Transportation of suspended sediment in Shenjiamen offshore area of Zhoushan
-
摘要:
通过对舟山沈家门海域水文泥沙观测站位数据进行处理和分析,探讨了区域悬沙浓度时空分布及影响因素;对各站位单宽净输沙量和输运方向进行了计算,揭示了海域悬沙输运机制。结果表明:受长江、钱塘江等大河泥沙注入和周边岛屿物质输入影响,海域悬沙浓度较高;平面分布上,悬沙浓度有从东北向西南减小趋势,位于莲花洋的C1站位浓度最大,峙头洋C4站位悬沙浓度较小;悬沙浓度垂向上随水深的增加,逐渐升高;在涨、落潮流的影响下悬沙起动、悬扬、沉降、落淤,浓度随潮流流速变化具较高的相关性;通量机制分解计算表明海域悬沙输运以平流输沙项为主导,单宽净输运率大潮期大于小潮期;总体上,泥沙输运有沿水道走向离岸向海运动趋势。
Abstract:Based on both the data of tidal current and suspended sediment collected from the sea area off Shenjiamen of the Zhoushan Islands, temporal and spatial variation in suspended sediment concentrations during neap and spring tides and their influence factors are discussed in this paper. The transportation characteristics of the suspended matter in the sea area are described by sediment net discharge rate and moving direction. Results show that suspended sediment concentration in the study area is higher than that in surrounding areas, owing to the inputs from the Yangtze, Qian Tang and other rivers as well as surrounding islands. In general, the suspended sediment concentration is spatially in a pattern decreasing from northeast to southwest. The highest sediment concentration appears at the C1 station in Lianhuayang sea, while the lowest at the C4 station in the Zhitouyang sea. Vertically, the suspended sediment concentrations gradually increase with the increase in water depth. The movement of suspended sediment from initiation to settlement is mainly udder the control of tidal movement. There is a high correlation between the suspended sediment concentration and the tidal current velocity. Flux mechanism decomposition shows that suspended sediment is mainly transported in a form of advection. Net transport rate in spring tide is greater than that in the neap tide period. To sum up, the sediment transport in the study area is in a trend towards the sea through channels.
-
表 1 各站大、小潮垂线平均含沙量分布特征(kg/m3)
Table 1. Vertical profiles of suspended sediment concentrations during spring and neap tides
站号 潮汛 大潮 小潮 平均值 最大值 最小值 平均值 最大值 最小值 C1 涨潮 0.641 0.897 0.368 0.575 0.864 0.265 落潮 0.687 0.967 0.327 0.335 0.468 0.215 C2 涨潮 0.648 0.935 0.383 0.104 0.229 0.017 落潮 0.492 0.682 0.273 0.078 0.168 0.007 C3 涨潮 0.278 0.923 0.089 0.184 0.430 0.112 落潮 0.395 0.702 0.080 0.272 0.499 0.064 C4 涨潮 0.270 0.399 0.199 0.015 0.016 0.015 落潮 0.229 0.427 0.115 0.043 0.092 0.022 C5 涨潮 0.212 0.270 0.127 0.098 0.158 0.053 落潮 0.208 0.310 0.107 0.078 0.140 0.036 C6 涨潮 0.246 0.306 0.158 0.171 0.108 0.056 落潮 0.211 0.382 0.110 0.095 0.160 0.038 表 2 大、小潮垂线潮流流速和流向
Table 2. Vertical profiles tidal currents in spring and neap tides
站号 涨落 大潮 小潮 全潮最大可能 流速(m/s) 流向(°) 流速(m/s) 流向(°) 流速(m/s) 流向(°) C1 涨潮 1.11 348 0.64 4 1.73 354 落潮 0.94 195 0.57 184 1.50 191 C2 涨潮 0.62 294 0.42 303 1.04 298 落潮 0.97 126 0.32 120 1.29 125 C3 涨潮 0.79 24 0.50 30 1.29 26 落潮 0.49 326 0.49 212 0.53 269 C4 涨潮 0.80 285 0.39 290 1.19 287 落潮 0.92 107 0.39 112 1.31 108 C5 涨潮 0.92 294 0.41 293 1.23 294 落潮 0.95 121 0.37 130 1.32 124 C6 涨潮 0.61 262 0.35 259 0.96 261 落潮 0.71 138 0.41 133 1.12 136 表 3 大、小潮垂线平均余流
