全新世以来亚洲七个主要河口三角洲的生长极限

李高聪, 高抒, 高建华. 全新世以来亚洲七个主要河口三角洲的生长极限[J]. 海洋地质与第四纪地质, 2018, 38(1): 11-22. doi: 10.16562/j.cnki.0256-1492.2018.01.002
引用本文: 李高聪, 高抒, 高建华. 全新世以来亚洲七个主要河口三角洲的生长极限[J]. 海洋地质与第四纪地质, 2018, 38(1): 11-22. doi: 10.16562/j.cnki.0256-1492.2018.01.002
LI Gaocong, GAO Shu, GAO Jianhua. Modeling the growth limit of seven major Holocene river deltas in Asia[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 11-22. doi: 10.16562/j.cnki.0256-1492.2018.01.002
Citation: LI Gaocong, GAO Shu, GAO Jianhua. Modeling the growth limit of seven major Holocene river deltas in Asia[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 11-22. doi: 10.16562/j.cnki.0256-1492.2018.01.002

全新世以来亚洲七个主要河口三角洲的生长极限

  • 基金项目:
    国家重大科学研究计划项目“扬子大三角洲演化与陆海交互作用过程及效应研究”(2013CB956501);江苏省科技计划项目“古扬子大三角洲沉积体系研究”(BK130056);国家自然科学基金重点项目“海岸风暴频率-强度关系的沉积记录分析”(41530962)
详细信息
    作者简介: 李高聪(1987—),男,在读博士,海岸海洋科学专业,E-mail: ligaocong2013@163.com
    通讯作者: 高抒(1956—),男,教授,博士生导师,主要从事海洋地质学、海岸地貌学、沉积学研究,E-mail: sgao@sklec.ecnu.edu.cn
  • 中图分类号: P931

  • 周立君编辑

Modeling the growth limit of seven major Holocene river deltas in Asia

More Information
  • 由河流入海泥沙在河口及其邻近区域不断堆积而逐渐形成的河口三角洲存在地貌学意义的生长极限。针对入海泥沙显著减少的背景,依据概念几何模型刻画了亚洲7个主要河口三角洲的发育规模,并探讨其滞留指数、临界输沙率和生长极限。结果表明:河口三角洲的规模与沉积物入海通量显著正相关;全新世期间,各河流均有超过一半的泥沙向外海逃逸;目前各河流入海泥沙通量低于保持其陆上面积的临界输沙率;在无海岸防护工程前提下,未来长江、珠江、红河、湄公河和印度河的三角洲平原面积和体积都将较目前大幅度减少,而伊洛瓦底江和恒河-布拉马普特拉河将增加。基于概念几何模型刻画河口三角洲的系统行为对其地貌演化规律的研究具有重要参考和指导意义。

  • 加载中
  • 图 1  亚洲7个主要河口三角洲位置

    Figure 1. 

    图 2  河口三角洲概念图式及几何参数:(a)二维模型, (b)三维模型

    Figure 2. 

    图 3  亚洲主要河口三角洲分布、面积数量级

    Figure 3. 

    图 4  亚洲主要河口三角洲几何参数之间的相关性

    Figure 4. 

    图 5  亚洲主要河口三角洲规模与主要影响参数的相关性

    Figure 5. 

    表 1  亚洲主要河口三角洲几何参数特征值

    Table 1.  Geometric parameters of major river deltas in Asia

    R1(km) R2(km) R1/R2 H1(m) α(°) β(°) γ(°) S(km2) V(km3)
    长江三角洲 185 180 1.0 35 0.00010 0.00019 53 15899 551
    珠江三角洲 137 57 2.4 15 0.00008 0.00026 41 6683 81
    红河三角洲 164 41 4.0 20 0.00010 0.00048 50 11764 177
    湄公河三角洲 225 55 4.0 15 0.00005 0.00027 76 33757 379
    伊洛瓦底江三角洲 254 84 3.0 20 0.00006 0.00024 53 29726 462
    恒河-布拉马普特拉河三角洲 416 95 4.4 35 0.00007 0.00037 44 66497 1728
    印度河三角洲 192 47 4.0 20 0.00008 0.00042 51 16410 246
    下载: 导出CSV

