冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示

杨宝菊, 吴永华, 刘季花, 刘焱光, 张辉, 王小静, 李力. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37. doi: 10.16562/j.cnki.0256-1492.2018.02.003
引用本文: 杨宝菊, 吴永华, 刘季花, 刘焱光, 张辉, 王小静, 李力. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2): 25-37. doi: 10.16562/j.cnki.0256-1492.2018.02.003
YANG Baoju, WU Yonghua, LIU Jihua, LIU Yanguang, ZHANG Hui, WANG Xiaojing, LI Li. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37. doi: 10.16562/j.cnki.0256-1492.2018.02.003
Citation: YANG Baoju, WU Yonghua, LIU Jihua, LIU Yanguang, ZHANG Hui, WANG Xiaojing, LI Li. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37. doi: 10.16562/j.cnki.0256-1492.2018.02.003

冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示

  • 基金项目:
    国家重点基础研究发展计划(973计划)“含金属沉积物的热液活动记录及其沉积模式”(2013CB429704);“全球变化与海气相互作用”专项“IODP计划等海洋底质调查样品收集与补充测试分析(2013-2017年度)”(GASI-01-02-01-04);中国博士后基金“东太平洋深海沉积物稀土赋存矿物的成因及富集过程研究”(2016M602088);青岛市博士后人员应用研究项目“东太平洋深海沉积物稀土赋存矿物的地球化学特征及其对环境的指示”(QDBSH2017003)
详细信息
    作者简介: 杨宝菊(1986—),女,博士,主要从事海洋沉积地球化学研究; E-mail:bjyang@fio.org.cn
    通讯作者: 刘季花(1965—),女,研究员,主要从事海洋沉积地球化学与海底成矿资源研究,E-mail: jihliu@fio.org.cn
  • 中图分类号: P736.4+1

  • 文凤英编辑

Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity

More Information
  • 对采自冲绳海槽北部和南部唐印、第四与那国热液区附近的表层沉积物进行了主、微量和稀土元素分析。结果表明冲绳海槽北部和南部表层沉积物元素组成具有很大差异。北部沉积物中Ca、Sr、Na元素含量较高,大部分微量和总稀土元素含量较南部沉积物低。北部沉积物中有钙质生物组分及火山物质的加入,由于这些物质稀土含量较低,对沉积物中的稀土元素造成了稀释作用。北美页岩标准化稀土元素配分模式整体较平坦,轻稀土略富集,重稀土相对亏损,弱Ce和Eu异常,表明冲绳海槽北部表层沉积物陆源物质主要来自黄河和台湾河流输入的部分物质。冲绳海槽南部表层沉积物Si、Fe、Ba、Cu、Pb、Zn和稀土元素含量较高,轻重稀土分馏减弱,重稀土含量升高。由于受热液活动影响,一定量的黄铁矿、磁黄铁矿、重晶石及热液Fe-Mn氧化物的加入,使得南部沉积物的Fe以及部分微量元素含量升高,并表现出类似热液流体正Eu异常的稀土特征。这些Fe-Mn氧化物不仅从热液流体中清扫稀土元素,而且可以从海水中清扫稀土元素,使得沉积物负Ce异常减弱,总稀土含量升高。此外,样品中有一定量的过剩Si,来自热液活动。稀土元素配分模式及(La/Sm)N-(Gd/Yb)N比值表明冲绳海槽南部沉积物主要陆源物质来自台湾。

  • 加载中
  • 图 1  冲绳海槽地质背景图

    Figure 1. 

    图 2  冲绳海槽北部和南部表层沉积物样品的稀土元素及相关地质体的稀土元素经北美页岩[23]标准化的配分模式(a)及冲绳海槽北部和南部表层沉积物样品的稀土元素平均值及相关地质体的稀土元素经北美页岩[23]标准化的配分模式(b)

    Figure 2. 

    图 3  冲绳海槽北部和南部表层沉积物样品及长江沉积物[22]、黄河沉积物[22]、台湾沉积物[37]、冲绳海槽火山岩[38]经北美页岩标准化(La/Sm)N-(Gd/Yb)N图解

    Figure 3. 

