Characteristics and evolutionary model of Paleogene structures in southwestern Huizhou Depression, Pearl River Mouth Basin
-
摘要:
研究区位于珠江口盆地惠州凹陷西南部,毗邻西江凹陷,属于NEE走向和NE走向两组构造体系的转换部位。该地区古近系主要发育近EW走向、NW走向和NE走向的3组断裂,剖面上总体呈平直和铲状两种形态。3组断裂共同控制了研究区古近系不同时期的断陷结构特征。断层活动性和构造沉降分析表明,文昌组沉积期研究区东部北倾断层和西部南倾断层活动强烈,沉降量和沉降速率均较大;恩平组沉积期,受南海扩张影响,总体呈现南倾断层,即向海倾断层活动明显增强,沉降量和沉降速率显著增大的特点;至珠海组沉积期断层活动总体较弱。构造格局及其演化明显控制沉积物充填。快速生长断层因两盘差异沉降显著,其下降盘往往地层厚度大,以发育扇三角洲沉积体系为特征;慢速生长断层下降盘的地层厚度相对较薄,以发育沿断层转换带延伸的辫状河三角洲沉积体系为主。研究区古近纪的构造演化并非简单继承,而是重大转换(T80面是重要的构造变革面),且这种转换是被动大陆边缘近端带对南海扩张作用远程响应的结果。
Abstract:The study area is located in the southwest of the Huizhou Depression of the Pearl River Mouth Basin next to the Xijiang Depression at the transitional part of two tectonic systems trending in NEE and NE respectively. Three sets of fault systems, trending in EW and NW as well as NE directions, have been identified within the Depression. The faults may be classified into flat-type and shovel-type according to their profile patterns. And the three sets of faults jointly control the structural features of the Paleogene fault depression in different stages. The activity of N-dipping faults is stronger than the S-dipping faults in the east of the study area whereas the S-dipping faults are more active in the west of the study area during the stage when the WenChang Formation was deposited. With a high settlement rate, the activity of S-dipping faults, i.e., the sea-faced-dipping faults, were obviously intensified during the Enping stage because of the spreading of the South China Sea. The settlement and sedimentation rate increased significantly in the Zhuhai stage, although the activities of all faults were weakened. The sediment infilling is obviously controlled by the tectonic framework and its evolution. For rapid growing faults, due to the large difference between the hanging wall and footwall, thick deltaic depositional system will be developed on the subsiding plate. However, for the faults which grow slowly, thin braided river and its deltaic depositional system will develop on the declining plate along the fault transfer zone.The structural pattern of the study area in the Paleogene is not a simple copy of the former, but a significant structural conversion taking T80 as an important tectonic interface, as a long distance response to the South China Sea spreading
-
Key words:
- fault activity /
- evolutionary model /
- Paleogene /
- Huizhou depression /
- Pearl River Mouth Basin
-
[1] Brian K H, Matthew M S. Sedimentology and chronology of paleogene coarse clastic rocks in east-central tibet and their relationship to early tectonic uplift[J]. Acta Geologica Sinica, 2007, 81(3): 398-408. doi: 10.1111/j.1755-6724.2007.tb00963.x
[2] Zhou D, Ru K, Chen H Z. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251(1-4): 161-177. doi: 10.1016/0040-1951(95)00018-6
[3] 郭伯举, 谢家声, 向凤典.珠江口盆地珠一坳陷含油气系统研究[J].中国海上油气(地质), 2000, 14(1): 1-8. doi: 10.3969/j.issn.1673-1506.2000.01.001
GUO Boju, XIE Jiasheng, XIANG Fengdian. The study of the petroleum system in the Zhu I depression in Pearl River Mouth basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(1): 1-8. doi: 10.3969/j.issn.1673-1506.2000.01.001
[4] 施和生, 于水明, 梅廉夫, 等.珠江口盆地惠州凹陷古近纪幕式裂陷特征[J].天然气工业, 2009, 29(1): 35-37. doi: 10.3787/j.issn.1000-0976.2009.01.008
SHI Hesheng, YU Shuiming, MEI Lianfu, et al. Features of paleogene episodic rifting in Huizhou fault depression in the Pearl River Mouth basin[J]. Natural Gas Industry, 2009, 29(1): 35-37. doi: 10.3787/j.issn.1000-0976.2009.01.008
[5] 于水明, 施和生, 梅廉夫, 等.过渡动力学背景下的张扭性断陷——以珠江口盆地惠州凹陷古近纪断陷为例[J].石油实验地质, 2009, 31(5): 485-489. doi: 10.3969/j.issn.1001-6112.2009.05.009
YU Shuiming, SHI Hesheng, MEI Lianfu, et al. Analysis of tense-shearing characteristics of Huizhou paleogene fault depression in Pearl River Mouth basin[J]. Petroleum Geology and Experiment, 2009, 31(5): 485-489. doi: 10.3969/j.issn.1001-6112.2009.05.009