    表 2  影响亚洲主要河口三角洲发育规模的边界参数特征值

    Table 2.  Characteristic values of catchment basin factors influencing area-volume of major river delta in Asia

    流域面积
    (104km2)
    最大高程
    (m)
    径流量
    (m3/s)
    侵蚀模数
    (t/km2·a)
    海平面上升速率
    (mm/a)
    地面平均沉降速率
    (mm/a)
    可容空间增加速率
    (mm/a)
    可容空间增加体积
    (km3/a)
    参考文献
    长江三角洲 196 6800 28278 251 2.5 3.0 5.5 0.25 [30, 32, 33]
    珠江三角洲 44 3500 9510 185 4.4 2.5 6.9 0.05 [33-35]
    红河三角洲 12 3000 3800 961 2.5 2.5 5.0 0.03 [33, 36]
    湄公河三角洲 81 6100 14770 123 3 16 19.0 0.35 [33, 37]
    伊洛瓦底江三角洲 43 5881 13558 614 4.7 15.3 20.0 0.46 [33, 38, 39]
    恒河-布拉马普特拉河三角洲 160 7010 31000 701 9.9 9 18.9 0.64 [33, 42-44]
    印度河三角洲 96 7830 7530 261 1.5 10 11.5 0.10 [33, 42-44]
    下载: 导出CSV

    表 3  全新世亚洲7大河口三角洲滞留指数

    Table 3.  Sediment retention index of major river delta in Asia during the Holocene

    计算体积
    (109m3)
    年堆积量
    (Mt/a)
    建坝前泥沙通量
    (Mt/a)
    滞留指数
    (%)
    Qs1
    (Mt/a)
    参考文献
    长江三角洲 551 195 486 40 291 [47]
    珠江三角洲 81 29 80 36 52 [48]
    红河三角洲 177 63 135 46 72 [49]
    湄公河三角洲 415 147 160 92 180 [50]
    伊洛瓦底江三角洲 462 163 325 50 162 [51]
    恒河-布拉马普特拉河三角洲 1728 611 1122 54 511 [33]
    印度河三角洲 246 87 193 45 106 [52]
    下载: 导出CSV

    表 4  亚洲主要河口三角洲泥沙通量的临界值和实际值及地貌稳定性参数

    Table 4.  Critical and the present-day sediment fluxes, together with the parameters for geomorphological stability, of the major river deltas in Asia

    Qs1
    (Mt/a)
    Qs2
    (Mt/a)
    建坝后泥沙通量
    (Mt/a)
    体积变化趋势 陆上面积
    变化趋势
    Rs1
    (m/a)
    Rs2
    (m/a)
    参考文献
    长江三角洲 291 958 152 减小 减小 -6 -32 [53]
    珠江三角洲 52 175 41 减小 减小 -2 -28 [58]
    红河三角洲 72 159 39 减小 减小 -4 -14 [49]
    湄公河三角洲 180 1107 70 减小 减小 -9 -80 [59]
    伊洛瓦底江三角洲 162 1380 364 增大 减小 14 -70 [60]
    恒河-布拉马普特拉河三角洲 511 2204 1131 增大 减小 19 -32 [61]
    印度河三角洲 106 381 85 减小 减小 -2 -30 [52]
    下载: 导出CSV

    表 5  亚洲主要河口三角洲的生长极限

    Table 5.  The growth limit of the major river deltas in Asia

    Sf(km2) Et(t/(km2·a)) Sef(km2) R1e(km) R2e(km) Se(km2) Ve(km3)
    长江三角洲 143704 2025 75062 134 130 8264 202
    珠江三角洲 21186 2454 16704 122 51 5292 56
    红河三角洲 20717 3475 11222 121 30 6354 69
    湄公河三角洲 57813 3113 22483 140 34 13050 90
    伊洛瓦底江三角洲 72183 2244 162188 381 126 67013 1573
    恒河-布拉马普特拉河三角洲 106124 4815 234885 679 155 177141 7553
    印度河三角洲 28295 3746 22689 172 42 13150 174
    下载: 导出CSV
  • [1]

