Mineralogical composition and its significance of hydrothermal sulfides from the Longqi hydrothermal field on the Southwest Indian Ridge
-
摘要:
西南印度洋脊(SWIR)是当前洋底超慢速扩张洋脊的典型代表, 具有独特的热液硫化物矿床形成机理, 对位于该洋脊的龙旂热液场硫化物样品进行了系统的矿物学分析, 结果表明:该区硫化物为高温热液喷溢活动所形成的富Fe型硫化物, 目前已经历了一定程度的氧化蚀变; 硫化物矿物组合以磁黄铁矿、黄铁矿为主, 其次是少量黄铜矿、白铁矿和(铁)闪锌矿; 黄铜矿出溶等轴古巴矿现象普遍, 部分样品中可见自然金颗粒。经综合分析, 该区热液成矿作用可划分为3个成矿阶段和1个后期海底风化阶段: (1)高温的黄铁矿+黄铜矿(等轴古巴矿) +磁黄铁矿阶段, (2)中高温的黄铁矿+闪锌矿阶段, (3)低温的胶状或莓球状黄铁矿+白铁矿+自然金阶段, (4)后期硫化物海底氧化性蚀变阶段主要是形成Fe的氧/羟化物。在整个成矿期间, 流体温度有不同程度的波动, 主要硫化物矿物形成时端元流体的温度应在335℃以上, 瞬间(短时)或局部热液的最高温度推测超过400℃。本区的磁黄铁矿属于富钴型磁黄铁矿亚类, 经历了六方磁黄铁矿+黄铁矿→单斜磁黄铁矿+黄铁矿的变化, 表明该区热液流体发生了快速降温的演化过程。
Abstract:As a typical ultraslow-spreading oceanic ridge with huge amount of hydrothermal sulfide deposits, the Southwest Indian Ridge is known for its unique mineralizaiton environment.In this paper, we presented hereby the detailed mineralogy of the hydrothermal metal sulfides recovered from the Longqi hydrothermal field of the Ridge.Our results suggested that the mineral assemblage of the deposits is highly weathered and dominated by pyrrhotite and pyrite, along with a little of sphalerite (Fe) and chalcopyrite (isocubanite).In addition, minor natural gold grains are sometimes observed.There are three metallogenic stages in addition to the latest seafloor weathering (1) the high temperature stage characterized by pyrite, pyrrhotite and chalcopyrite (isocubanite); (2) the medium temperature stage marked by the mineral assemblage of pyrite and sphalerite; (3) the low-temperature stage characterized by the mineral assemblage of colloform pyrite.The seafloor weathering is characterized by Fe-oxyhydroxide.The precipitation of the main sulfide minerals is presumed to be at a temperature above 335 ℃ and experienced episodic instantaneous temperature as high as 400 ℃.The Co-rich pyrrhotite in this metal sulfide deposits has changed from monoclinic pyrrhotite+ pyrite to hexagonal pyrrhotite+ pyrite, indicating a rapid coolingprocess of the hydrothermal fluid during the mineralization.
-
图 1 西南印度洋龙旂热液区地理位置(桔色星形所示)及热液区地形图(底图来自Global mapper 14.1, 据文献[24])
Figure 1.
