椒江河口春季悬沙输运特征及通量机制研究

刘伟, 范代读, 涂俊彪, 芦军. 椒江河口春季悬沙输运特征及通量机制研究[J]. 海洋地质与第四纪地质, 2018, 38(1): 41-51. doi: 10.16562/j.cnki.0256-1492.2018.01.005
引用本文: 刘伟, 范代读, 涂俊彪, 芦军. 椒江河口春季悬沙输运特征及通量机制研究[J]. 海洋地质与第四纪地质, 2018, 38(1): 41-51. doi: 10.16562/j.cnki.0256-1492.2018.01.005
LIU Wei, FAN Daidu, TU Junbiao, LU Jun. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51. doi: 10.16562/j.cnki.0256-1492.2018.01.005
Citation: LIU Wei, FAN Daidu, TU Junbiao, LU Jun. Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 41-51. doi: 10.16562/j.cnki.0256-1492.2018.01.005

椒江河口春季悬沙输运特征及通量机制研究

  • 基金项目:
    国家自然科学基金项目“人类活动影响下长江口北支动力地貌演化与沉积地层格架研究”(41776052);科学科技基础性工作专项“典型中小入海河流河口动力沉积地貌与环境本底数据调查”(2013FY112200);中国东盟海上合作基金“长江三角洲与红河三角洲全新世沉积演化对比研究”
详细信息
    作者简介: 刘伟(1990—),男,硕士生,主要从事沉积动力学研究,E-mail:9liuwei@tongji.edu.cn
    通讯作者: 范代读(1972—),男,教授,从事海洋地质研究,E-mail: ddfan@tongji.edu.cn
  • 中图分类号: X141

  • 周立君编辑

Suspended transportation and flux mechanism of sediment in the Jiaojiang Estuary in spring

More Information
  • 通过分析2016年3月椒江河口两个定点站位的潮周期水文泥沙观测数据,研究了椒江河口春季悬沙输运特征及通量机制。结果表明,河口内侧站位潮流速大于外侧站位值,两站位垂线平均悬沙浓度分别为0.3~5.8kg/m3和0.3~1.0 kg/m3。悬沙通量机制分解表明,内侧站以向海的潮泵输沙效应最显著,对单宽输沙量绝对值贡献率为43.9%,其次是向陆的平流和垂向净环流输沙,综合作用下悬沙向陆净输移0.39kg/(m·s);外侧站位以向海的平流输沙为主导作用,贡献率为72.6%,悬沙向海净输移0.10kg/(m·s)。小波分析和频谱分析表明,含沙量、输沙率及流速三者之间存在不同的响应关系,内侧站输沙率主要受流速的影响,而外侧站位则主要受控于悬沙浓度变化。

  • 加载中
  • 图 1  椒江河口湾地形及观测站位(改自文献[22])

    Figure 1. 

    图 2  三尺度分解结构形式图(改自吴德安[27])

    Figure 2. 

    图 3  椒江河口A站位(左侧)与C站位(右侧)流速、盐度和悬沙浓度的潮周期变化

    Figure 3. 

    图 4  椒江河口A和C站单宽潮周期平均悬沙通量输移分解(正值向海)

    Figure 4. 

    图 5  观测期间ūtūt潮周期内随时间的变化情况

    Figure 5. 

    图 6  各站观测期间垂向余流结构

    Figure 6. 

    图 7  垂线平均流速、垂线平均悬沙浓度和瞬时输沙率的小波分析结果

    Figure 7. 

    图 8  椒江河口A(左)和C(右)站位水位、流速、悬沙浓度和输沙率频域图

    Figure 8. 

    表 1  各站位垂线平均流速特征值统计

    Table 1.  Statistics of depth mean tidal current velocity at each station

    站位 涨潮 落潮
    平均值(m/s) 最大值(m/s) 流向(°) 历时(h) 平均值(m/s) 最大值(m/s) 流向(°) 历时(h)
    A 0.452 0.927 281 5.55 0.365 0.596 99 6.6
    C 0.235 0.446 283 6.12 0.254 0.444 110 6.4
    下载: 导出CSV

    表 2  各站观测潮周期期间各输沙项对单宽输沙量绝对值的贡献率(%)

    Table 2.  Contributions of different sediment transport parameters to the magnitude of absolute sediment transport (%)

    时间 站位 T1 T2 T3 T4 T5 T6 T7
    2016 A -24.5 -2.3 1.2 42.0 -0.7 -26.5 2.8
    2016 C 53.9 -18.7 -3.5 8.7 -3.0 9.6 -2.6
    注:正值表示向海输运,负值表示向陆输运。
    下载: 导出CSV
  • [1]

    De Nijs M A J, Winterwerp J C, Pietrzak J D. On harbour siltation in the fresh-salt water mixing region[J]. Continental Shelf Research, 2009, 29(1): 175-193. doi: 10.1016/j.csr.2008.01.019

