Observation of near-bottom transport of suspended sediment in the offshore area of abandoned Yellow River mouth
-
摘要:
2016年11月及2017年2月,在南黄海废黄河口近岸海域投放海底三脚架进行全潮座底观测,获得了大、中、小潮期间的水位、近底部流速和悬沙浓度数据。分析结果表明,研究区海域潮流显著地受沿岸地形影响,流向与岸线大致平行,落潮流流向以NNW向为主,涨潮流流向以SSE向为主,具有往复流性质;落潮历时长于涨潮历时。研究区是南黄海近岸海域的高悬沙浓度中心之一,底部悬沙浓度通常都维持在500mg/L以上,高悬沙浓度出现的时刻略滞后于涨、落急时刻;大风浪可以导致悬沙浓度急剧升高,对悬沙浓度的影响在短时间尺度内可显著超过潮汐作用。研究发现,该海域的悬沙浓度变化可以通过将一个完整潮周期划分为4个时段:涨潮前期(加速)、后期(减速)和落潮前期(加速)、后期(减速)来讨论。在中潮落潮期间、小潮涨潮后期及落潮前期,悬沙浓度与潮流流速呈显著正相关关系,表明在此阶段悬沙浓度的变化主要受再悬浮作用控制;其他阶段,悬沙浓度与流速的正相关性不显著,悬沙浓度的变化可能与平流输运作用有关。悬沙在大潮期间向东净输运,在中潮期间向西南净输运,在小潮期间向东南净输运。总体上看,废黄河口海域沉积物以向南输运为主,表明这里是江苏中部海岸的重要物源。
Abstract:In this study, a tripod equipped with an ADV (Acoustic Doppler Velocimeter) and an OBS-3A was deployed to measure water levels, bottom current velocities and suspended sediment concentrations during the spring, moderate and neap tides in the offshore area of the abandoned Yellow River mouth in the Southern Yellow Sea in November 2016 and February 2017. The results show that the tide currents in the study area are significantly affected by coastal topography, and the current direction was roughly parallel to the shore line. The tidal current is in the direction of NNW during flood and SSE during ebb, which suggests that the study area is dominated by a rectilinear current. The ebb is longer than flood in duration. The research area is one of the centers of high suspended sediment concentration (SSC) in the offshore area of the south Yellow Sea, with a high SSC maintained over 500 mg/L from the spring to the neap. In general, the peak SSC is a little lag behind the peak flood or ebb currents. Heavy wind waves may cause a sharp rise in SSC, and its impact on SSC can significantly exceed tidal effects in a short time. The study found that the variations of SSC in a complete tidal cycle can be divided into four stages: the earlier flood, later flood, earlier ebb and later ebb. In the period of mid-ebb tide, neap earlier flood tide and later ebb tide, there was a positive correlation between SSC and tidal current, which indicate that the variations of SSC is dominated by resuspension. The variations in SSC in other stages may be affected by advection. The suspended sediment transport is found to be eastward during the spring, southeastward during the neap, and southwestward between the spring and neap. Generally speaking, the sediment in the abandoned Yellow River mouth is mainly transported southward, indicating that the study area is an important sediment source for the central coastal area of Jiangsu.