表 1 黄铁矿的电子探针分析结果(%)
Table 1. Micro-chemical compositions of pyrite (%)
元素
wt%S Fe Cu Zn Pb Se As Sb Co Cd Mn Ag Au Mo Ni Total S/Fe
(原子比)n=9最小值 Py1 最小值 49.09 45.2 - - 0.08 - - - - - - - - 0.84 - 99.54 1.73 最大值 53.67 50.08 0.09 0.09 0.34 0.05 0.16 0.06 0.01 0.02 0.04 0.03 0.08 0.97 0.01 103.02 2.06 平均值 52.48 47.47 0.04 0.06 0.16 0.03 0.07 0.03 0.01 0.01 0.03 0.02 0.04 0.9 0.01 101.23 1.93 n=11 Py2 最小值 50.04 44.47 - - 0.06 - - - - - - - - 0.79 - 97.78 1.87 最大值 54.04 49.1 0.1 0.14 0.26 0.11 0.22 0.04 0.01 0.03 0.04 0.05 0.19 0.92 0.07 102.9 2.04 平均值 52.44 46.51 0.08 0.09 0.17 0.06 0.08 0.02 0.01 0.02 0.02 0.03 0.06 0.86 0.03 100.27 1.97 n=12 Py3 最小值 45.21 45.45 - - 0.12 - - - - - - - - 0.74 - 95.09 1.62 最大值 53.28 49.78 0.14 0.73 0.23 0.01 0.05 0.01 0.02 0.04 0.03 0.06 0.15 0.89 0.07 104.05 2.02 平均值 51.28 47.26 0.09 0.22 0.18 0.05 0.12 0.03 0.01 0.02 0.03 0.04 0.1 0.86 0.04 100.49 1.9 注:“-”代表含量在仪器检测限之下,以后同。 表 2 磁黄铁矿的电子探针分析结果
Table 2. Micro-chemical compositions of pyrrhotite
元素(wt%) S Fe Cu Zn Pb Mo As Ni Co Se Sb Cd Mn Au Ag Total 1-x n=9 ISU1 最小值 35.41 58.75 - 0.02 0.04 0.62 - - - - - - - - - 96.15 0.890 最大值 39.51 63.42 0.16 0.15 0.27 0.69 0.07 0.04 0.01 0.11 0.06 0.02 0.04 0.12 0.01 103.82 0.970 平均值 38.18 61.83 0.07 0.08 0.11 0.66 0.07 0.03 0.01 0.07 0.03 0.02 0.03 0.09 0.01 101.05 0.930 n=11 5B1 最小值 37.8 60.11 - - 0.02 0.64 - - 0.01 - - - - - - 99.95 0.902 最大值 40.07 64.51 0.99 0.13 0.18 0.72 0.09 0.04 0.02 0.06 0.04 0.02 0.04 0.09 0.05 104.92 0.959 平均值 38.98 62.91 0.20 0.07 0.12 0.67 0.04 0.04 0.02 0.05 0.02 0.02 0.03 0.08 0.03 102.95 0.927 n=6 5B2 最小值 38.53 57.42 - - 0.08 0.58 - - 0.01 - - - - - - 96.92 0.839 最大值 38.95 59.98 0.17 0.08 0.17 0.75 0.06 0.03 0.01 0.08 0.04 - 0.03 0.09 0.04 100.26 0.877 平均值 39.24 58.69 0.12 0.07 0.12 0.68 0.04 0.02 0.01 0.04 0.03 - 0.03 0.04 0.02 98.97 0.859 表 3 闪锌矿的电子探针分析结果
Table 3. Micro-chemical compositions of sphalerite
元素(wt%) S Fe Cu Zn Pb Si Se Sb Cd Ag Au Co Mo Ni Mn Cu/Fe n=9 Sp1 最小值 32.73 7.23 0.76 46.5 0.01 - - - 0.23 -- - - 0.5 - - 0.06 最大值 33.93 16.94 2.51 57.22 0.14 0.03 0.06 0.03 0.91 0.06 0.09 - 0.64 0.05 0.03 0.15 平均值 33.37 1274 1.21 52.23 0.11 0.02 0.03 0.02 0.55 0.04 0.07 - 0.59 0.03 0.02 0.10 n=6 Sp2 最小值 33.37 13.28 0.23 48.26 - - - - 0.9 - - - 0.5 - - 0.01 最大值 34.5 17.66 1.08 55.01 0.22 0.02 0.03 0.09 0.42 0.01 0.02 0.01 0.69 0.03 0.03 0.09 平均值 34.03 15.22 0.61 52.31 0.14 0.01 0.02 0.04 0.32 0.01 0.02 0.01 0.63 0.02 0.02 0.04 n=6 Sp3 最小值 33.6 13.04 0.4 51.4 - - - - 0.21 - - - 0.58 - - 0.03 最大值 34.09 15.53 1.29 54.87 0.22 0.02 0.08 0.02 0.43 0.01 0.08 0.01 0.73 0.03 0.06 0.09 平均值 33.82 14.28 0.75 52.92 0.14 0.01 0.05 0.02 0.34 0.01 0.04 0.01 0.67 0.03 0.03 0.05 表 4 黄铜矿和等轴古巴矿的电子探针分析结果
Table 4. Micro-chemical compositions of chalcopyrite and isocubanite