    Bates C C. Rational theory of delta formation[J]. AAPG Bulletin, 1953, 37(9): 2119-2162. http://archives.datapages.com/data/bulletns/1953-56/data/pg/0037/0002/0350/0355.htm?doi=10.1306%2F5CEADC65-16BB-11D7-8645000102C1865D

    [2]

    Wright L D, Coleman J M. River delta morphology: wave climate and the role of the subaqueous profile[J]. Science, 1972, 176(4032): 282-284. doi: 10.1126/science.176.4032.282

    [3]

    Coleman J M. Deltas: processes of deposition and models for exploration[C]//International Human Resources Development Corporation. Englewood Cliffs, NJ: Prentice Hall, 1981: 1-26.

    [4]

    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise[J]. Science, 1994, 265(5169): 228-231. doi: 10.1126/science.265.5169.228

    [5]

    Gao S. Modeling the growth limit of the Changjiang Delta[J]. Geomorphology, 2007, 85(3-4): 225-236. doi: 10.1016/j.geomorph.2006.03.021

    [6]

    Korus J T, Fielding C R. Asymmetry in Holocene river deltas: Patterns, controls, and stratigraphic effects[J]. Earth-Science Reviews, 2015, 150: 219-242. doi: 10.1016/j.earscirev.2015.07.013

    [7]

    Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021

    [8]

    Gao S. Catchment-coast interactions in the Asia-pacific region[C]//Harvey N, ed. Global Change and Integrated Coastal Management. Coastal Systems and Continental margins. Netherlands: Springer, 2006: 67-92.https://link.springer.com/chapter/10.1007%2F1-4020-3628-0_4

    [9]

    Woodroffe C D, Nicholls R J, Saito Y, et al. Landscape Variability and the Response of Asian Megadeltas to Environmental Change[C]//Harvey N, ed. Global Change and Integrated Coastal Management. Coastal Systems and Continental Margins. Dordrecht: Springer, 2006, 10: 277-314.https://link.springer.com/chapter/10.1007/1-4020-3628-0_10

    [10]

    Reading H G. Sedimentary Environments: Processes, Facies and Stratigraphy [M]. Oxford: Blackwell, 1996:181-209.

    [11]

    Ericson J P, Võrõsmarty C J, Dingman S L, et al. Effective sea-level rise and deltas: Causes of change and human dimension implications[J]. Global and Planetary Change, 2006, 50(1-2): 63-82. doi: 10.1016/j.gloplacha.2005.07.004

    [12]

    Võrõsmarty C J, Meybeck M, Fekete B, et al. Anthropogenic sediment retention: major global impact from registered river impoundments[J]. Global and Planetary Change, 2003, 39(1-2): 169-190. doi: 10.1016/S0921-8181(03)00023-7

    [13]

    Wiens J, Grenier L, Grossinger R, et al. The delta as changing landscapes[J]. San Francisco Estuary and Watershed Science, 2016, 14(2): 1-19. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3420903

    [14]

    Blum M D, Roberts H H. Drowning of the Mississippi delta due to insufficient sediment supply and global sea-level rise[J]. Nature Geoscience, 2009, 2(7): 488-491. doi: 10.1038/ngeo553

    [15]

    Giosan L, Syvitski J, Constantinescu S, et al. Climate change: protect the world's deltas[J]. Nature, 2014, 516(7529): 31-33. doi: 10.1038/516031a

    [16]

    Hart G F, Coleman J. The world deltas database framework[M].Baton Rouge:Louisiana State University, 2012:www.geol.lsu.edu/WDD.

