台湾东北部古海湾沉积特征

安振振, 李广雪, 丁咚, 徐继尚, 马妍妍, 闵建雄, 王丽艳, 张剑. 台湾东北部古海湾沉积特征[J]. 海洋地质与第四纪地质, 2018, 38(2): 38-51. doi: 10.16562/j.cnki.0256-1492.2018.02.004
引用本文: 安振振, 李广雪, 丁咚, 徐继尚, 马妍妍, 闵建雄, 王丽艳, 张剑. 台湾东北部古海湾沉积特征[J]. 海洋地质与第四纪地质, 2018, 38(2): 38-51. doi: 10.16562/j.cnki.0256-1492.2018.02.004
AN Zhenzhen, LI Guangxue, DING Dong, XU Jishang, MA Yanyan, MIN Jianxiong, WANG Liyan, ZHANG Jian. Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 38-51. doi: 10.16562/j.cnki.0256-1492.2018.02.004
Citation: AN Zhenzhen, LI Guangxue, DING Dong, XU Jishang, MA Yanyan, MIN Jianxiong, WANG Liyan, ZHANG Jian. Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 38-51. doi: 10.16562/j.cnki.0256-1492.2018.02.004

台湾东北部古海湾沉积特征

  • 基金项目:
    国家重点基础研究发展规划(973)项目(2005CB422304)“中国东部陆架边缘海海洋物理环境演变及其环境效应”项目
详细信息
    作者简介: 安振振(1991—),男,硕士生,主要从事海洋沉积研究,E-mail:deposition_an@126.com
    通讯作者: 李广雪(1962—),教授,博士。E-mail: estuary@ouc.edu.cn
  • 中图分类号: P736.21

  • 文凤英编辑

Depositional characteristics of the paleo-gulf off northeastern Taiwan since the Last Glacial Maximum

More Information
  • 通过对台湾东北部古海湾及周边356个海底表层沉积样品的粒度分析及碎屑矿物分析,揭示了古海湾及周边陆架自末次盛冰期以来的沉积环境演变特征,并分析了古海湾的成因。结果表明,该古海湾及周边海域沉积环境的演变可划分为3个阶段:(1)末次盛冰期,浊流、滑坡事件在海湾边缘及陆架边缘频繁发生,可携带大量的陆源碎屑物质输运至古海湾内(B-3),下蚀其海床及下伏地层,并塑造了作为浊流通道的两个砾石条带,在B-3内部保留分选差、改造弱的沉积物。在此期间,潮流、波浪和跨陆架流在东亚冬季风的影响下严重侵蚀B-3的湾口及湾缘,并沉积大量的砂、石英及低含量的生物碎屑物质,石英/长石比值也较高; (2)末次冰消期,随着海平面的阶段性上升,古海岸线向陆大幅迁移,导致浊流强度减弱,潮流逐渐成为陆架区主要的作用营力,相关的潮流底应力可改造陆架沉积物,此时期,西部陆架含砾砂-砾质砂区(B-1)和北部陆架含砾砂-含砾泥质砂区(B-2)的地势差异及其所影响的水平海侵速度和潮波强度的差异是造就两者沉积组分、类型、石英、长石、岩屑和生物碎屑的含量及石英/长石比值差异的主因; (3)高水位时期,黑潮强度在本区增强,除侵蚀B-1底床,黑潮底层流也对B区的浅水地带进行冲刷,加之台湾暖流及沿岸流、长江冲淡水对该区的影响较小,使得B区细粒沉积物质含量较低,A区(北部陆架含砾泥质砂沉积区)细粒沉积广布,除与弱潮流作用相关外,弱的底层流的影响也是原因之一,同时来自台湾暖流可能携带部分细粒沉积物在此卸载。对于古海湾的成因而言,末次盛冰期频繁的浊流是将前更新世时期受湾内断裂作用而形成的半地堑地貌的海湾雏形进一步塑造成深凹地貌的主因,它进一步加剧了其深凹的地貌,在后期的冰消期和高水位时期,潮波系统及黑潮逐渐强盛,阻止了细粒沉积物的输入,保留了古海湾的深凹地貌。

  • 加载中
  • 图 1  研究区构造图(A)及表层取样站位分布(B)(据Hsu等[24])

    Figure 1. 

    图 3  Folk三角分类图解

    Figure 3. 