    [2]

    deNijs M A J, Winterwerp J C, Pietrzak J D. The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2010, 40(11): 2357-2380. doi: 10.1175/2010JPO4233.1

    [3]

    Talke S A, de Swart H E, De Jonge V N. An idealized model and systematic process study of oxygen depletion in highly turbid estuaries[J]. Estuaries and Coasts, 2009, 32(4): 602-620. doi: 10.1007/s12237-009-9171-y

    [4]

    Tu J, Fan D. Flow and turbulence structure in a hypertidal estuary with the world's biggest tidal bore[J]. Journal of Geophysical Research: Oceans, 2017:122:3417-3433. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/2016JC012120

    [5]

    Uncles R J, Stephens J A, Harris C. Runoff and tidal influences on the estuarine turbidity maximum of a highly turbid system: the upper Humber and Ouse Estuary, UK[J]. Marine Geology, 2006, 235(1): 213-228. https://www.sciencedirect.com/science/article/abs/pii/S0025322706002684

    [6]

    Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries and Coasts, 1993, 16(1): 113-125. doi: 10.2307/1352769

    [7]

    Chernetsky A. Trapping of sediment in tidal estuaries[J]. Repository.Tudelf.nl, 2012:17-89.

    [8]

    Fischer H. Mass transport mechanisms in partially stratified estuaries[J]. Journal of fluid mechanics, 1972, 53(04): 671-687. doi: 10.1017/S0022112072000412

    [9]

    Dyer K R. The salt balance in stratified estuaries[J]. Estuarine and coastal marine science, 1974, 2(3): 273-281. doi: 10.1016/0302-3524(74)90017-6

    [10]

    Winterwerp J C. Decomposition of the mass transport in narrow estuaries[J]. Estuarine, Coastal and Shelf Science, 1983, 16(6): 627-638. doi: 10.1016/0272-7714(83)90075-6

    [11]

    Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary[J]. Estuaries and Coasts, 1985, 8(3): 256-269. doi: 10.2307/1351486

    [12]

    deNijs M A J, Winterwerp J C, Pietrzak J D. The effects of the internal flow structure on SPM entrapment in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2010, 40(11): 2357-2380. doi: 10.1175/2010JPO4233.1

    [13]

    沈健, 沈焕庭, 潘定安, 等.长江河口最大浑浊带水沙输运机制分析[J].地理学报, 1995, 50(5):411-420. doi: 10.3321/j.issn:0375-5444.1995.05.004

    SHEN Jian, SHEN Huanting, PAN Dingan, et al. Analysis of transport mechanism of water and suspended sediment in the turbidity maximum of the Changjiang Estuary[J]. Acta Geographica Sinica, 1995, 50(5):411-420. doi: 10.3321/j.issn:0375-5444.1995.05.004

    [14]

    Hu G, Wu D, Yan Y. Dynamic Response of the Suspended Sediment Change in the Tidal Channel of Jiangsu Sea Area[C]//Bioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on. IEEE, 2010: 1-5.

    [15]

    张钊, 李占海, 张国安, 等.长江口南槽中段枯季水沙输运特征研究[J].长江流域资源与环境, 2016, 25(12):1832-1841. doi: 10.11870/cjlyzyyhj201612006

    ZHANG Zhao, LI Zhanhai, ZHANG Guoan, et al. Water and Suspended Sediment transports in the middle reach of the South Passage in the Changjiang Estuary during the dry season[J]. Resources and Environment in the Yangtze Basin, 2016, 25(12):1832-1841. doi: 10.11870/cjlyzyyhj201612006

    [16]

    陈甫源, 胡金春, 白咸勇, 等.江道采砂对椒江河口的影响分析[J].泥沙研究, 2008(3):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj200804009

    CHEN Fuyuan, HU Jinchun, BAI Xianyong, et. Effect of evacuating sand on Jiaojiang River estuary[J]. Journal of Sediment Research, 2008(3):46-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj200804009

    [17]

    夏威夷, 赵晓冬, 张新周.椒江河口径、潮流变化对含沙量时空分布的影响[J].水利水运工程学报, 2016(3):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsykxyj201603005

    XIA Weiyi, ZHAO Xiaodong, ZHANG Xinzhou. Influences of variation in runoff and tide on spatial and temporal distribution of sediment concentration in Jiaojiang River estuary[J]. Hydro-Science and Engineering, 2016(3):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsykxyj201603005

    [18]

    王高阳.台州湾悬沙运动的二维数学模型[D].浙江大学学位论文, 2007.

    WANG Gaoyang. A 2D Numerical Simulation of Suspended Sediment in the TaizhouBay[D].Zhejiang University, 2007.

    [19]

    Guan W B, Kot S C, Wolanski E. 3-D fluid-mud dynamics in the Jiaojiang Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2005, 65(4): 747-762. doi: 10.1016/j.ecss.2005.05.017

    [20]

    郭聪.椒江河口对围海工程的响应[D].浙江大学学位论文, 2016.

    GUO Cong. Response of Jiaojiang Estuary to Coastal Reclamation[D]. Zhejiang University, 2016.