    表 1  冲绳海槽北部和南部表层沉积物主量和微量元素组成

    Table 1.  Major and trace element composition of surface sediments from the northern and southern Okinawa Trough

    样号 冲绳海槽北部表层沉积物 冲绳海槽南部表层沉积物
    S1 S2 S3b S4-2 S5 S6 S7 S11 S12 S13 S14 S15-1 S16-1 S16-2 S17 HOBAB3-t2 HOBAB3-t3’ HOBAB3-t3’-2 HOBAB3-t4 HOBAB3-t9’
    SiO2 44.48 49.00 52.20 51.81 44.30 34.60 40.64 51.76 43.24 48.94 68.58 47.44 51.34 49.18 52.67 61.74 57.16 60.50 55.90 57.36
    Al2O3 10.56 10.19 15.00 10.27 9.14 7.38 5.79 11.57 10.07 9.96 8.44 13.19 12.31 12.34 11.81 14.13 14.93 14.31 15.32 16.04
    CaO 15.13 14.42 6.11 9.59 16.63 23.94 22.23 10.17 15.92 13.81 7.53 9.45 10.38 10.28 10.35 2.81 2.33 1.70 3.35 1.52
    TFe2O3 3.87 3.41 5.99 6.76 3.35 3.78 6.79 3.99 3.72 3.42 2.57 4.86 4.41 4.35 3.60 6.00 5.48 6.13 5.82 5.98
    K2O 2.17 2.17 3.12 2.27 2.03 1.66 1.89 2.41 2.13 2.30 2.43 2.76 2.55 2.58 2.50 2.72 3.01 2.73 3.09 3.19
    MgO 1.88 1.47 2.97 2.44 1.57 1.54 1.95 1.76 1.72 1.65 1.12 2.28 2.03 2.09 1.54 2.61 2.70 2.22 2.68 2.67
    MnO 0.15 0.10 0.09 0.15 0.04 0.04 0.05 0.16 0.07 0.05 0.03 0.18 0.23 0.09 0.06 0.07 0.04 0.08 0.07 0.05
    Na2O 4.17 4.87 2.23 2.26 3.08 2.70 2.11 4.30 3.49 3.03 2.42 3.80 4.19 4.14 4.07 2.42 3.27 2.85 2.93 3.14
    P2O5 0.12 0.11 0.16 0.15 0.11 0.09 0.09 0.14 0.12 0.11 0.09 0.14 0.14 0.13 0.12 0.14 0.15 0.13 0.14 0.17
    TiO2 0.46 0.45 0.75 0.77 0.41 0.32 0.27 0.52 0.45 0.45 0.37 0.59 0.55 0.56 0.51 0.71 0.74 0.71 0.73 0.77
    Ba 383.64 358.71 462.40 346.58 359.00 258.99 187.99 427.87 377.23 404.10 477.24 500.71 464.44 465.99 422.92 529.23 522.93 521.18 505.08 2014.69
    Sr 482.70 432.82 213.94 318.63 532.67 653.03 645.53 370.12 479.09 459.99 324.14 398.72 398.91 394.82 356.35 146.88 138.91 138.34 170.30 156.00
    Cu 21.72 14.71 30.61 14.65 13.98 11.04 7.81 23.55 18.84 14.75 5.35 29.33 24.84 24.43 17.54 48.74 43.10 109.27 25.67 129.68
    V 72.43 54.16 127.20 116.70 56.52 50.27 47.47 76.07 67.89 63.06 41.87 103.80 86.47 87.82 65.90 116.26 124.51 118.94 120.77 135.55
    Zn 77.38 73.24 98.42 88.88 63.57 58.42 69.17 79.56 72.45 60.84 36.58 104.90 91.73 93.68 71.83 436.40 146.20 738.90 98.80 325.50
    Pb 27.81 26.43 28.80 24.05 18.55 15.42 18.97 26.68 22.53 19.67 16.69 34.75 32.13 30.54 23.72 209.05 83.19 339.90 39.73 310.75
    Co 10.73 9.48 14.39 17.12 8.87 9.26 12.90 10.27 9.12 9.16 6.31 13.68 12.18 10.63 7.62 13.50 11.95 12.30 13.97 12.14
    Ni 35.63 30.61 41.25 39.21 28.51 27.85 30.14 32.79 32.86 29.69 15.19 53.29 37.24 38.39 25.07 31.35 36.56 30.19 37.09 36.67
    Mo 1.23 1.24 1.16 0.59 0.30 0.29 0.33 1.76 0.81 0.39 0.29 0.86 1.11 0.74 1.05 4.18 7.91 12.41 0.57 1.01
    Th 7.87 7.36 13.46 8.39 6.36 6.57 4.18 8.43 7.80 8.53 7.41 10.24 9.20 9.24 9.09 11.57 12.96 11.68 13.30 14.06
    U 1.65 1.54 2.48 1.61 1.49 1.25 1.15 1.75 1.60 1.69 1.39 2.22 1.85 1.92 1.95 3.29 3.76 4.56 2.86 2.66
