最小值 21.74 43.95 5.06 19.48 3.61 0.79 3.64 0.45 2.81 0.52 1.68 0.20 1.54 0.21
    平均值 32.47 64.86 7.88 28.87 5.35 1.05 5.22 0.68 4.09 0.80 2.37 0.33 2.21 0.32
    台湾河流
    沉积物[32]
    (n=38)
    最大值 76.13 143.70 15.82 54.00 8.58 1.83 8.95 1.16 7.00 1.34 3.97 0.64 4.11 0.67
    最小值 25.09 49.40 5.92 22.13 4.26 0.96 3.91 0.66 3.65 0.71 2.19 0.32 2.19 0.31
    平均值 41.08 81.38 9.18 34.48 6.24 1.31 6.07 0.88 5.02 0.95 2.85 0.43 2.83 0.43
    海槽岩石[33]
    (n=21)
    最大值 25.56 56.52 6.94 28.29 6.70 1.77 6.90 1.22 8.02 1.77 5.44 0.88 5.82 0.91
    最小值 11.68 26.07 3.39 13.57 2.90 0.72 2.89 0.49 3.14 0.69 2.16 0.36 2.41 0.39
    平均值 18.37 39.77 4.87 19.80 4.70 1.18 4.89 0.84 5.39 1.18 3.60 0.58 3.82 0.61
    下载: 导出CSV

    表 2  各沉积物岩心和潜在源区物质稀土元素特征参数及异常指数

    Table 2.  Characteristic parameters and anomaly indexes of REEs in different sediment cores and possible sources

    ∑REE ∑LREE ∑HREE LREE/
    HREE
    (La/Yb)UCC (La/Sm)UCC (Gd/Yb)UCC δCe δEu
    南部S3
    (n=210)
    最大值 190.04 172.04 17.99 10.28 1.36 1.02 1.48 1.06 0.77
    最小值 143.72 129.39 13.69 8.76 1.02 0.85 1.17 0.96 0.64
    平均值 168.06 151.93 16.13 9.43 1.18 0.95 1.31 1.01 0.70
    标准偏差 6.88 6.32 0.73 0.30 0.07 0.02 0.06 0.01 0.03
    中部S10[29]
    (n=280)
    最大值 152.34 136.68 19.27 9.20 1.20 0.99 1.46 1.02 0.82
    最小值 109.21 92.60 12.45 5.29 0.49 0.64 0.83 0.89 0.60
    平均值 134.30 119.39 14.92 8.04 0.98 0.90 1.26 0.98 0.68
    标准偏差 8.83 9.05 0.93 0.81 0.15 0.06 0.13 0.02 0.04
    北部S9[30]
    (n=226)
    最大值 146.70 130.99 19.42 9.13 1.13 0.94 1.37 1.08 0.76
    最小值 88.34 75.97 12.37 4.74 0.41 0.58 0.79 0.95 0.61
    平均值 130.13 113.85 16.28 7.07 0.77 0.81 1.08 1.01 0.69
    标准偏差 9.17 10.00 1.34 1.06 0.18 0.09 0.14 0.02 0.03
    长江沉积物[22, 31]
    (n=30)
    最大值 210.92 189.93 20.99 10.13 1.42 0.97 1.57 1.04 0.70
    最小值 161.81 146.23 15.26 8.88 1.08 0.80 1.29 0.99 0.60
    平均值 189.78 171.50 18.27 9.39 1.22 0.91 1.42 1.02 0.65
    黄河沉积
    [22, 31]
    (n=42)
    最大值 249.37 225.51 23.86 10.06 1.23 1.01 1.57 1.02 0.69
    最小值 106.49 94.64 11.05 7.99 0.92 0.84 1.16 0.93 0.50
    平均值 156.52 140.49 16.03 8.75 1.07 0.91 1.36 0.98 0.62
    台湾河流沉积物[32]
    (n=38)
    最大值 323.07 300.06 25.90 13.04 1.84 1.33 1.52 1.06 0.79
    最小值 122.28 107.86 14.42 7.48 0.83 0.88 0.95 0.97 0.57
    平均值 193.12 173.67 19.46 8.88 1.06 0.98 1.25 1.01 0.66
    海槽岩石[33]
    (n=21)
    最大值 155.56 125.53 30.87 5.61 0.49 0.84 0.92 1.03 0.97
    最小值 77.08 60.75 12.53 2.96 0.21 0.42 0.65 0.99 0.50
    平均值 109.59 88.68 20.91 4.41 0.37 0.62 0.74 1.01 0.76
    下载: 导出CSV
  • [1]