元素
(wt%)S Fe Cu Zn Pb Mo As Ni Co Se Sb Cd Mn Au Ag Ba Cu/Fe
(原子比)n=3 Cp1 最小值 29.24 35.21 29.88 - 0.14 0.43 - - - 0.01 - - - - - - 0.7 最大值 35.96 37.49 31.46 - 0.18 0.69 - 0.08 0.01 0.07 0.02 0.02 - 0.02 0.06 0.15 0.78 平均值 32.78 36.51 30.92 - 0.15 0.53 - 0.08 0.01 0.03 0.02 0.02 - 0.02 0.06 0.10 0.74 n=14 Cp2 最小值 32.09 31.23 28.08 - 0.09 0.47 - - - - - - - - - - 0.72 最大值 36.23 36.25 33.32 - 0.2 0.74 0.09 0.02 0.01 0.06 0.04 0.02 0.04 0.11 0.04 0.11 0.88 平均值 34.28 33.33 30.72 - 0.14 0.62 0.04 0.02 0.01 0.05 0.02 0.02 0.02 0.05 0.03 0.07 0.81 n=27 Iso 最小值 33.94 37.55 20.38 - - 0.5 - - - - - - - - - - 0.42 最大值 37.5 44.96 27.91 - 0.23 0.73 0.08 0.08 0.02 0.12 0.05 0.03 0.04 0.18 0.06 0.18 0.63 平均值 35.38 41.41 23.12 - 0.12 0.61 0.04 0.03 0.01 0.05 0.03 0.02 0.02 0.05 0.03 0.07 0.49 表 5 龙旂热液区硫化物矿物生成顺序及成矿阶段
Table 5. Sequence of mineralization of the hydrothermal sulfide in the Longqi field.
-
[1] Arrhenius G O S, Bonatti E.Neptunism and Volcanism in the Ocean[C]//In: Sears M, ed.Progress in Oceanography.London: Pergamon Press, 1965: 7-22.
[2] Rona P A.Hydrothermal mineralization at seafloor spreading centers[J].Earth Science Reviews, 1984, 20 (1) :1-104. doi: 10.1016/0012-8252(84)90080-1
[3] Craig H, Horibe Y, Fariey K A, et al.Hydrothermal vents in the Mariana Trough:results of the first Alvin dives[J].EOS.1987, 68 (44) :1531.
[4] Fouquet Y, Charlou J L, Stackelberg U, et al.Metallogenesis in back-arc environments:the Lau Basin example[J].Economic Geology, 1993, 88:2154-2181. doi: 10.2113/gsecongeo.88.8.2154
[5] Fryer P.Geology of the Mariana Trough[C]//Backarc BasinTectonics and Magmatism.1995: 237-279.
[6] Halbach P, Nakamura K, Wahsner M, et al.Probable modern analogue of kuroko-type massive sulfide deposits in the Okinawa Trough back-arc basin[J].Nature, 1989, 338:496-499. doi: 10.1038/338496a0
[7] Halbach P, Pracejus B, Maerten A.Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan[J].Econ Geol, 1993, 88:2210-2225. doi: 10.2113/gsecongeo.88.8.2210
[8] 翟世奎, 陈丽蓉, 张海启.冲绳海槽的岩浆作用与海底热液活动[M].北京:海洋出版社, 2001:171-174.
ZHAI Shikui, CHEN Lirong, ZHANG Haiqi.Igneous Process and Subseafloor Hydrothermal Activity in the Okinawa Trough[M].Beijing:Ocean Press, 2001:171-174.
[9] 曾志刚, 翟世奎.大西洋洋中脊TAG热液区中块状硫化物的Os同位素研究[J].沉积学报, 2002, 20 (3) :394-398. doi: 10.3969/j.issn.1000-0550.2002.03.006
ZENG Zhigang, ZHAI Shikui.Os isotopic compositions of seafloor massive sulfide from the TAG hydrothermal field in the MidAtlantic Ridge[J].Acta Sedimentologica Sinica, 2002, 20 (3) :394-398. doi: 10.3969/j.issn.1000-0550.2002.03.006
[10] Baker E T, Edmonds H N, Michael P J.The ultraslowspreading Gakkel and South West Indian Ridges[J].Geochem, Geophys, Geosyst, 2004, 5 (8) :1-24.