    Zr 111.20 123.20 171.70 125.70 133.50 95.22 72.13 133.10 112.60 158.80 193.10 125.20 132.20 136.30 149.90 180.00 167.50 181.00 175.40 182.20
    Li 37.07 27.42 63.92 35.38 32.60 27.87 22.83 34.89 36.34 33.59 16.93 48.61 39.57 40.29 33.25 36.29 52.95 39.38 56.25 56.20
    Be 1.49 1.12 2.49 1.70 1.31 1.29 1.52 1.42 1.57 1.81 1.47 1.85 1.66 1.71 1.46 2.10 2.37 1.99 2.52 2.48
    Sc 12.51 9.51 14.88 13.31 8.47 7.61 7.82 11.55 9.75 10.36 6.57 11.96 12.15 12.05 11.99 14.34 13.66 12.65 13.91 13.61
    Cr 49.74 29.45 91.44 63.21 50.36 38.17 51.22 47.63 53.7 60.09 40.02 92.86 55.84 57.2 40.92 66.52 90.52 69.78 85.3 94.5
    Rb 88.96 71.21 143.98 92.65 83.41 68.99 74.59 83.32 87.36 88.87 72.31 110.63 95.26 95.93 87.28 108.36 124.22 113.40 131.74 136.99
    Hf 3.24 3.55 4.61 3.36 3.67 2.54 2.05 3.60 3.22 4.33 5.01 3.51 3.64 3.74 4.20 4.82 4.52 4.81 4.83 4.95
    La 21.67 19.46 34.95 26.61 20.43 19.23 12.85 23.53 22.22 24.84 25.42 28.97 25.83 26.89 24.79 31.40 33.23 31.42 35.45 36.65
    Ce 43.46 39.71 70.13 54.50 39.23 37.26 25.15 47.38 42.57 48.83 50.71 56.65 50.95 52.98 50.43 61.54 65.96 62.49 69.97 72.33
    Pr 5.19 4.82 8.14 6.24 4.61 4.29 2.91 5.67 5.21 5.69 5.82 6.69 6.09 6.31 6.03 7.15 7.49 7.19 7.97 8.17
    Nd 20.40 19.56 31.28 24.53 17.85 16.48 11.60 22.43 20.56 22.07 22.35 25.68 23.71 24.85 24.16 26.74 28.38 27.17 30.02 30.73
    Sm 4.03 4.07 5.86 4.72 3.37 2.98 2.16 4.49 3.97 3.99 4.01 4.77 4.54 4.80 4.88 5.17 5.26 5.23 5.56 5.85
    Eu 0.94 0.92 1.27 1.08 0.79 0.66 0.52 1.01 0.91 0.94 0.95 1.11 1.05 1.07 1.06 1.18 1.19 1.20 1.26 1.73
    Gd 3.69 3.72 5.30 4.26 3.11 2.68 1.97 4.00 3.58 3.53 3.51 4.44 4.10 4.27 4.36 4.57 4.67 4.59 4.84 5.13
    Tb 0.61 0.64 0.83 0.64 0.54 0.43 0.31 0.69 0.59 0.54 0.50 0.70 0.68 0.70 0.74 0.74 0.77 0.77 0.80 0.81
    Dy 3.68 4.03 4.77 3.58 3.17 2.37 1.81 4.12 3.56 2.99 2.81 4.15 4.12 4.23 4.41 4.35 4.38 4.48 4.55 4.68
    Ho 0.76 0.84 0.92 0.71 0.66 0.48 0.36 0.85 0.71 0.59 0.53 0.84 0.82 0.84 0.90 0.87 0.87 0.88 0.89 0.93
    Er 2.19 2.44 2.71 2.05 1.99 1.36 0.98 2.52 2.09 1.74 1.52 2.46 2.42 2.50 2.69 2.55 2.54 2.59 2.61 2.72
    Tm 0.34 0.38 0.39 0.29 0.29 0.20 0.14 0.37 0.31 0.25 0.22 0.37 0.37 0.39 0.40 0.38 0.38 0.38 0.39 0.41
    Yb 2.15 2.58 2.62 1.91 1.93 1.30 0.96 2.51 2.01 1.70 1.43 2.46 2.42 2.51 2.70 2.51 2.50 2.46 2.53 2.66
    Lu 0.33 0.38 0.39 0.29 0.28 0.19 0.14 0.37 0.31 0.26 0.21 0.37 0.36 0.38 0.41 0.38 0.37 0.39 0.39 0.39
    Y 20.59 23.18 25.00 19.16 18.72 13.24 10.14 23.53 20.02 16.04 14.10 23.32 23.01 23.71 25.08 23.98 23.70 24.07 24.88 25.34
    ∑REE 109.43 103.56 169.57 131.40 98.24 89.91 61.86 119.93 108.59 117.95 119.99 139.65 127.46 132.73 127.96 149.52 158.00 151.24 167.23 173.20
    注:元素氧化物含量单位为%;其余元素含量单位为μg/g。
    下载: 导出CSV