    [17]

    Li B H, Li C X, Shen H T. A preliminary study on sediment flux in the Changjiang Delta during the postglacial period[J]. Science in China Series D: Earth Sciences, 2003, 46(7): 743-752. doi: 10.1360/03yd9065

    [18]

    何志刚, 吴超羽, 莫文渊, 等.冰后期珠江三角洲沉积物通量的初步研究[J].海洋学报, 2006, 28(6): 72-77. http://d.old.wanfangdata.com.cn/Periodical/hyxb200606010

    HE Zhigang, WU Chaoyu, MO Wenyuan, et al. A preliminary study on sediment flux in the Zhujiang River Delta during the postglacial period[J]. Acta Oceanologica Sinica, 2006, 28(6): 72-77. http://d.old.wanfangdata.com.cn/Periodical/hyxb200606010

    [19]

    Wells J T, Coleman J M. Deltaic morphology and sedimentology, with special reference to the Indus River delta[R]. Baton Rouge: Louisiana State University, 1985.

    [20]

    Chen X Q. Changjian (Yangtze) River delta, China[J]. Journal of Coastal Research, 1998, 14(3): 838-858. https://www.jstor.org/stable/4298837

    [21]

    Huang G. Holocene record of storms in sediments of the Pearl River Estuary and vicinity[D].The University of Hong Kong, 2000.

    [22]

    Woodroffe C D. Deltaic and estuarine environments and their Late Quaternary dynamics on the Sunda and Sahul shelves[J]. Journal of Asian Earth Sciences, 2000, 18(4): 393-413. doi: 10.1016/S1367-9120(99)00074-7

    [23]

    Ta T K O, Nguyen V L, Tateishi M, et al. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam[J]. Quaternary Science Reviews, 2002, 21(16-17): 1807-1819. doi: 10.1016/S0277-3791(02)00007-0

    [24]

    Tanabe S, Hori K, Saito Y, et al. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes[J]. Quaternary Science Reviews, 2003, 22(21-22): 2345-2361. doi: 10.1016/S0277-3791(03)00138-0

    [25]

    Tanabe S, Saito Y, Sato Y, et al. Stratigraphy and Holocene evolution of the mud-dominated Chao Phraya delta, Thailand[J]. Quaternary Science Reviews, 2003, 22(8-9): 789-807. doi: 10.1016/S0277-3791(02)00242-1

    [26]

    Rogers K G. Spatial and temporal sediment distribution from river mouth to remote depocenters in the Ganges-Brahmaputra delta, Bangladesh[D]. Doctoral Dissertation of Vanderbilt University, 2012.

    [27]

    Amante C, Eakins B W. ETOPO1 arc-minute global relief model: Procedures, data sources and analysis[J]. Psychologist, 2009, 16(3):20-25.

    [28]

    Allison M A. Geologic framework and environmental status of the Ganges-Brahmaputra delta[J]. Journal of Coastal Research, 1998, 14(3): 826-836. https://www.jstor.org/stable/4298836

    [29]

    赵焕庭, 张乔民, 宋朝景, 等.华南海岸和南海诸岛地貌与环境[M].北京:科学出版社, 1999.

    ZHAO Huanting, ZHANG Qiaomin, SONG Chaojing, et al. Geomorphology and environment of the South China coast and the South China Sea islands[M]. Beijing: Science Press, 1999.

    [30]

    Chen J Y, Li D J, Chen B L, et al. The processes of dynamic sedimentation in the Changjiang Estuary[J]. Journal of Sea Research, 1999, 41(1-2): 129-140. doi: 10.1016/S1385-1101(98)00047-1

    [31]

    Xue Z, Liu J P, DeMaster D, et al. Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam[J]. Marine Geology, 2010, 269(1-2): 46-60. doi: 10.1016/j.margeo.2009.12.005

    [32]

    Chen Z Y, Stanley D J. Quaternary subsidence and river channel migration in the Yangtze delta plain, eastern China[J]. Journal of Coastal Research, 1995, 11(3): 927-945.

    [33]

    Syvitski J P M, Saito Y. Morphodynamics of deltas under the influence of humans[J]. Global & Planetary Change, 2007, 57(3-4): 261-282. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c013dfb47141be28fbc494773968efc

    [34]

    Wang H, Wright T J, Yu Y, et al. InSAR reveals coastal subsidence in the Pearl River Delta, China[J]. Geophysical Journal International, 2012, 191(3): 1119-1128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-246X.2012.05687.x

    [35]

    Xia J J, Yan Z W, Zhou W, et al. Projection of the Zhujiang (Pearl) River Delta's potential submerged area due to sea level rise during the 21st century based on CMIP5 simulations[J]. Acta Oceanologica Sinica, 2015, 34(9): 78-84. doi: 10.1007/s13131-015-0700-1

    [36]

    王龙.基于19年卫星测高数据的中国海海平面变化及其影响因素研究[D].中国海洋大学硕士学位论文, 2013.