-
表 1 观测站位潮汐特征值
Table 1. Tidal characteristics of monitoring station
统计参数 大潮 中潮 小潮(有风浪) 小潮(无风浪) 涨潮历时/h 4.25 4.04 4.58 4.75 落潮历时/h 7.83 7.88 7.08 6.75 落潮历时/涨潮历时 1.84 1.95 1.55 1.42 涨潮平均流速/m·s-1 0.51 0.47 0.20 0.30 落潮平均流速/m·s-1 0.54 0.53 0.24 0.28 平均风速/m·s-1 5.0 4.3 8.6 - 风向/(°) 175 99 305 - 表 2 潮流调和常数
Table 2. Harmonic constants of tidal currents
分量 H/cm·s-1 G/(°) O1 K1 M2 S2 M4 MS4 O1 K1 M2 S2 M4 MS4 大潮 东 1 1 16 6 1 1 273 319 358 47 355 44 北 3 4 47 16 4 2 7 53 159 208 44 93 中潮 东 1 1 18 6 2 1 201 247 0 49 6 55 北 3 4 52 18 4 3 0 46 164 213 77 126 小潮(无风浪) 东 1 2 20 7 2 1 270 316 23 72 310 359 北 3 4 47 16 5 3 10 56 151 200 60 109 表 3 显著水平测验(p值)
Table 3. The test of confidence level (p value)
涨潮前期 涨潮后期 落潮前期 落潮后期 大潮 0.000 0.013 0.000 0.008 中潮 0.030 0.013 0.002 0.000 小潮(无风浪) 0.003 0.001 0.000 0.000 小潮(有风浪) 0.104 0.000 0.046 0.924 表 4 废黄河口外海域测站(站位位置见图 1)的悬沙通量
Table 4. The fluxes scale of suspended sediment during a tidal period of the abandoned Yellow River
潮期 日期与时间 悬沙通量(×103kg/m2)/方向(°) 余流(m/s)/方向(°) 涨潮 落潮 净通量 大潮 11/16/16:00-11/17/17:30 9.24/172.36° 9.58/355.43° 0.62/88.97° 0.017/64.37° 中潮 11/13/14:00-11/14/15:15 6.78/172.89° 7.08/350.88° 0.21/242.79° 0.026/354.65° 小潮(无风浪) 2/5/08:00-2/6/09:00 5.22/190.58° 3.01/45.80° 3.27/158.43° 0.031/330.47° 小潮(有风浪) 11/9/20:45-11/10/23:45 16.17/165.45° 7.37/10.10° 12.01/147.94° 0.043/9.83° -
[1] Bassoullet P, Le Hir P, Gouleau D, et al. Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the "Baie de Marenngres-Oleron"(France)[J]. Continental Shelf Research, 2000, 20(12): 1635-1653.
[2] Lee H J, Jo H R, Chu Y S, et al. Sediment transport on macrotidal flats in Garolim Bay, west coast of Korea: significance of wind waves and asymmetry of tidal currents[J]. Continental Shelf Research, 2004, 24(7): 821-832.
[3] Bian C, Mao X, Jiang W, et al. ADV-based estimates of sediment settling velocity on the shelf of the Yellow and East China seas: evidence of marked seasonal and intra-tidal variations[J]. Geo-Marine Letters, 2015, 35(1): 53-60. doi: 10.1007/s00367-014-0386-y
[4] Asp N E, Gomes V J C, Ogston A, et al. Sediment source, turbidity maximum, and implications for mud exchange between channel and mangroves in an Amazonian estuary[J]. Ocean Dynamics, 2016, 66(2): 285-297. doi: 10.1007/s10236-015-0910-2
[5] Zhang Q, Gong Z, Zhang C, et al. Velocity and sediment surge: What do we see at times of very shallow water on intertidal mudflats?[J]. Continental Shelf Research, 2016, 113: 10-20. doi: 10.1016/j.csr.2015.12.003
[6] 陈斌, 周良勇, 刘健, 等.废黄河口海域潮流动力与悬沙输运特征[J].海洋科学, 2011, 35(5): 73-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201105013
CHEN Bin, ZHOU Liangyong, LIU Jian, et al. The relationship between the suspended sediment movement and tidal current dynamic characteristic in Old Yellow River Delta[J]. Marine Sciences, 2011, 35(5): 73-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201105013
[7] 邢飞, 汪亚平, 高建华, 等.江苏近岸海域悬沙浓度的时空分布特征[J].海洋与湖沼, 2010, 41(3): 459-468. http://d.old.wanfangdata.com.cn/Periodical/hyyhz201003025