    Sibuet J C, Letouzey J, Barbier F, et al. Back arc extension in the Okinawa Trough[J]. Journal of Geophysical Research: Solid Earth, 1987, 92(B13): 14041-14063. doi: 10.1029/JB092iB13p14041

    [2]

    Rodrigues A C, Grilo A, Riso N, et al. Okinawa trough backarc basin: Early tectonic and magmatic evolution[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B12):30245-30267. doi: 10.1029/98JB01823

    [3]

    Dou Y, Yang S, Liu Z, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1-4):212-220. doi: 10.1016/j.margeo.2010.06.002

    [4]

    Dou Y, Yang S, Shi X, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425:93-109. doi: 10.1016/j.chemgeo.2016.01.029

    [5]

    Liu J, Zhu R, Li T, et al. Sediment?magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough[J]. Marine Geology, 2007, 239(1-2):19-31. doi: 10.1016/j.margeo.2006.12.011

    [6]

    Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology, 2008, 255(1):83-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a14d8b9b39a677c76bb2b9519bec0d25

    [7]

    Dou Y, Yang S, Liu Z, et al. Clay mineral evolution in the central Okinawa Trough since 28 ka: Implications for sediment provenance and paleoenvironmental change[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2010, 288(1-4):108-117. doi: 10.1016/j.palaeo.2010.01.040

    [8]

    Xu Z, Li T, Chang F, et al. Clay-sized sediment provenance change in the northern Okinawa Trough since 22 kyr BP and its paleoenvironmental implication[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 399(2):236-245. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b494aebf361652d206101125ea3bd729

    [9]

    Wang J, Li A, Xu K, et al. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa Trough since 17 ka[J]. Marine Geology, 2015, 366:49-61. doi: 10.1016/j.margeo.2015.04.007

    [10]

    Xu Z, Li T, Clift P D, et al. Sediment provenance and paleoenvironmental change in the middle Okinawa Trough during the last 18.5 ky: Clay mineral and geochemical evidence[J]. Quaternary International, 2017, 440: 139-149. doi: 10.1016/j.quaint.2016.07.058

    [11]

    翟世奎, 于增慧, 杜同军.冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J].海洋学报, 2007, 29(1):58-65. doi: 10.3321/j.issn:0253-4193.2007.01.008

    ZHAI Shikui, YU Zenghui, DU Tongjun, et al. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Acta Oceanology Sinica, 2007, 29(1):58-65. doi: 10.3321/j.issn:0253-4193.2007.01.008

    [12]

    Xu Z, Li T, Chang F, et al. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: rare earth elements evidence[J]. Journal of Rare Earths, 2012, 30(11): 1184-1190. doi: 10.1016/S1002-0721(12)60202-6

    [13]

    Haley B A, Klinkhammer G P, Mcmanus J. Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(6):1265-1279. doi: 10.1016/j.gca.2003.09.012

    [14]

    Och L M, Müller B, Wichser A, et al. Rare earth elements in the sediments of Lake Baikal[J]. Chemical Geology, 2014, 376(6):61-75. http://cn.bing.com/academic/profile?id=7ba445aa00e4f192375665e3e2931b77&encoded=0&v=paper_preview&mkt=zh-cn

    [15]

    Klinkhammer G, Elderfield H, Hudson A. Rare earth elements in seawater near hydrothermal vents[J]. Nature, 1983, 305(5931):185-188. doi: 10.1038/305185a0

    [16]

    Hoyle J, Elderfield H, Gledhill A, et al. The behaviour of the rare earth elements during mixing of river and sea waters ☆[J]. Geochimica Et Cosmochimica Acta, 1984, 48(1):143-149. doi: 10.1016/0016-7037(84)90356-9

    [17]

    Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4):971-991. doi: 10.1016/0016-7037(90)90432-K

    [18]

    German C R, Masuzawa T, Greaves M J, et al. Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography[J]. Geochimica et Cosmochimica Acta, 1995, 59(8):1551-1558. doi: 10.1016/0016-7037(95)00061-4

    [19]

    Mclennan S M. Rare earth elements and sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy, 1989, 21(8):169-200. http://cn.bing.com/academic/profile?id=91c0512cdcfae055cb0720632560b9e6&encoded=0&v=paper_preview&mkt=zh-cn

    [20]

    Sholkovitz E R, Elderfield H, Szymczak R, et al. Island weathering: river sources of rare earth elements to the Western Pacific Ocean[J]. Marine Chemistry, 1999, 68(1-2):39-57. doi: 10.1016/S0304-4203(99)00064-X

    [21]