    表 2  冲绳海槽北部、南部表层沉积物样品及相关地质体稀土元素特征

    Table 2.  Rare earth elements of surface sediments from the northern and southern Okinawa Trough and associated materials

    ∑REE/ (μg/g) (La/Sm)N (Gd/Yb)N (La/Yb)N δEu δCe
    最大值 169.57 1.52 1.46 1.72 1.02 0.92
    冲绳海槽北部沉积物(本研究) 最小值 61.86 0.66 0.86 0.73 0.38 0.86
    平均值 117.22 1.02 1.08 1.11 0.73 0.89
    最大值 173.2 1.14 1.15 1.36 1.39 0.91
    冲绳海槽南部沉积物(本研究) 最小值 149.52 1.07 1.09 1.21 1.06 0.89
    平均值 159.84 1.11 1.12 1.29 1.14 0.91
    长江沉积物 平均值 167.11 1.06 1.49 1.57 0.98 0.82
    黄河沉积物 平均值 137.74 1.03 1.35 1.37 0.95 0.82
    西太平洋远洋黏土 平均值 353.95 0.62 1.13 0.64 1.09 0.52
    第四与那国热液流体 平均值 4.46×10-3 1.52 1.35 1.47 16.90 0.77
    北太平洋深层水 平均值 1.73×10-5 1.41 0.42 0.34 0.97 0.06
    台湾沉积物 平均值 1.46 1.36 1.84 0.94
    注:以上数据除∑REE外,均经北美页岩标准化;北美页岩、长江、黄河、西太平洋远洋黏土、第四与那国热液流体、北太平洋深层水参考资料同图 2,台湾沉积物参考文献[37];${\rm{ \mathsf{ δ} Eu = }}\frac{{{\rm{E}}{{\rm{u}}_{\rm{N}}}}}{{\sqrt {{\rm{S}}{{\rm{m}}_{\rm{N}}}{\rm{ \times G}}{{\rm{d}}_{\rm{N}}}} }}{\rm{, \mathsf{ δ} Ce = }}\frac{{{\rm{C}}{{\rm{e}}_{\rm{N}}}}}{{\sqrt {{\rm{L}}{{\rm{a}}_{\rm{N}}}{\rm{ \times Pr}}{{\rm{ }}_{\rm{N}}}} }}$
    下载: 导出CSV