XING Fei, WANG Yaping, GAO Jianhua. Seasonal distributions of the concentrations of suspended sediment along Jiangsu coastal sea[J]. Oceanologia et Limnologia Sinica, 2010, 41(3):459-468. http://d.old.wanfangdata.com.cn/Periodical/hyyhz201003025
[8] 周良勇, 陈斌, 刘健, 等.江苏废黄河口外夏季悬浮泥沙运动[J].海洋地质与第四纪地质, 2009, 29(6): 17-24. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=9c0f1ee9-74eb-493d-8a37-b889041db0f5
ZHOU Liangyong, CHEN Bin, LIU Jian, et al. Observation of currents and suspended sediment concentration off northern Jiangsu Coast, China[J]. Marine Geology & Quaternary Geology, 2009, 29(6):17-24. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=9c0f1ee9-74eb-493d-8a37-b889041db0f5
[9] 管君阳, 谷国传.废黄河口海岸近期侵蚀特征与机理[J].海岸工程, 2011, 30(2): 50-61. doi: 10.3969/j.issn.1002-3682.2011.02.008
GUAN Junyang, GU Chuanguo. Recent erosion characteristics and mechanism of old yellow river estuarine shoreline[J]. Coastal Engineering, 2011, 30(2): 50-61. doi: 10.3969/j.issn.1002-3682.2011.02.008
[10] 陆勤, 陈沈良.废黄河三角洲海域表层沉积物分布特征[J].上海国土资源, 2011, 32(1):14-19. doi: 10.3969/j.issn.2095-1329.2011.01.004
LU Qin, CHEN Shenliang. Distribution of surface sediments on the subaqueous delta of the abandoned Yellow River Delta[J]. Shanghai Land & Resources, 2011, 32(1):14-19. doi: 10.3969/j.issn.2095-1329.2011.01.004
[11] 任美锷, 丁方叔, 万延森, 等.江苏省海岸带和海涂资源综合调查报告[M].海洋出版社, 1986.
REN Mei'e, DING Fangshu, WAN Yansen, et al. Integrated Report on Coastal Zone and Tidal Flat Resources in Jiangsu[M]. Ocean Press, 1986.
[12] 叶青超.试论苏北废黄河三角洲的发育[J].地理学报, 1986, 41(2):112-122. doi: 10.3321/j.issn:0375-5444.1986.02.002
YE Qingchao. On the development of the abandoned Yellow River delta in Northern Jiangsu Province[J]. Acta Geographica Sinica, 1986, 41(2): 112-122. doi: 10.3321/j.issn:0375-5444.1986.02.002
[13] 李元芳.废黄河三角洲的演变[J].地理研究, 1991, 10(4):29-39. http://d.old.wanfangdata.com.cn/Periodical/hytb201406004
LI Yuanfang. The development of the abandoned Yellow River Delta[J]. Geographical Research, 1991, 10(4):29-39. http://d.old.wanfangdata.com.cn/Periodical/hytb201406004
[14] Fan S. Coastal Ocean Morphodynamics and the Resulting Erosion and Deposition: An Analytical Approach[M]. 2001.
[15] 张林.苏北废黄河三角洲海岸冲淤演变及其控制因素[D].华东师范大学, 2016.
ZHANG Lin. The coastal erosion-deposition evolution and controlling factors of the abandoned Yellow River Delta in northern Jiangsu Province[D]. East China Normal University, 2016.
[16] 陈可锋.黄河北归后江苏海岸带陆海相互作用过程研究[D].南京: 南京水利科学研究院, 2008.
CHEN Kefeng. Research of land and ocean interactions progress of the Coastal Zone in Jiangsu Province since the Yellow River flows northward[D]. Nanjing Hydraulic Research Institude, 2008.
[17] 高抒.废黄河口海岸侵蚀与对策[J].海岸工程, 1989, 8(1): 37-42. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s00264-009-0856-4/
GAO Shu. Erosion of old Yellow River Delta in northern Jiangsu and coast protection[J]. Coastal Engineering, 1989, 8(1): 37-42. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s00264-009-0856-4/
[18] 刘忠臣, 刘保华, 黄振宗, 等.中国近海及邻近海域地形地貌[M].海洋出版社, 2005.
LIU Zhongchen, LIU Baohua, HUANG Zhenzong, et al. Topography and Geomorphology of Chinese Coastal and Adjacent Sea[M]. Ocean Press, 2005.