Table 3. Vertical profiles of residual currents
站号 大潮 小潮 流速(m/s) 流向(°) 流速(m/s) 流向(°) C1 0.18 348 0.03 185 C2 0.18 126 0.04 314 C3 0.32 24 0.04 272 C4 0.15 113 0.01 166 C5 0.17 284 0.10 266 C6 0.31 183 0.19 175 表 4 各站位大、小潮悬沙输移通量分解
Table 4. Decomposition of suspended sediment transport during spring and neap tide periods
站位 潮汛 T1 T2 T3 T4 T8 T1+T2 T3+T4+T5 〈T〉 C1 大潮 量值 1.67 0.73 0.01 0.06 0.03 2.38 0.05 2.45 方向 348 2 168 4 28 352 8 353 小潮 量值 0.24 0.12 0 0.03 0.01 0.12 0.03 0.09 方向 185 5 185 5 31 184 5 186 C2 大潮 量值 1.61 1.05 0.03 0.09 0.05 0.57 0.06 0.47 方向 126 301 126 301 350 137 299 136 小潮 量值 0.06 0.04 0 0 0.01 0.1 0.01 0.11 方向 314 302 314 302 333 310 325 312 C3 大潮 量值 1.08 0.16 0.01 0.02 0.01 1.24 0.03 1.28 方向 24 32 24 40 48 25 35 26 小潮 量值 0.09 0.02 0 0 0 0.08 0 0.08 方向 272 29 272 40 177 283 19 282 C4 大潮 量值 0.53 0.28 0 0.05 0.03 0.26 0.04 0.19 方向 113 283 113 285 282 123 284 131 小潮 量值 0.01 0.01 0 0 0 0.01 0 0.01 方向 166 290 166 282 177 252 279 250 C5 大潮 量值 0.94 0.1 0 0 0 1.04 0 1.03 方向 284 296 104 113 97 285 112 285 小潮 量值 0.24 0 0 0 0 0.24 0 0.24 方向 266 117 266 294 242 266 291 266 C6 大潮 量值 1.42 0.32 0.01 0.01 0.01 1.33 0.01 1.34 方向 183 295 183 88 102 195 151 194 小潮 量值 0.41 0.02 0 0.01 0.01 0.39 0.01 0.4 方向 175 310 175 122 126 177 133 175 注:量值的单位为kg/(m·s),方向的单位为(°)。 -
[1] 中国水利学会泥沙专业委员会.泥沙手册[M].中国环境科学出版社, 1989.
Chinese Hydraulic Engineering Society-Silt Specialized Committee. Handbook of Sedimentation[M]. China Environmental Science Press, 1989.
[2] 郑祥靖, 潘伟然, 张国荣, 等.厦门湾悬沙分布特征与动力分析[J].厦门大学学报:自然科学版, 2013, 52(4): 539-544. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201304018
ZHENG Xiangjing, PAN Weiran, ZHANG Guorong, et al. Distribution characteristics of suspended sediment and dynamicanalysisin the Xiamen Bay[J]. Journal of Xiamen University: Natural Science, 2013, 52(4): 539-544. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201304018
[3] SHI Huabin, YU Xiping. An effective Euler-Lagrange model for suspended sediment transport by open channel flows[J]. International Journal of Sediment Research, 2015, 30(4): 361-370. doi: 10.1016/j.ijsrc.2015.03.012
[4] Rose C P, Thorne P D. Measurements of suspended sediment transport parameters in a tidal estuary[J]. Continental Shelf Research, 2001, 21(15): 1551-1575. doi: 10.1016/S0278-4343(00)00087-X
[5] Chen W B, Liu W C, Hsu M H, et al.Modeling investigation of suspended sediment transport in a tidal estuary using a three-dimensional model[J]. Applied Mathematical Modelling, 2015, 39(9): 2570-2586. doi: 10.1016/j.apm.2014.11.006
[6] 蒋国俊.舟山群岛峡道水动力及沉积特性[J].浙江大学学报:理学版, 2001, 28(1): 82-91. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb200101016
JIANG Guojun.The characteristics of hydro-dynamics and sediments in the strait channels of Zhoushan Islands area[J]. Journal of Zhejiang University: Science Edition, 2001, 28(1): 82-91. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb200101016