    Piper D Z, Bau M. Normalized Rare Earth Elements in Water, Sediments, and Wine: Identifying Sources and Environmental Redox Conditions[J]. American Journal of Analytical Chemistry, 2013, 4(10A):69-83. http://cn.bing.com/academic/profile?id=56732e34edc74c68d99e83c145cac4ba&encoded=0&v=paper_preview&mkt=zh-cn

    [22]

    Yang S Y, Jung H S, Man S C, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth & Planetary Science Letters, 2002, 201(2):407-419. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b6a25c53b1771b07dc62a038ae469e1

    [23]

    Yang S, Li C, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators[J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139. doi: 10.1007/BF03185768

    [24]

    吴明清.冲绳海槽沉积物稀土和微量元素的某些地球化学特征[J].海洋学报, 1991, 13(1):75-81. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199101008.htm

    WU Mingqing. Geochemical characteristics of rare earth and trace elements in the sediment of Okinawa Trough[J]. Acta Oceanology Sinica, 1991, 13(1):75-81. http://www.cnki.com.cn/Article/CJFDTOTAL-SEAC199101008.htm

    [25]

    刘娜, 孟宪伟.冲绳海槽中段表层沉积物中稀土元素组成及其物源指示意义[J].海洋地质与第四纪地质, 2004, 24(4):37-43. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=532e329f-d868-4bd5-9a02-65a6d3c0d8c5

    LIU Na, MENG Xianwei. Characteristics of rare earth elements in surface sediments from the middle Okinawa Trough: implications for provenance of mixed sediments[J]. Marine Geology & Quaternary Geology, 2004, 24(4):37-43. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=532e329f-d868-4bd5-9a02-65a6d3c0d8c5

    [26]

    翟世奎, 陈志华, 徐善民, 等.冲绳海槽北部稀土元素沉积地球化学研究[J].海洋地质与第四纪地质, 1996, 16(2):47-56. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=343676f4-76b5-4283-ab6a-10dee67258eb

    ZHAI Shikui, CHEN Zhihua, XU Shanmin, et al. Geochemical characteristics of rare earth element in the sediments of north Okinawa Trough[J]. Marine Geology & Quaternary Geology, 1996, 16(2):47-56. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=343676f4-76b5-4283-ab6a-10dee67258eb

    [27]

    蒋富清, 孟庆勇, 徐兆凯, 等.冲绳海槽北部15kaBP以来沉积物源及控制因素——稀土元素的证据[J].海洋与湖沼, 2008, 39(2):112-118. doi: 10.3321/j.issn:0029-814X.2008.02.003

    JIANG Fuqing, MENG Qinyong, XU Zhaokai et al. The REE imprint on sediment provenance of the northern Okinawa Trough since the last 15 kaBP. Oceanologia et Limnologia Sinica, 2008, 39(2):112-118. doi: 10.3321/j.issn:0029-814X.2008.02.003

    [28]

    于增慧, 杜同军, 翟世奎.冲绳海槽中部热液活动区岩心沉积物稀土元素地球化学特征[J].海洋与湖沼, 2010, 41(5):676-682. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ201005003.htm

    YU Zenghui, DU Tongjun, ZHAI Shikui. Geochemical characteristics of the rare earth element compositions in the sediment core from the hydrothermal fields[J]. Oceanologia et Limnologia Sinica, 2010, 41(5):676-682. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ201005003.htm

    [29]

    彭娜娜. 17000a以来冲绳海槽中部柱状样S10沉积学特征及其物源环境指示[D].中国科学院研究生院(海洋研究所), 2016.http://cdmd.cnki.com.cn/Article/CDMD-80068-1016205736.htm

    PENG Nana. The characteristics and provenances of core S10 sediments in the Central Okinawa Trough: Constrains on the index of paleoenvironment since 17000 a[D]. The University of Chinese Academy of Sciences (Institute of Oceanology), 2016.

    [30]

    姜韬.冲绳海槽北部S9柱沉积地球化学特征及其环境指示[D].中国科学院研究生院(海洋研究所), 2015.

    JIANG Tao. The sedimentary geochemical characteristics of the core S9 in the northern Okinawa Trough and their environmental significance during Holocene[D]. The University of Chinese Academy of Sciences (Institute of Oceanology), 2015.