    WANG Long. On sea level changes and their influencing factors based on 19-years satellite altimetry data[D]. Master thesis, Ocean University of China, 2013.

    [37]

    Erban L E, Gorelick S M, Zebker H A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam[J]. Environmental Research Letters, 2014, 9(8): 084010. doi: 10.1088/1748-9326/9/8/084010

    [38]

    Hedley P J, Bird M I, Robinson R A J. Evolution of the Irrawaddy delta region since 1850[J]. Geographical Journal, 2010, 176(2): 138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1475-4959.2009.00346.x

    [39]

    Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities. Nature Geoscience, 2009, 2(10): 681-686. doi: 10.1038/ngeo629

    [40]

    Higgins S A, Overeem I, Steckler M S, et al. InSAR measurements of compaction and subsidence in the Ganges‐Brahmaputra Delta, Bangladesh[J]. Journal of Geophysical Research Earth Surface, 2014, 119(8): 1768-1781. doi: 10.1002/2014JF003117

    [41]

    Kay S, Caesar J, Wolf J, et al. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change[J]. Environmental Science: Processes & Impacts, 2015, 17(7): 1311-1322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bd413428538edd0cfcbfa7afc15a26b

    [42]

    Khan T M A, Razzaq D A, Chaudhry Q U Z, et al. Sea level variations and geomorphological changes in the coastal belt of Pakistan[J]. Marine Geodesy, 2002, 25(1-2): 159-174. doi: 10.1080/014904102753516804

    [43]

    Karim S, Mortazavi S M. Investigation of the land subsidence and its consequences of large groundwater withdrawal inRafsanjan, Iran[J]. Pakistan Journal of Biological Sciences, 2008, 11(2): 265-269. doi: 10.3923/pjbs.2008.265.269

    [44]

    Hori K, Saito Y. Classification, architecture, and evolution of large-river deltas[M]//Gupta A, ed. Large Rivers: Geomorphology and Management.NewYork:John Wiley & Sons, Ltd, 2008: 75-92.

    [45]

    Perillo G M E, Syvitski J P M. Mechanisms of sediment retention in estuaries[J]. Estuarine Coastal and Shelf Science, 2010, 87(2): 175-176. doi: 10.1016/j.ecss.2009.10.026

    [46]

    高抒.长江三角洲对流域输沙变化的响应:进展与问题[J].地球科学进展, 2010, 3(3): 233-241. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201003001

    GAO Shu. Changjiang delta sedimentation in response to catchment discharge changes: progress and problems[J]. Advance in Earth Sciences, 2010, 3(3): 233-241. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201003001

    [47]

    Milliman J D, Shen H T, Yang Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J]. Continental Shelf Research, 1985, 4(1-2): 37-45. doi: 10.1016/0278-4343(85)90020-2

    [48]

    Zhang S R, Liu X X, Higgitt D L, et al. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China[J]. Global and Planetary Change, 2008, 60(3-4): 365-380. doi: 10.1016/j.gloplacha.2007.04.003

    [49]

    Le T P Q, Garnier J, Gilles B, et al. The changing flow regime and sediment load of the Red River, Vietnam[J]. Journal of Hydrology, 2007, 334(1-2): 199-214. doi: 10.1016/j.jhydrol.2006.10.020

    [50]

    Tamura T, Saito Y, Sieng S, et al. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland[J]. Quaternary Science Reviews, 2009, 28(3-4): 327-344. doi: 10.1016/j.quascirev.2008.10.010

    [51]

    Furuichi T, Win Z, Wasson R J. Discharge and suspended sediment transport in the Ayeyarwady River, Myanmar: centennial and decadal changes[J]. Hydrological Processes, 2009, 23(11): 1631-1641. doi: 10.1002/hyp.7295

    [52]

    InamA, Giosan L, Tabrez A M, et al. The geographic, geological and oceanographic setting of the Indus River[M]//Gupta A, ed. Large rivers: Geomorphology and Management. New York: John Wiley & Sons, Ltd, 2007: 333-345.