[6] 王维, 叶加仁, 杨香华, 等.珠江口盆地惠州凹陷古近纪多幕裂陷旋回的沉积物源响应[J].地球科学—中国地质大学学报, 2015, 40(6): 1061-1071. http://d.old.wanfangdata.com.cn/Periodical/dqkx201506010
WANG Wei, YE Jiaren, YANG Xianghua, et al. Sediment provenance and depositional response to multistage rifting, Paleogene, Huizhou depression, Pearl River Mouth basin[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(6): 1061-1071. http://d.old.wanfangdata.com.cn/Periodical/dqkx201506010
[7] 田巍, 何敏, 杨亚娟, 等.珠江口盆地惠州凹陷北部边界断裂复合联接和转换[J].地球科学—中国地质大学学报, 2015, 40(12): 2037-2051. http://d.old.wanfangdata.com.cn/Periodical/dqkx201512007
TIAN Wei, HE Min, YANG Yajuan, et al. Complex linkage and transformation of Boundary Faults of Northern Huizhou Sag in Pearl River Mouth Basin[J]. Earth Science—Journal of China University of Geosciences, 2015, 40(12): 2037-2051. http://d.old.wanfangdata.com.cn/Periodical/dqkx201512007
[8] 吴艳婷, 邓宏文, 芮志峰, 等.珠江口盆地惠州凹陷西区珠江组层序地层学研究[J].科学技术与工程, 2014, 14(7): 111-116. doi: 10.3969/j.issn.1671-1815.2014.07.023
WU Yanting, DENG Hongwen, RUI Zhifeng, et al. Research on sequence stratigraphy of Zhujiang Formation in Western Huizhou Sag[J]. Science Technology and Engineering, 2014, 14(7): 111-116. doi: 10.3969/j.issn.1671-1815.2014.07.023
[9] Zhu J Z, Shi H S, Deng H W, et al. Geochemistry of source rocks in paleogene sequence of Huizhou depression, Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2007, 18(5): 709-714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200705016
[10] Kim Y S, Sanderson D J. The relationship between displacement and length of faults: a review[J]. Earth-Science Reviews, 2005, 68(3-4): 317-334. doi: 10.1016/j.earscirev.2004.06.003
[11] 刘忠亚, 彭轩明, 赵铁虎, 等.渤海海峡及邻区活动断裂分布及其活动特征[J].海洋地质与第四纪地质, 2016, 36(1): 87-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201601008
LIU Zhongya, PENG Xuanming, ZHAO Tiehu, et al. The distribution and activities of active faults in the Bohai Strait and its adjacent areas[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 87-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201601008
[12] 王冠民, 付尧, 张健, 等.渤中凹陷古近纪控盆断裂的活动速率与沉积响应[J].海洋地质与第四纪地质, 2016, 36(4): 85-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604010
WANG Guanjun, FU Yao, ZHANG Jian, et al. Mobility of paleogene basin-controlling faults in the Bozhong Sag and depositional responses[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 85-92. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201604010
[13] Haupert I, Manatschal G, Decarlis A, et al. Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution[J]. Marine & Petroleum Geology, 2015, 69: 241-261. http://hal.cirad.fr/GIP-BE/hal-01264642v1
[14] Sutra E, Manatschal G, Mohn G, et al. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2575-2597. doi: 10.1002/ggge.20135
[15] Wernicke B, Burchfiel B C. Models of Extensional Tectonic[J]. Journal of Structural Geology, 1982, 4(2): 105-115. doi: 10.1016/0191-8141(82)90021-9
[16] Xie X N, Müller R D, Ren J Y, et al. Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea[J]. Marine Geology, 2008, 247(3-4): 129-144. doi: 10.1016/j.margeo.2007.08.005
[17] 任建业, 庞雄, 雷超, 等.南海北部陆缘深水-超深水盆地结构和演化[C]//第十七届中国科协年会论文集.广州: 中国科学技术协会, 2015.
REN Jianye, PANG Xiong, LEI Chao, et al. Structure and evolution of deep water/superdeep water basins in the northern continental margins of south China Sea[C]//Annual meeting of the seventeenth China Association for science and technology-Proceedings of 9 Symposium on deepwater oil and gas exploration and development technology in South China Sea. Guangzhou: China Association for Science and Technology, 2015.
[18] Lavier L L, Manatschal G. A mechanism to thin the continental lithosphere at magma-poor margins[J]. Nature, 2006, 440(7082): 324-328. doi: 10.1038/nature04608