[19] Zhou L, Liu J, Saito Y, et al. Coastal erosion as a major sediment supplier to continental shelves: example from the abandoned Old Huanghe (Yellow River) delta[J]. Continental Shelf Research, 2014, 82: 43-59. doi: 10.1016/j.csr.2014.03.015
[20] 张忍顺.苏北黄河三角洲及滨海平原的成陆过程[J].地理学报, 1984 (2): 173-184. doi: 10.3321/j.issn:0375-5444.1984.02.005
ZHANG Renshun. Land-forming history of the Huanghe River Delta and coastal plain of north Jiangsu[J]. Acta Geographica Sinica, 1984(2): 173-184. doi: 10.3321/j.issn:0375-5444.1984.02.005
[21] 魏晓, 汪亚平, 杨旸.浅海悬沙浓度观测方法的对比研究[J].海洋地质与第四纪地质, 2013, 33(1): 161-170. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=528f286a-f5bc-4eea-8bc4-19904984afc2
WEI Xiao, WANG Yaping, YANG Yang, et al. Suspended sediment concentrations in shallow sea: Comparative study of methods[J]. Marine Geology & Quaternary Geology, 2013, 33(1):161-170. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=528f286a-f5bc-4eea-8bc4-19904984afc2
[22] Goring D G, Nikora V I. Despiking acoustic doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2002, 128(1): 117-126. doi: 10.1061/(ASCE)0733-9429(2002)128:1(117)
[23] 鲁远征, 吴加学, 刘欢.河口底边界层湍流观测后处理技术方法分析[J].海洋学报, 2012, 34(5): 39-49. http://d.old.wanfangdata.com.cn/Periodical/hyxb201205005
LU Yuanzheng, WU Jiaxue, LIU Huan. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Acta Oceanological Sinica, 2012, 34(5): 39-49. http://d.old.wanfangdata.com.cn/Periodical/hyxb201205005
[24] Islam M R, Zhu D Z. Kernel density-based algorithm for despiking ADV data[J]. Journal of Hydraulic Engineering, 2013, 139(7): 785-793. doi: 10.1061/(ASCE)HY.1943-7900.0000734
[25] 芦军, 范代读, 涂俊彪, 等.潮滩上应用ADV进行波浪观测与特征参数计算[J].海洋通报, 2016, 35(5): 523-531. http://d.old.wanfangdata.com.cn/Periodical/hytb201605006
LU Jun, FAN Daidu, TU Junbiao, et al. Application of ADV in the tidal flat to observe wave processes and calculate their characteristic parameters[J]. Marine Science Bulletin, 2016, 35(5): 523-531. http://d.old.wanfangdata.com.cn/Periodical/hytb201605006
[26] 刘欢, 吴超羽.河口湍流数据现场采集和后处理[J].海洋工程, 2011, 29(2): 122-128. doi: 10.3969/j.issn.1005-9865.2011.02.018
LIU Huan, WU Chaoyu. Turbulence measurement in estuary and data post-processing[J]. Ocean Engineering, 2011, 29(2): 122-128. doi: 10.3969/j.issn.1005-9865.2011.02.018
[27] Gordon L, Clarke L. Aquadopp and vector wave measurement near Scripps Pier[R]. Nortek Technical Note No: Oil, 1999.
[28] Gordon L, Lohrmann A. Near-shore Doppler Current Meter Wave Spectra[M]. Ocean Wave Measurement and Analysis (2001). 2002: 33-43.
[29] 文圣常.海浪理论与计算原理[M].科学出版社, 1984.
WEN Shengchang. Wave Theory and Calculation Principles[M]. Science Press, 1984.
[30] 吴中, 钟瑚穗, 严以新.由压力, 流速估计波浪方向谱数据处理方法[J].海洋工程, 1996 (1): 40-47.
WU Zhong, ZHONG Hushui, YAN Yixian. Data processing aapproach of the estimation of directional wave spectra by pressure and water velocity [J]. China Ocean Engineering, 1996 (1): 40-47.
[31] Longuet-Higgins M S. On the statistical distribution of the heights of sea waves[J]. J. Mar. Research, 1952, 11(3): 245-266.
[32] Dean R G, Dalrymple R A. Water Wave Mechanics for Engineers and Scientists[M]. World Scientific Publishing Co Inc, 1991.