[7] 季荣耀, 陆永军, 左利钦.岛屿海岸工程作用下的水沙动力过程研究[J].水科学进展, 2008, 19(5): 640-649. doi: 10.3321/j.issn:1001-6791.2008.05.007
JI Rongyao, LUYongjun, ZUO Liqin. Process of the hydrodynamics and sediment affected by island coastal structures[J]. Advancesin Water Science, 2008, 19(5): 640-649. doi: 10.3321/j.issn:1001-6791.2008.05.007
[8] 胡日军, 吴建政, 朱龙海, 等.东海舟山群岛海域表层沉积物运移特性[J].中国海洋大学学报, 2009, 39(3): 495-500, 442. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200903027
HU Rijun, WU Jianzheng, ZHU Longhai, et al. Characteristic of surface sediment transport in Zhoushan Archipelago Sea Area, East China Sea[J]. Periodical of Ocean Universityof China, 2009, 39(3): 495-500, 442. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200903027
[9] 冯沈科, 姚炎明.舟山螺头水道悬沙数值模拟研究[J].海洋通报, 2013, 32(1): 58-65. http://d.old.wanfangdata.com.cn/Periodical/hytb201301009
FENG Shenke, YAO Yanming.Research on the suspended sediment simulation for the Luotou strait of Zhoushan Islands area[J]. Marine Science Bulletin, 2013, 32(1): 58-65. http://d.old.wanfangdata.com.cn/Periodical/hytb201301009
[10] 季有俊, 刘杜娟, 黄潘阳, 等.舟山岛域围垦对邻近水道泥沙运动和海床演变影响分析[J].水道港口, 2015, 36(2): 112-120. doi: 10.3969/j.issn.1005-8443.2015.02.006
JI Youjun, LIU Dujuan, HUANG Panyang, et al. Influence analysis of sediment dynamics and seabed evolution in adjacent channel under Zhoushan islands reclamation project[J]. Journal of Waterway and Harbor, 2015, 36(2): 112-120. doi: 10.3969/j.issn.1005-8443.2015.02.006
[11] 李占海, 高抒, 沈焕庭.金塘水道的悬沙输运和再悬浮作用特征[J].泥沙研究, 2006(3): 55-62. doi: 10.3321/j.issn:0468-155X.2006.03.010
LI Zhanhai, GAO Shu, SHEN Huanting.Processes of suspended sediment transport and resuspension in Jintang Channel[J]. Journal of Sediment Research, 2006(3): 55-62. doi: 10.3321/j.issn:0468-155X.2006.03.010
[12] 浙江省水文地质工程地质大队.舟山群岛新区海岸带综合地质调查与监测围填海工程地质环境调查与评价专题成果报告[R].宁波, 2013.
Zhejiang Institute of Hydrogeology and Engineering Geology.Report on the geological survey and monitoring of the Coastal Zone In Zhoushan Islands[R]. Ningbo, 2013.
[13] 张慧, 堵盘军, 郑晓琴.浙闽海域余流特征分析[J].海洋通报, 2011, 30(2): 152-158. http://d.old.wanfangdata.com.cn/Periodical/hytb201102005
ZHANG Hui, DU Panjun, ZHENG Xiaoqin. Characteristics analysis of residual current of Zhejiang-Fujian water[J]. Marine Science Bulletin, 2011, 30(2): 152-158. http://d.old.wanfangdata.com.cn/Periodical/hytb201102005
[14] 陈建勇, 戴志军, 陈吉余, 等.杭州湾北岸弧形岸段悬沙净输移分析-以龙泉-南竹港岸段为例[J].泥沙研究, 2009(2): 53-59. doi: 10.3321/j.issn:0468-155X.2009.02.009
CHEN Jianyong, DAI Zhijun, CHEN Jiyu, et al. Analysis on the net sediment transportation along arc-shaped coast in the northern bank, Hangzhou bay-a case study of Longquan-Nanzhu harbor segment[J]. Journal of Sediment Research, 2009(2): 53-59. doi: 10.3321/j.issn:0468-155X.2009.02.009
[15] 吴德安, 张忍顺, 沈永明.江苏辐射沙洲水道垂线平均余流的计算与分析[J].海洋与湖沼, 2007, 38(4): 289-295. doi: 10.3321/j.issn:0029-814X.2007.04.001
WU De'an, ZHANG Renshun, SHEN Yongming.Tidal residual current analysis in the tidal channels of the radial sand ridge off Jiangsu coast, China sea area[J]. Oceanologia et Limnologia Sinica, 2007, 38(4): 289-295. doi: 10.3321/j.issn:0029-814X.2007.04.001