    [53]

    Gao S, Liu Y L, Yang Y, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf[J]. Journal of Asian Earth Sciences, 2015, 114: 562-573. doi: 10.1016/j.jseaes.2015.07.024

    [54]

    Hanebuth T J J, Hendrik L, Nizou J. Mud depocenters on continental shelves—appearance, initiation times, and growth dynamics[J]. Geo-Marine Letters, 2015, 35(6): 487-503. doi: 10.1007/s00367-015-0422-6

    [55]

    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes[J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7

    [56]

    Mishra R, Pandey D K, Ramesh P. Active channel systems in the middle indus fan: results from high-resolution bathymetry surveys[J]. Current Science, 2015, 108(3): 409-412.

    [57]

    杨世伦, 朱骏, 赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究——近期证据分析和未来趋势估计[J].海洋学报, 2003, 25(5): 83-91. doi: 10.3321/j.issn:0253-4193.2003.05.010

    YANG Shilun, ZHU Jun, ZHAO Qingying. A preliminary study on the influence of Changjiang River sediment supply on subaqueous delta-Evidences in late 20th century and an expectation for the coming decades[J]. Acta Oceanologica Sinica, 2003, 25(5): 83-91. doi: 10.3321/j.issn:0253-4193.2003.05.010

    [58]

    Zhang W, Wei X Y, Zheng J H, et al. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves[J]. Continental Shelf Research, 2012, 38: 35-46. doi: 10.1016/j.csr.2012.02.017

    [59]

    Lu X X, Kummu M, Oeurng C. Reappraisal of sediment dynamics in the Lower Mekong River, Cambodia[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1855-1865. doi: 10.1002/esp.3573

    [60]

    Robinson R A J, Bird M I, Oo N W, et al. The Irrawaddy river sediment flux to the Indian Ocean: the original nineteenth-century data revisited[J]. The Journal of Geology, 2007, 115(6): 629-640. doi: 10.1086/521607

    [61]

    Darby S E, Dunn F E, Nicholls R J, et al. A first look at the influence of anthropogenic climate change on the future delivery of fluvial sediment to the Ganges-Brahmaputra-Meghna delta[J]. Environmental Science: Processes & Impacts, 2015, 17(9): 1587-1600. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=18f8f58d946a55992e2198f0027d0618

    [62]

    高抒.废黄河口海岸侵蚀与对策[J].海岸工程, 1989, 8(1): 37-42. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s00264-009-0856-4/

    GAO Shu. Erosion of Old Yellow River delta in northern Jiangsu and coast protection[J]. Coastal Engineering, 1989, 8(1): 37-42. http://d.old.wanfangdata.com.cn/NSTLQK/10.1007-s00264-009-0856-4/

    [63]

    虞志英, 樊社军, 金缪.江苏北部废黄河口水下三角洲稳定性和深水港建设[J].地理学报, 1998, 65(S1): 158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb1998z1020

    YU Zhiying, FAN Shejun, JIN Miao. The Old Yellow River underwater delta in the north Jiangsu and the Seaport Building[J]. Acta Geographica Sinica, 1998, 65(S1): 158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb1998z1020

    [64]

    张忍顺, 陆丽云, 王艳红.江苏海岸侵蚀过程及其趋势[J].地理研究, 2002, 21(4): 469-478. doi: 10.3321/j.issn:1000-0585.2002.04.009

    ZHANG Renshun, LU Liyun, WANG Yanhong. The mechanism and trend of coastal erosion of Jiangsu Province in China[J]. Geographical Research, 2002, 21(4): 469-478. doi: 10.3321/j.issn:1000-0585.2002.04.009

  • 加载中

(5)

(5)

计量
  • 文章访问数:  2394
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2017-02-09
修回日期:  2017-06-05
刊出日期:  2018-02-28

目录