    图 2  研究区流系示意图(据文献[34])

    Figure 2. 

    图 4  表层沉积物类型

    Figure 4. 

    图 5  Q43孔柱状岩性及沉积相(据文献[28],绿点为测年位置)

    Figure 5. 

    图 6  沉积物粒度组分分布

    Figure 6. 

    图 7  生物碎屑含量

    Figure 7. 

    图 8  粒径参数

    Figure 8. 

    图 9  碎屑矿物含量

    Figure 9. 

    图 10  海湾及周边区域的地形梯度图

    Figure 10. 

    表 1  Q43孔、EA05孔的AMS14C年代数据

    Table 1.  AMS14C age data for core Q43 and EA05

    钻孔 深度/cm 常规AMS 14C年龄/aBP 校正日历年龄/cal.aBP 测年材料
    Q43 36 15 320±370 17 915 贝壳
    155 23 600±450 27 642 贝壳
    282 8 670±370 9 593 有机碳
    316 8 930±330 9 921 有机碳
    EA05 1293 18 920±720 22 236 有机碳
    1923 20 430±630 24 003 有机碳
    2393 22 000±710 25 816 有机碳
    下载: 导出CSV
  • [1]

    Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle[J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690

    [2]

    Liu X T, Rendle-Bühring R, Henrich R. Climate and sea-level controls on turbidity current activity on the Tanzanian upper slope during the last deglaciation and the Holocene[J]. Quaternary Science Reviews, 2016, 133: 15-27. doi: 10.1016/j.quascirev.2015.12.002

    [3]

    Lee H J, Chough S K, Yoon S H. Slope-stability change from late pleistocene to holocene in the Ulleung Basin, East Sea (Japan Sea)[J]. Sedimentary Geology, 1996, 104(1-4): 39-51. doi: 10.1016/0037-0738(95)00119-0

    [4]

    Jorry S J, Droxler A W, Mallarino G, et al. Bundled turbidite deposition in the central Pandora Trough (Gulf of Papua) since Last Glacial Maximum: Linking sediment nature and accumulation to sea level fluctuations at millennial timescale[J]. Journal of Geophysical Research: Earth Surface, 2008, 113(F1): F01S19.

    [5]

    Li G X, Li P, Liu Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. doi: 10.1016/j.earscirev.2014.09.007

    [6]

    Niino H, Emery K O. Sediments of shallow portions of East China Sea and South China Sea[J]. Geological Society of America Bulletin, 1961, 72(5): 731-762. doi: 10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2

    [7]

    Emery K O. Relict sediments on continental shelves of world[J]. AAPG Bulletin, 1968, 52(3): 445-464.

    [8]

    Zhao R B, Sun H T, Wu Y S, et al. Distribution, formation and evolution of sand ridges on the East China Sea shelf[J]. Science in China Series D: Earth Sciences, 2010, 53(1): 822-828.

    [9]

    Dennielou B, Jallet L, Sultan N, et al. Post-glacial persistence of turbiditic activity within the Rhne deep-sea turbidite system (Gulf of Lions, Western Mediterranean): Linking the outer shelf and the basin sedimentary records[J]. Marine Geology, 2009, 257(1-4): 65-86. doi: 10.1016/j.margeo.2008.10.013

    [10]

    Ribó M, Puig P, Urgeles R, et al. Spatio-temporal evolution of sediment waves developed on the Gulf of Valencia margin (NW Mediterranean) during the Plio-Quaternary[J]. Marine Geology, 2016, 378: 276-291. doi: 10.1016/j.margeo.2015.11.011

    [11]

    Saito Y, Katayama H, Ikehara K, et al. Transgressive and highstand systems tracts and post-glacial transgression, the East China Sea[J]. Sedimentary Geology, 1998, 122(1-4): 217-232. doi: 10.1016/S0037-0738(98)00107-9

    [12]

    Ujiié H, Hatakeyama Y, Gu X X, et al. Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 165(1-2): 129-140. doi: 10.1016/S0031-0182(00)00157-7

    [13]

    Xu Z K, Li T G, Chang F Q, et al. Sediment provenance discrimination in northern Okinawa Trough during the last 24 ka and paleoenvironmental implication: rare earth elements evidence[J]. Journal of Rare Earths, 2012, 30(11): 1184-1190. doi: 10.1016/S1002-0721(12)60202-6

    [14]