[16] 孔亚珍, 丁平兴, 贺松林.长江口邻近海域余流的基本特征分析[J].海洋科学进展, 2007, 25(4): 367-375. doi: 10.3969/j.issn.1671-6647.2007.04.001
KONG Yazhen, DING Pingxing, HE Songlin. Analysis of basic characteristics of residual current in the Changjiang River estuary and adjacent Sea areas[J]. Advances in Marine Science, 2007, 25(4): 367-375. doi: 10.3969/j.issn.1671-6647.2007.04.001
[17] 朱首贤, 丁平兴, 史峰岩, 等.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅰ.杭州湾、长江口三维联合模型[J].海洋学报, 2000, 22(5): 1-12. doi: 10.3321/j.issn:0253-4193.2000.05.001
ZHU Shouxian, DING Pingxing, SHI Fengyan, et al. Numerical study on residual current and its impact on mass transport in the Hangzhou Bay and the Changjiang estuaryI. A 3-D joint model of the Hangzhou Bay and the Changjiangestuary[J]. Acta Oceanologica Sinica, 2000, 22(5): 1-12. doi: 10.3321/j.issn:0253-4193.2000.05.001
[18] 董胜, 孔令双.海洋工程环境概论[M].青岛:中国海洋大学出版社, 2005.
DONG Sheng, KNOG Lingshuang.An Introduction to Ocean Engineering Environment[M]. Qingdao: Ocean University of China Press, 2005.
[19] 闫龙浩.长江口外海滨悬沙输运研究-以崇明东滩近岸水域为例[D].华东师范大学学位论文, 2010.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1743921 YAN Longhao.Suspended sediment transport characteristics in offshore area of Yangtze Estuary-a case study from nearshore Waters of Chongming eastern beach[D]. East China Normal University, 2010.
[20] Dyer K R. The salt balance in stratified estuaries[J]. Estuarine and Coastal Marine Science, 1974, 2(3): 273-281. doi: 10.1016/0302-3524(74)90017-6
[21] SU Jilan, WANG Kangshan. The suspended sediment balance in Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 1986, 23(1): 81-98. doi: 10.1016/0272-7714(86)90086-7
[22] Fischer H B. Mass transport mechanisms in partially stratified estuaries[J]. Journal of Fluid Mechanics, 1972, 53(4): 671-687. doi: 10.1017/S0022112072000412
[23] 高建华, 汪亚平, 潘少明, 等.长江口悬沙动力特征与输运模式[J].海洋通报, 2005, 24(5): 8-15. doi: 10.3969/j.issn.1001-6392.2005.05.002
GAO Jianhua, WANG Yaping, PAN Shaoming, et al. Characteristics of suspended sediment dynamics and transport pattern in Changjiang river estuary[J]. Marine Science Bulletin, 2005, 24(5): 8-15. doi: 10.3969/j.issn.1001-6392.2005.05.002
[24] 陈炜, 李九发, 李占海, 等.长江口北支强潮河道悬沙运动及输移机制[J].海洋学报, 2012, 34(2): 85-91. http://d.old.wanfangdata.com.cn/Periodical/hyxb201202010
CHEN Wei, LI Jiufa, LI Zhanhai, et al.The suspended sediment transportation and its mechanism in strong tidal reaches of the North Branch of the Changjiang Estuary[J]. Acta Oceanologica Sinica, 2012, 34(2): 85-91. http://d.old.wanfangdata.com.cn/Periodical/hyxb201202010
[25] 时伟荣, 李九发.长江河口南北槽输沙机制及浑浊带发育分析[J].海洋通报, 1993, 12(4): 70-76. http://www.cnki.com.cn/Article/CJFDTotal-HUTB199304009.htm
SHI Weirong, LI Jiufa. Mud transport calculationin Yangtze Eatuary and analyses of formation of turbidity maximum[J]. Marine Science Bulletin, 1993, 12(4): 70-76. http://www.cnki.com.cn/Article/CJFDTotal-HUTB199304009.htm