[33] 张凤烨, 魏泽勋, 王新怡, 等.潮汐调和分析方法的探讨[J].海洋科学, 2011, 35(6): 68-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201106014
ZHANG Fengye, WEI Zexuan, WANG Xinyi, et al. Tidal harmonic analysis[J]. Marine Sciences, 2011, 35(6): 68-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201106014
[34] 陈宗镛.潮汐学[M].科学出版社, 1980.
CHEN Zongyong. Tidology[M]. Science Press, 1980.
[35] Yu Q, Flemming B W, Gao S. Tide-induced vertical suspended sediment concentration profiles: phase lag and amplitude attenuation[J]. Ocean Dynamics, 2011, 61(4): 403-410. doi: 10.1007/s10236-010-0335-x
[36] Brand A, Lacy J R, Hsu K, et al. Wind‐enhanced resuspension in the shallow waters of South San Francisco Bay: mechanisms and potential implications for cohesive sediment transport[J]. Journal of Geophysical Research: Oceans, 2010, 115(C11): 1-15.
[37] Villard P, Kostaschuk R. The relation between shear velocity and suspended sediment concentration over dunes: Fraser Estuary, Canada[J]. Marine Geology, 1998, 148(1-2): 71-81. doi: 10.1016/S0025-3227(98)00015-2
[38] Chen M S, Wartel S, Temmerman S. Seasonal variation of floc characteristics on tidal flats, the Scheldt estuary[J]. Hydrobiologia, 2005, 540(1): 181-195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9ee4227086b10a5c7a47b586592625c
[39] Wright L D, Wiseman W J, Yang Z S, et al. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River)[J]. Continental Shelf Research, 1990, 10(1): 1-40. doi: 10.1016/0278-4343(90)90033-I
[40] 汪亚平, 高抒, 贾建军.浪流联合作用下潮滩沉积动力过程的高分辨率数据采集与分析[J].科学通报, 2006, 51(3): 339-348. http://d.old.wanfangdata.com.cn/Periodical/kxtb200603016
WANG Yaping, GAO Shu, JIA Jianjun. High-resolution data collection for analysis of sediment dynamic processes associated with combined current-wave action over intertidal flats[J]. Chinese Science Bulletin, 2006, 51(7):339-348. http://d.old.wanfangdata.com.cn/Periodical/kxtb200603016
[41] 李九发, 何青.长江河口拦门沙河床淤积和泥沙再悬浮过程[J].海洋与湖沼, 2000, 31(1):101-109. doi: 10.3321/j.issn:0029-814X.2000.01.016
[42] 陈沈良, 张国安, 杨世伦, 等.长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报, 2004, 59(2): 260-266. doi: 10.3321/j.issn:0375-5444.2004.02.012
CHEN Shenliang, ZHANG Guoan YANG Shilun, et al. Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary and its adjacent waters[J]. Acta Geographica Sinica, 2004, 59(2): 260-266. doi: 10.3321/j.issn:0375-5444.2004.02.012
[43] Yang S L, Zhang J, Zhu J. Response of suspended sediment concentration to tidal dynamics at a site inside the mouth of an inlet: Jiaozhou Bay (China)[J]. Hydrology and Earth System Sciences Discussions, 2004, 8(2): 170-182. doi: 10.5194/hess-8-170-2004
[44] Bass S J, Aldridge J N, McCave I N, et al. Phase relationships between fine sediment suspensions and tidal currents in coastal seas[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): 1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2001JC001269
[45] Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. John Wiley & Sons, Inc., 1986.
[46] Wang Y P, Voulgaris G, Li Y, et al. Sediment resuspension, flocculation, and settling in a macrotidal estuary[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 5591-5608. doi: 10.1002/jgrc.20340
[47] 沈焕庭, 潘定安.长江河口潮流特性及其对河槽演变的影响[J].华东师范大学学报:自然科学版, 1979, 1: 131-134.
SHEN Huanting, PAN Dingan. The characteristics of tidal current and its effects on the channel of the Changjiang Estuary[J]. Processes of dynamics and geomorphology of the Changjiang Estuary, 1979, 1:131-134.