    表 3  表层沉积物因子分析结果

    Table 3.  Factor analysis results of the surface sediments

    元素 冲绳海槽北部表层沉积物 元素 冲绳海槽北部表层沉积物
    公因子 公因子方差 公因子 公因子方差
    F1 F2 F3 F1 F2 F3
    SiO2 -0.148 0.908 -0.072 0.851 SiO2 -0.742 0.491 -0.267 0.862
    Al2O3 0.783 0.564 -0.038 0.932 Al2O3 0.990 -0.003 0.072 0.986
    Fe2O3 0.288 -0.174 0.913 0.947 Fe2O3 -0.225 0.967 0.021 0.987
    P2O5 0.852 0.341 0.335 0.955 P2O5 0.898 0.016 -0.225 0.858
    TiO2 0.652 0.528 0.439 0.896 TiO2 0.974 -0.066 -0.194 0.991
    CaO -0.388 -0.908 -0.045 0.977 CaO -0.262 -0.395 0.873 0.988
    MnO 0.830 0.033 0.047 0.692 MnO -0.748 0.488 0.352 0.921
    Na2O 0.563 -0.080 -0.746 0.880 Na2O 0.672 -0.500 -0.396 0.858
    K2O 0.536 0.773 0.116 0.898 K2O 0.954 -0.234 0.153 0.988
    Sr -0.357 -0.898 -0.140 0.954 Sr 0.515 0.127 0.838 0.982
    Ba 0.450 0.792 -0.324 0.935 Ba 0.832 0.450 -0.267 0.965
    Zr -0.127 0.957 -0.162 0.957 Zr 0.018 0.999 0.020 0.999
    Co 0.538 -0.075 0.816 0.961 Co -0.249 0.116 0.959 0.995
    Cu 0.916 0.226 -0.014 0.890 Cu 0.328 0.680 -0.640 0.979
    Zn 0.927 0.025 0.321 0.963 Zn -0.535 0.677 -0.476 0.972
    方差贡献 5.647 5.403 2.640 13.689 方差贡献 6.740 4.031 3.560 14.331
    方差贡献百分数/% 37.643 36.020 17.598 91.262 方差贡献百分数/% 44.931 26.874 23.735 95.541
    下载: 导出CSV

    表 4  表层沉积物部分元素的富集因子

    Table 4.  Enrichment factors of some elements of the surface sediments

    元素 冲绳海槽北部沉积物 冲绳海槽南部沉积物 长江沉积物 黄河沉积物
    Cu 0.48 1.35 0.61 0.27
    Zn 1.60 5.20 1.17 0.70
    Pb 2.82 16.38 2.86 1.96
    Ba 1.36 2.01 0.77 1.27
    Co 0.62 0.53 0.43 0.37
    Ni 0.64 0.48 0.39 0.29
    Sr 1.65 0.42 0.26 0.42
    Mn 1.29 0.53 0.62 0.38
    Cr 0.79 0.85 0.45 0.65
    下载: 导出CSV
  • [1]

    Iseki K, Okamura K, Kiyomoto Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 457-473. doi: 10.1016/S0967-0645(02)00468-X

    [2]

    Oguri K, Matsumoto E, Yamada M, et al. Sediment accumulation rates and budgets of depositing particles of the East China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(2): 513-528. doi: 10.1016/S0967-0645(02)00465-4

    [3]

    Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002

    [4]

    Fukuzawa H, Nakamura T, Okamura M, et al. AMS 14C dating of varved sediments from lake Suigetsu, central japan and atmospheric 14c change during the late pleistocene[J]. Radiocarbon, 1995, 37(2): 371-378. doi: 10.1017/S0033822200030848

    [5]

    Kawagucci S, Chiba H, Ishibashi J, et al. Hydrothermal fluid geochemistry at the Iheya North field in the mid-Okinawa Trough: Implication for origin of methane in subseafloor fluid circulation systems[J]. Geochemical Journal, 2011, 45(2): 109-124. doi: 10.2343/geochemj.1.0105

    [6]

    Glasby G P, Notsu K. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan: an overview[J]. Ore Geology Reviews, 2003, 23(3-4): 299-339. doi: 10.1016/j.oregeorev.2003.07.001

    [7]