    Youn J, Kim T J. Geochemical composition and provenance of muddy shelf deposits in the East China Sea[J]. Quaternary International, 2011, 230(1-2): 3-12. doi: 10.1016/j.quaint.2009.11.001

    [15]

    Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002

    [16]

    Dou Y Y, Yang S Y, Liu Z X, et al. Clay mineral evolution in the central Okinawa Trough since 28ka: Implications for sediment provenance and paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 288(1-4): 108-117. doi: 10.1016/j.palaeo.2010.01.040

    [17]

    Li T G, Xu Z K, Lim D, et al. Sr-Nd isotopic constraints on detrital sediment provenance and paleoenvironmental change in the northern Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 74-84. doi: 10.1016/j.palaeo.2015.04.017

    [18]

    Xu G, Liu J, Pei S F, et al. Sources and geochemical background of potentially toxic metals in surface sediments from the Zhejiang coastal mud area of the East China Sea[J]. Journal of Geochemical Exploration, 2016, 168: 26-35. doi: 10.1016/j.gexplo.2016.06.003

    [19]

    Lin H, Lu G N, Song Z Y, et al. Modeling the tide system of the East China Sea with GIS[J]. Marine Geodesy, 1999, 22(2): 115-128. doi: 10.1080/014904199273533

    [20]

    闾国年, 林珲, 宋志尧, 等.末次冰期最盛时期以来中国东部边缘海潮波系统演变过程的模拟研究[J].海洋地质与第四纪地质, 2000, 20(4): 1-7. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200004001

    LV Guonian, LIN Hui, SONG Zhiyao, et al. Modeling of the tide wave system changes in the marginal seas adjacent to eastern China since the last full glacial period[J]. Marine Geology & Quaternary Geology, 2000, 20(4): 1-7. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200004001

    [21]

    Uehara K, Saito Y. Late Quaternary evolution of the Yellow/East China Sea tidal regime and its impacts on sediments dispersal and seafloor morphology[J]. Sedimentary Geology, 2003, 162(1-2): 25-38. doi: 10.1016/S0037-0738(03)00234-3

    [22]

    Chen Q Q, Zhu Y R. Holocene evolution of bottom sediment distribution on the continental shelves of the Bohai Sea, Yellow Sea and East China Sea[J]. Sedimentary Geology, 2012, 273-274: 58-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=28769bc40e94cd726baf2020bc63e97d

    [23]

    李家彪.东海区域地质[M].海洋出版社, 2008.

    LI Jiabiao. The Regional Geology of the East China Sea[M]. China Ocean Press, 2008.

    [24]

    Hsu S K, Sibuet J C, Shyu C T. Magnetic inversion in the East China Sea and Okinawa Trough: tectonic implications[J]. Tectonophysics, 2001, 333(1-2): 111-122. doi: 10.1016/S0040-1951(00)00270-5

    [25]

    王舒畋, 李斌.东海新构造与新构造运动[J].海洋地质与第四纪地质, 2010, 30(4): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzdz201403012

    WANG Shutian, LI Bin. Neotectonic features and movement in the East China Sea[J]. Marine Geology & Quaternary Geology, 2010, 30(4): 141-150. http://d.old.wanfangdata.com.cn/Periodical/dzdz201403012

    [26]

    Ujiié H, Ujiié Y. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean[J]. Marine Micropaleontology, 1999, 37(1): 23-40. doi: 10.1016/S0377-8398(99)00010-9

    [27]

    余华, 刘振夏, 熊应乾, 等.末次盛冰期以来东海陆架南部EA05岩心地层划分及其古环境意义[J].中国海洋大学学报:自然科学版, 2006, 36(4): 545-550. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200604006

    YU Hua, LIU Zhenxia, XIONG Yingqian, et al. Stratigraphy of Core EA05 from southern East China Sea Continental Shelf since the last glacial maximum and its paleo-environment implication[J]. Periodical of Ocean University of China, 2006, 36(4): 545-550. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200604006

    [28]

    Lin X T, Li W R, Du S J, et al. Heavy mineral stratigraphy of sediments from the southern outer shelf of the East China Sea since the last glaciation using fuzzy C-means cluster method[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(1): 183-189. doi: 10.1007/s00343-010-9292-y

    [29]

    Zheng X F, Li A C, Wan S M, et al. ITCZ and ENSO pacing on East Asian winter monsoon variation during the Holocene: sedimentological evidence from the Okinawa Trough[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4410-4429. doi: 10.1002/2013JC009603