    [21]

    Li B G, Eisma D, Xie Q C, et al. Concentration, clay mineral composition and Coulter counter size distribution of suspended sediment in the turbidity maximum of the Jiaojiang river estuary, Zhejiang, China[J]. Journal of Sea Research, 1999, 42(2): 105-116. doi: 10.1016/S1385-1101(99)00023-4

    [22]

    谢钦春, 李伯根.椒江河口悬沙浓度垂向分布和泥跃层发育[J].海洋学报, 1998, 20(6):58-69. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199806007.htm

    XIE Qinchun, LI Bogen. Vertical distributions of suspended matter and lutoclines in the Jiaojiang Estuary[J]. Acta Oceanologica Sinica, 1998, 20(6):58-69. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199806007.htm

    [23]

    符宁平, 毕敖洪.椒江悬沙运动若干问题的探讨[J].泥沙研究, 1989 (3): 51-57. doi: 10.3321/j.issn:0468-155X.1989.03.002

    FU Ningping, BI Aohong. Research on some problems of suspended sediment transport in the Jiaojiang[J]. Journal of Sediment Research, 1989(3):51-57. doi: 10.3321/j.issn:0468-155X.1989.03.002

    [24]

    Dong L, Wolanski E, Li Y. Field and modeling studies of fine sediment dynamics in the extremely turbid Jiaojiang River estuary, China[J]. Journal of Coastal Research, 1997: 995-1003. https://www.jstor.org/stable/4298710

    [25]

    Guan W B, Wolanski E, Dong L X. Cohesive sediment transport in the Jiaojiang River estuary, China[J]. Estuarine, Coastal and Shelf Science, 1998, 46(6): 861-871. doi: 10.1006/ecss.1998.0336

    [26]

    Dyer K R. Estuaries—A Physical Introduction[M].John Wiley, Chichester, UK, 1997:195.

    [27]

    吴德安.江苏辐射沙洲水道潮流及悬沙动力研究[D].南京师范大学学位论文, 2004.

    WU Dean. Hydrodynamic studies to the tidal current and suspended sediments in the channels of Jiangsu Radial Sand Ridges[D].Nanjing Normal University, 2004.

    [28]

    Yu Q, Wang Y, Gao J, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 7705-7724. doi: 10.1002/2014JC010228

    [29]

    Jay D A, Musiak J D. Internal tidal asymmetry in channel flows: Origins and consequences[C]//Mixing in estuaries and coastal seas, Coastal Estuarine Studies, edited by C.Pattiaratchi. 1996: 211-249.https://www.researchgate.net/publication/278640106_Internal_tidal_asymmetry_in_channel_flows_Origins_and_consequences

    [30]

    de Nijs M A J, Pietrzak J D, Winterwerp J C. Advection of the salt wedge and evolution of the internal flow structure in the Rotterdam Waterway[J]. Journal of Physical Oceanography, 2011, 41(1): 3-27. doi: 10.1175/2010JPO4228.1

    [31]

    陈景东, 汪亚平, 史本伟, 等.长江口北港口门海域悬沙输运机制分析[J].海洋工程, 2014, 32(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hygc201403007

    CHEN Jingdong, WANG Yaping, SHI Benwei, et al. Mechanisms on the suspended sediment transport in the mouth of North Channel of Yangtze River estuary[J]. The Ocean Engineering, 2014, 32(3):45-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hygc201403007

    [32]

    时钟, 陈伟民.长江口北槽最大浑浊带泥沙过程[J].泥沙研究, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005

    SHI Zhong, CHEN Weimin. Fine sediment transport in Turbidity Maximum at the North Passage of the Changjiang Estuary[J]. Journal of Sediment Research, 2000(1):28-39. doi: 10.3321/j.issn:0468-155X.2000.01.005

    [33]

    Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum[J]. Estuaries and Coasts, 1993, 16(1): 113-125. doi: 10.2307/1352769

    [34]

    Winterwerp J C. On the flocculation and settling velocity of estuarine mud[J]. Continental Shelf Research, 2002, 22(9): 1339-1360. doi: 10.1016/S0278-4343(02)00010-9

    [35]

    Winterwerp J C. Fine sediment transport by tidal asymmetry in the high-concentrated Ems River: indications for a regime shift in response to channel deepening[J]. Ocean Dynamics, 2011, 61(2-3): 203-215. doi: 10.1007/s10236-010-0332-0

    [36]

    Becherer J, Flöser G, Umlauf L, et al. Estuarine circulation versus tidal pumping: Sediment transport in a well-mixed tidal inlet[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6251-6270 doi: 10.1002/2016JC011640

    [37]

    Fischer H B, List E J, Koh R C Y, et al. Mixing in inland and coastal waters Academic Press[J]. New York, 1979: 229-242

  • 加载中

(8)

(2)

计量
  • 文章访问数:  2246
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2017-05-31
修回日期:  2017-12-20
刊出日期:  2018-02-28

目录