    [31]

    蒋富清, 周晓静, 李安春, 等. δEu_N-ΣREEs图解定量区分长江和黄河沉积物[J].中国科学D辑:地球科学, 2008, 38(11):1460-1468. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200811015.htm

    JIANG Fuqing, ZHOU Xiaojing, LI Anchuan, et al. Quantitatively distinguishing sediments from the Yangtze River and the Yellow River using δ EuN-ΣREEs plot[J]. Science in China (Series D: Earth Sciences), 2008, 38(11):1460-1468. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200811015.htm

    [32]

    Li C S, Shi X F, Kao S J, et al. Rare earth elements in fine-grained sediments of major rivers from the high-standing island of Taiwan[J]. Journal of Asian Earth Sciences, 2013, 69(12):39-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc9a6b8ad7b40f65d30173f7a999918a

    [33]

    Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3-4):117-137. doi: 10.1016/S0024-4937(00)00034-7

    [34]

    袁迎如.冲绳海槽的浊流沉积物[J].地质论评, 1987, 33(6):499-505. doi: 10.3321/j.issn:0371-5736.1987.06.001

    YUAN Yingru. Turbidites in the Okinawa Trough[J]. Geological Review, 1987, 33(6):499-505] doi: 10.3321/j.issn:0371-5736.1987.06.001

    [35]

    Boynton W V. Chapter 3-cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 1984, 2(2):63-114.

    [36]

    Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[J]. Blackwell Scientific Pub., 1985.

    [37]

    赵德博, 万世明.冲绳海槽沉积物物源示踪研究进展[J].海洋地质前沿, 2015, 31(2):32-41. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201502005

    ZHAO Debo, WAN Shiming. Research progress of tracing sediment sources in Okinawa Trough[J]. Marine Geology Frontiers, 2015, 31(2):32-41. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201502005

    [38]

    秦蕴珊.东海地质[M].科学出版社, 1987.

    QIN Yunshan. Geology of East China Sea[M]. Science Press, 1987.

    [39]

    Iseki K, Okamura K, Kiyomoto Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea[J]. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2003, 50(2):457-473. doi: 10.1016/S0967-0645(02)00468-X

    [40]

    Katayama H, Watanabe Y. The Huanghe and Changjiang contribution to seasonal variability in terrigenous particulate load to the Okinawa Trough[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2003, 50(2): 475-485. doi: 10.1016/S0967-0645(02)00469-1

    [41]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4):208-224. doi: 10.1016/j.geomorph.2006.03.023

    [42]

    Yang S Y, Wang Z B, Dou Y G, et al. A review of sedimentation since the last glacial maximum on the continental shelf of eastern China[J]. Geological Society London Memoirs, 2014, 41(1):293-303. doi: 10.1144/M41.21

    [43]

    Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544. doi: 10.1086/629606

    [44]

    River discharge to the coastal ocean: a global synthesis[M]. Cambridge University Press, 2013.

    [45]

    Machida H. The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan[J]. Global and Planetary Change, 1999, 21(1): 71-94. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-S0921-8181(99)00008-9/

    [46]

    Tsunogai S, Suzuki T, Kurata T, et al. Seasonal and areal variation of continental aerosol in the surface air over the western North Pacific region[J]. Journal of Oceanography, 1985, 41(6): 427-434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3724543

    [47]

    陈建林, 马克俭.冲绳海槽火山喷发矿物及其地质意义[J].海洋学研究, 1983(2):23-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000205573

    CHEN Jianlin, MA Kejian. Volcanic eruption minerals and their geological significance [J]. Oceanographic Research, 1983(2):23-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000205573

    [48]

    Vital H, Stattegger K, Garbeschoenberg C D. Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River; a provenance study[J]. Journal of Sedimentary Research, 1999, 69(3):563-575. doi: 10.2110/jsr.69.563

    [49]

    Bhatia M R, Crook K A. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contrib Mineral and Petrol, 1986, 92(2): 181-193. doi: 10.1007/BF00375292

    [50]

    Condie K C. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531. doi: 10.1016/0016-7037(91)90370-K

    [51]

    Xu K, Milliman J D, Li A, et al. Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea[J]. Continental Shelf Research, 2009, 29(18): 2240-2256. doi: 10.1016/j.csr.2009.08.017

    [52]

    Bentahila Y, Othman D B, Luck J M. Strontium, lead and zinc isotopes in marine cores as tracers of sedimentary provenance: A case study around Taiwan orogen[J]. Chemical Geology, 2008, 248(1): 62-82. http://cn.bing.com/academic/profile?id=92928047150e9fe186cd8a072d08a89a&encoded=0&v=paper_preview&mkt=zh-cn

    [53]

    Wei K Y. Leg 195 synthesis: site 1202-late quaternary sedimentation and paleoceanography in the southern Okinawa Trough[C]//Proceedings of the Ocean Drilling Program, scientific results. College Station, TX (Ocean Drilling Program), 2006, 195(3): 1-31.

    [54]

    Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

  • 加载中

(6)

(2)

计量
  • 文章访问数:  3234
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2017-08-23
修回日期:  2018-02-26
刊出日期:  2019-02-28

目录