    Halbach P, Hansmann W, K?ppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough[J]. Mineralium Deposita, 1997, 32(1): 70-78. doi: 10.1007/s001260050073

    [8]

    Zeng Z G, Yu S X, Yin X B, et al. Element enrichment and U-series isotopic characteristics of the hydrothermal sulfides at Jade site in the Okinawa Trough[J]. Science in China Series D: Earth Sciences, 2009, 52(7): 913-924. doi: 10.1007/s11430-009-0107-y

    [9]

    Douville E, Bienvenu P, Charlou J L, et al. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5): 627-643. doi: 10.1016/S0016-7037(99)00024-1

    [10]

    Klinkhammer G P, Elderfield H, Edmond J M, et al. Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges[J]. Geochimica et Cosmochimica Acta, 1994, 58(23): 5105-5113. doi: 10.1016/0016-7037(94)90297-6

    [11]

    Hongo Y, Obata H, Gamo T, et al. Rare Earth Elements in the hydrothermal system at Okinawa Trough back-arc basin[J]. Geochemical Journal, 2007, 41(1): 1-15. doi: 10.2343/geochemj.41.1

    [12]

    Zeng Z G, Chen S, Ma Y, et al. Chemical compositions of mussels and clams from the Tangyin and Yonaguni Knoll IV hydrothermal fields in the southwestern Okinawa Trough[J]. Ore Geology Reviews, 2017, 87: 172-197. doi: 10.1016/j.oregeorev.2016.09.015

    [13]

    Ishibashi J I, Ikegami F, Tsuji T, et al. Hydrothermal activity in the Okinawa trough back-arc basin: geological background and hydrothermal mineralization[M]//Ishibashi J, Okino K, Sunamura M, eds. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 337-359.

    [14]

    杨耀民, 叶俊, 石学法, 等.海底含金属沉积物矿物学和地球化学及其对热液活动的指示[J].中南大学学报:自然科学版, 2011, 42(S2): 65-74.

    YANG Yaomin, YE Jun, SHI Xuefa, et al. Mineralogy and geochemistry of submarine metalliferous sediments and significances for hydrothermal activity[J]. Journal of Central South University: Science and Technology, 2011, 42(S2): 65-74.

    [15]

    German C R, Klinkhammer G P, Edmond J M, et al. Hydrothermal scavenging of rare-earth elements in the ocean[J]. Nature, 1990, 345(6275): 516-518. doi: 10.1038/345516a0

    [16]

    赵一阳, 翟世奎, 李永植, 等.冲绳海槽中部热水活动的新记录[J].科学通报, 1996, 41(14): 1307-1310. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199614016

    ZHAO Yiyang, ZHAI Shikui, LI Yongzhi, et al.. New records of submarine hydrothermal activity in middle part of the Okinawa Trough[J]. Chinese Science Bulletin, 1997, 42(7): 574-577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199614016

    [17]

    翟世奎, 于增慧, 杜同军.冲绳海槽中部现代海底热液活动在沉积物中的元素地球化学记录[J].海洋学报, 2007, 29(1): 58-65. doi: 10.3321/j.issn:0253-4193.2007.01.008

    ZHAI Shikui, YU Zhenghui, DU Tongjun. Elemental geochemical records of modern seafloor hydrothermal activities in sediments from the central Okinawa Trough[J]. Acta Oceanologica Sinica, 2007, 29(1): 58-65. doi: 10.3321/j.issn:0253-4193.2007.01.008

    [18]

    Marumo K, Hattori K H. Seafloor hydrothermal clay alteration at Jade in the back-arc Okinawa Trough: Mineralogy, geochemistry and isotope characteristics[J]. Geochimica et Cosmochimica Acta, 1999, 63(18): 2785-2804. doi: 10.1016/S0016-7037(99)00158-1

    [19]

    金翔龙, 喻普之.冲绳海槽的构造特征与演化[J].中国科学: B辑, 1987(2): 86-93. http://d.old.wanfangdata.com.cn/Conference/5615163

    JIN Xianglong, YU Puzhi. Structure and tectonic evolution of Okinawa Trough[J]. Science in China: Series B, 1987(2): 86-93. http://d.old.wanfangdata.com.cn/Conference/5615163

    [20]

    李铁刚, 常凤鸣.冲绳海槽古海洋学[M].北京:海洋出版社, 2009: 1-259.