    [30]

    Xiang R, Sun Y B, Li T G, et al. Paleoenvironmental change in the middle Okinawa Trough since the last deglaciation: Evidence from the sedimentation rate and planktonic foraminiferal record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3-4): 378-393. doi: 10.1016/j.palaeo.2006.08.016

    [31]

    Hsueh Y. The Kuroshio in the East China Sea[J]. Journal of Marine Systems, 2000, 24(1-2): 131-139. doi: 10.1016/S0924-7963(99)00083-4

    [32]

    Hsu S C, Lin F J, Jeng W L, et al. The effect of a cyclonic eddy on the distribution of lithogenic particles in the southern East China Sea[J]. Journal of Marine Research, 1998, 56(4): 813-832. doi: 10.1357/002224098321667387

    [33]

    Lee S, Y Huh C A, Su C C, et al. Sedimentation in the Southern Okinawa Trough: enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(11): 1769-1780. doi: 10.1016/j.dsr.2004.07.008

    [34]

    Diekmann B, Hofmann J, Henrich R, et al. Detrital sediment supply in the southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary[J]. Marine Geology, 2008, 255(1-2): 83-95. doi: 10.1016/j.margeo.2008.08.001

    [35]

    Ujiié Y, Ujiié H, Taira A, et al. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera[J]. Marine Micropaleontology, 2003, 49(4): 335-364. doi: 10.1016/S0377-8398(03)00062-8

    [36]

    Jian Z M, Wang P X, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1): 305-319. doi: 10.1016/S0012-821X(00)00321-6

    [37]

    Li T G, Liu Z X, Hall M A, et al. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 176(1-4): 133-146. doi: 10.1016/S0031-0182(01)00332-7

    [38]

    Xu X D, Yamasaki M, Oda M, et al. Comparison of seasonal flux variations of planktonic foraminifera in sediment traps on both sides of the Ryukyu Islands, Japan[J]. Marine Micropaleontology, 2005, 58(1): 45-55. doi: 10.1016/j.marmicro.2005.09.002

    [39]

    Ijiri A, Wang L J, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(3-4): 239-261. doi: 10.1016/j.palaeo.2004.12.028

    [40]

    Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968. doi: 10.1080/00288306.1970.10418211

    [41]

    刘勇.中国东部海域海底沉积物成因环境图[M].北京:科学出版社, 2005.

    LI Guangxue, YANG Zigeng, LIU Yong. Formation Environment of the Seafloor Sediment in the East China Seas[J]. Beijing: Science Press, 2005.

    [42]

    王先兰, 马克俭, 陈建林, 等.东海碎屑矿物特征的研究[J].中国科学: B辑, 1985, 15(5): 474-482. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605009

    WANG Xianlan, MA Kejian, CHEN Jianlin, et al. Detrital minerals in the surface sediments of East China Sea Shelf and thier geological significance[J]. Science of China (Series B), 1985, 15(5): 474-482. http://d.old.wanfangdata.com.cn/Periodical/cjxb201605009

    [43]

    Shao H B, Yang S Y, Cai F, et al. Sources and burial of organic carbon in the middle Okinawa Trough during late Quaternary paleoenvironmental change[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2016, 118: 46-56. doi: 10.1016/j.dsr.2016.10.005

    [44]

    李西双, 刘保华, 吴金龙, 等.冲绳海槽西部陆坡地震相模式与沉积体系[J].海洋与湖沼, 2004, 35(2): 120-129. doi: 10.3321/j.issn:0029-814X.2004.02.003

    LI Xishuang, LIU Baohua, WU Jinlong, et al. Seismic reflection facies and deposit systems in the west slope of the Okinawa Trough[J]. Oceanologia et Limnologia Sinica, 2004, 35(2): 120-129. doi: 10.3321/j.issn:0029-814X.2004.02.003

    [45]

    Dou Y G, Yang S Y, Liu Z X, et al. Sr-Nd isotopic constraints on terrigenous sediment provenances and Kuroshio Current variability in the Okinawa Trough during the late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 365-366: 38-47. doi: 10.1016/j.palaeo.2012.09.003

    [46]

    Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    [47]

    Wei K Y. Environmental changes during the late quaternary in Taiwan and adjacent seas: an overview of recent results of the past decade[J]. Western Pacific Earth Sciences, 2002, 2(2): 149-160.