    LI Tiegang, CHANG Fengming. Paleoceanography in the Okinawa Trough[M]. Beijing: China Ocean Press, 2009: 1-259.

    [21]

    Hsu S C, Lin F J, Jeng W L, et al. Observed sediment fluxes in the southwesternmost Okinawa Trough enhanced by episodic events: flood runoff from Taiwan rivers and large earthquakes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(7): 979-997. doi: 10.1016/j.dsr.2004.01.009

    [22]

    杨守业, 李从先.长江与黄河沉积物REE地球化学及示踪作用[J].地球化学, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008

    YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments[J]. Geochimica, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008

    [23]

    Haskin L A, Haskin M A, Frey F A, et al. Relative and Absolute Terrestrial Abundances of the Rare Earths[C]// Ahrens L H, ed. Origin and Distribution of the Elements. London: Elsevier Ltd, 1968: 889-912.

    [24]

    Nozaki Y. Rare earth elements and their isotopes in the ocean[M]//Steele J H, ed. Encyclopedia of Ocean Sciences. Oxford: Elsevier, 2001, 4: 2354-2366.

    [25]

    赵一阳, 何丽娟, 张秀莲, 等.冲绳海槽沉积物地球化学的基本特征[J].海洋与湖沼, 1984, 15(4): 371-379.

    ZHAO Yiyang, HE Lijuan, ZHANG Xiulian, et al. Basic characteristics of geochemistry of sediments in Okinawa trough[J]. Oceanologia et Limnologia Sinica, 1984, 15(4): 371-379.

    [26]

    黄牧.太平洋深海沉积物稀土元素地球化学特征及资源潜力初步研究[D].硕士学位论文国家海洋局第一海洋研究所, 2013: 21-25.

    HUANG Mu. Geochemical Characteristics of Rare Earth Elements in Pacific deep-sea sediments and preliminary study on the resource potential[D]. Master Dissertation of the First Institute of Oceanography, SOA, 2013: 21-25.

    [27]

    翟世奎, 张杰, 何良彪, 等.冲绳海槽北部现代沉积物地球化学研究[J].沉积学报, 1997, 15(S1): 8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701047219

    ZHAI Shikui, ZHANG Jie, HE Liangbiao, et al. Study on geochemistry of seafloor surface sediments in the north Okinawa trough[J]. Acta Sedimentologica Sinica, 1997, 15(S1): 8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199701047219

    [28]

    蒋富清, 李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义[J].沉积学报, 2002, 20(4): 680-686. doi: 10.3969/j.issn.1000-0550.2002.04.024

    JIANG Fuqing, LI Anchun. Geochemical characteristics and their implications to provenance and environment of surface sediments from the south Okinawa trough[J]. Acta Sedimentologica Sinica, 2002, 20(4): 680-686. doi: 10.3969/j.issn.1000-0550.2002.04.024

    [29]

    赵一阳, 鄢明才.中国浅海沉积物化学元素丰度[J].中国科学: B辑, 1993, 23(10): 1084-1090.

    ZHAO Yiyang, YAN Mingcai. Chemical element abundance of sediments in the China Shelf Sea[J]. Science in China: Series B, 1993, 23(10): 1084-1090.

    [30]

    蒋富清, 李安春, 李铁刚.冲绳海槽南部柱状沉积物地球化学特征及其古环境意义[J].海洋地质与第四纪地质, 2002, 22(3): 1-17. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200203002

    JIANG Fuqing, LI Anchun, LI Tiegang. Geochemical characteristics for core sediments of the southern Okinawa trough and their paleoenvironment implication[J]. Marine Geology & Quaternary Geology, 2002, 22(3): 1-17. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200203002

    [31]

    赵一阳, 鄢明才.冲绳海槽海底沉积物汞异常──现代海底热水效应的"指示剂"[J].地球化学, 1994, 23(2): 132-139. doi: 10.3321/j.issn:0379-1726.1994.02.008

    ZHAO Yiyang, YAN Mingcai. Mercury anomaly in sediment of the okinawa trough-an indicator of hydrothermal effect on modern sea floor[J]. Geochimica, 1994, 23(2): 132-139. doi: 10.3321/j.issn:0379-1726.1994.02.008

    [32]

    Bonatti E. Metallogenesis at oceanic spreading centers[J]. Earth and Planetary Sciences, 1975, 3(3): 401-431.

    [33]

    Bostr?m K Peterson M N A. The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J]. Marine Geology, 1969, 7(5): 427-447. doi: 10.1016/0025-3227(69)90016-4

    [34]

    Dekov V M, Cuadros J, Kamenov G D, et al. Metalliferous sediments from the H. M. S. Challenger voyage (1872-1876)[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5019-5038. doi: 10.1016/j.gca.2010.06.001

    [35]

    Murray R W, Brink M R B, Brumsack H J, et al. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce: results from ODP Leg 127[J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2453-2466. doi: 10.1016/0016-7037(91)90365-C

    [36]

    王中刚, 于学元, 赵振华, 等.稀土元素地球化学[M].北京:科学出版社, 1989.

    WANG Zhonggang, YU Xueyuan, ZHAO Zhenhua, et al. Rare Earth Element Geochemistry[M]. Beijing: Science Press, 1989.

    [37]

    Chen J C, Lo C Y, Lee Y T, et al. Mineralogy and chemistry of cored sediments from active margin off southwestern Taiwan[J]. Geochemical Journal, 2007, 41(5): 303-321. doi: 10.2343/geochemj.41.303

    [38]

    Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3-4): 117-137. doi: 10.1016/S0024-4937(00)00034-7

    [39]

    Olivarez A M, Owen R M. REE/Fe variations in hydrothermal sediments: Implications for the REE content of seawater[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 757-762. doi: 10.1016/0016-7037(89)90019-7

    [40]

    Ruhlin D E, Owen R M. The rare earth element geochemistry of hydrothermal sediments from the East Pacific Rise: Examination of a seawater scavenging mechanism[J]. Geochimica Et Cosmochimica Acta, 1986, 50(3): 393-400. doi: 10.1016/0016-7037(86)90192-4

    [41]

    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth & Planetary Science Letters, 1984, 67(1): 70-78. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-0012-821X(84)90039-6/

    [42]

    Moffett J W. Microbially mediated cerium oxidation in sea water[J]. Nature, 1990, 345(6274): 421-423. doi: 10.1038/345421a0

    [43]

    Tachikawa K, Jeandel C, Vangriesheim A, et al. Distribution of rare earth elements and neodymium isotopes in suspended particles of the tropical Atlantic Ocean (EUMELI site)[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(5): 733-755. doi: 10.1016/S0967-0637(98)00089-2

    [44]

    Sholkovitz E R, Landing W M, Lewis B L. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater[J]. Geochimica et Cosmochimica Acta, 1994, 58(6): 1567-1579. doi: 10.1016/0016-7037(94)90559-2

    [45]

    Carlo E H D, Wen X Y, Irving M. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles[J]. Aquatic Geochemistry, 1997, 3(4): 357-389. doi: 10.1023/A:1009664626181

    [46]

    Byrne R H, Kim K H. Rare earth element scavenging in seawater[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2645-2656. doi: 10.1016/0016-7037(90)90002-3

    [47]

    Piper D Z. Rare earth elements in the sedimentary cycle: A summary[J]. Chemical Geology, 1974, 14(4): 285-304. doi: 10.1016/0009-2541(74)90066-7

    [48]

    于增慧, 高玉花, 翟世奎, 等.冲绳海槽中部沉积物中热液源组分的顺序淋滤萃取研究[J].中国科学:地球科学, 2012, 42(3): 369-379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201203006

    YU Zhenghui, GAO Yuhua, ZHAI Shikui, et al. Resolving the hydrothermal signature by sequential leaching studies of sediments from the middle of the Okinawa Trough[J]. Science China: Earth Science, 2012, 55(4): 665-674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201203006

  • 加载中

(3)

(4)

计量
  • 文章访问数:  2166
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2017-04-10
修回日期:  2017-06-27
刊出日期:  2018-04-28

目录