    [48]

    Chang Y P, Chen M T, Yokoyama Y, et al. Monsoon hydrography and productivity changes in the East China Sea during the past 100000 years: Okinawa Trough evidence (MD012404)[J]. Paleoceanography and Paleoclimatology, 2009, 24(3): PA3208.

    [49]

    Huh C A, Su C C, Liang W T, et al. Linkages between turbidites in the southern Okinawa Trough and submarine earthquakes[J]. Geophysical Research Letters, 2004, 31(12): L12304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2004GL019731

    [50]

    Liu Z X, Berné S, Saito Y, et al. Internal architecture and mobility of tidal sand ridges in the East China Sea[J]. Continental Shelf Research, 2007, 27(13): 1820-1834. doi: 10.1016/j.csr.2007.03.002

    [51]

    Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: a modern example from the East China Sea[J]. Journal of Sedimentary Research, 2003, 73(6): 926-940. doi: 10.1306/041603730926

    [52]

    Clark P U, Mccabe A M, Mix A C, et al. Rapid rise of sea level 19, 000 years ago and its global implications[J]. Science, 2004, 304(5674): 1141-1144. doi: 10.1126/science.1094449

    [53]

    Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296-15303. doi: 10.1073/pnas.1411762111

    [54]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    [55]

    Katsuto U. Tidal changes in the Yellow/East China Sea caused by the rapid sea-level rise during the Holocene[J]. Science in China Series B: Chemistry, 2001, 44(S1): 126-134. doi: 10.1007/BF02884818

    [56]

    Berné S, Vagner P, Guichard F, et al. Pleistocene forced regressions and tidal sand ridges in the East China Sea[J]. Marine Geology, 2002, 188(3-4): 293-315. doi: 10.1016/S0025-3227(02)00446-2

    [57]

    Liu Z X, Berne S, Saito Y, et al. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea[J]. Journal of Asian Earth Sciences, 2000, 18(4): 441-452. doi: 10.1016/S1367-9120(99)00077-2

    [58]

    Fairbanks R G. A 17, 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342(6250): 637-642. doi: 10.1038/342637a0

    [59]

    Steinke S, Hanebuth T J, Vogt C, et al. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17, 000 yr[J]. Marine Geology, 2008, 250(3-4): 199-210. doi: 10.1016/j.margeo.2008.01.005

    [60]

    Oguri K, Matsumoto E, Saito Y, et al. Evidence for the offshore transport of terrestrial organic matter due to the rise of sea level: the case of the East China Sea continental shelf[J]. Geophysical Research Letters, 2000, 27(23): 3893-3896. doi: 10.1029/2000GL011690

    [61]

    Liu J P, Xu K H, Li A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J]. Geomorphology, 2007, 85(3-4): 208-224. doi: 10.1016/j.geomorph.2006.03.023

    [62]

    Tang T Y, Tai J H, Yang Y J. The flow pattern north of Taiwan and the migration of the Kuroshio[J]. Continental Shelf Research, 2000, 20(4-5): 349-371. doi: 10.1016/S0278-4343(99)00076-X

    [63]

    鲍献文, 林霄沛, 吴德星, 等.东海陆架环流季节变化的模拟与分析[J].中国海洋大学学报:自然科学版, 2005, 35(3): 349-356. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200503001

    BAO Xianwen, LIN Xiaopei, WU Dengxing, et al. Simulation and analysis of shelf circulation and its seasonal variability in the east China Sea[J]. Periodical of Ocean University of China, 2005, 35(3): 349-356. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb200503001

    [64]

    Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C0515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010JC006777

    [65]

    Su C C, Huh C A. 210 Pb, 137 Cs and 239, 240 Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides[J]. Marine Geology, 2002, 183(1-4): 163-178. doi: 10.1016/S0025-3227(02)00165-2

    [66]

    Gungor A, Lee G H, Kim H J, et al. Structural characteristics of the northern Okinawa Trough and adjacent areas from regional seismic reflection data: geologic and tectonic implications[J]. Tectonophysics, 2012, 522-523: 198-207. doi: 10.1016/j.tecto.2011.11.027

  • 加载中

(10)

(1)

计量
  • 文章访问数:  2979
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2017-04-17
修回日期:  2017-05-31
刊出日期:  2018-04-28

目录