[11] 孙治雷, 周怀阳, 杨群慧, 等.现代样地低温富Si烟囱体的构建:以劳盆地CDE热液场为例[J].中国科学:地球科学, 2012, 42:1544-1558. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201210009.htm
SUN Zhilei, ZHOU Huaiyang, YANG Qunhui, et al.Growth model of a hydrothermal lowtemperature Si-rich chimney:Example from the CDE hydrothermal field, Lau Basin[J].Sci China Earth Sci, 2012, 55:1716-1730. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201210009.htm
[12] Eldholm O, Karasik A M, Reksnes P A.The North American plate boundary[C]//The Geology of North America.The Arctic Ocean Region, 1990: 171-182.
[13] Fujimoto H, Cannat M, Fujioka K, et al.First submersible investigations of mid-ocean ridges in the Indian Ocean[J].Inter Ridge News, 1999, 8 (1) :22-24. http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/shinkai15-02_01.pdf
[14] Münch U, Lalou C, Halbach P, et al.Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E mineralogy, chemistry and chronology of sulfide samples[J].Chem Geol, 2001, 177:341-349 doi: 10.1016/S0009-2541(00)00418-6
[15] Tao C, Lin J, Guo S, et al.Discovery of the first active hydrothermal vent field at the ultraslow spreading Southwest Indian Ridge:The Chinese DYI 15-19Cruise[J].Ridge Crest News, 2007, 16:25-26.
[16] McKenzie D, Sclater J G.The evolution of the Indian Ocean since the Late Cretaceous[J].Geophysical Journal International, 1971, 24 (5) :437-528. doi: 10.1111/j.1365-246X.1971.tb02190.x
[17] Acharyya, Sclater.Break up of Australia-India-Madagascar block, opening of the Indian Ocean and continental accretion in Southeast Asia with special reference to the characteristics of the peri-Indian collision zones[J].Gondwana Research, 2000, 3 (4) :425-443. doi: 10.1016/S1342-937X(05)70753-X
[18] Cande S C, Patriat P, Dyment J.Motion between the Indian, Antarctic and African plates in the early Cenozoic[J].Geophysical Journal International, 2010, 183 (1) :127-149. doi: 10.1111/j.1365-246X.2010.04737.x
[19] Pushcharovsky Y M.Fragments of continental structures in the Indian Ocean[J].Geotectonics, 2014, 48 (1) :1-4. doi: 10.1134/S0016852114010063
[20] Nayak B, Halbach P, Pracejus B, et al.Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis[J].Ore Geology Reviews, 2014, 63:115-128. doi: 10.1016/j.oregeorev.2014.05.004
[21] Münch U, Halbach P.Fujimoto H.Zinc-and lead-rich massive sulfides from the ultraslow Southwest Indian spreading ridge[J].EOS, American Geophysical Union Transactions, 1999, 80 (46) :11-14.
[22] Lin J, Zhang C.The first collaborative China-international cruises to investigate mid-ocean ridge hydrothermal vents[J].InterRidge News, 2006, 15:33-34.
[23] 陶春辉, 李怀明, 黄威, 等.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J].科学通报, 2011, 56 (28) :2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009
TAO Chunhui, LI Huaiming, HUANG Wei, et al.Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J].Chinese Science Bulletin, 2011, 56 (28) :2413-2423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201128009
[24] 陶春辉, 李怀明, 金肖兵, 等.西南印度洋脊的海底热液活动和硫化物勘探[J].科学通报, 2014, 59:1812-1822. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201419003
TAO Chunhui, LI Huaiming, JIN xiaobing, et al.Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge[J].Chin Sci Bull, 2014, 59:2266-2276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201419003
[25] 叶俊.西南印度洋超慢速扩张脊49.6°E热液区多金属硫化物成矿作用研究[D].中国科学院大学, 2010.
http://cdmd.cnki.com.cn/Article/CDMD-80068-1012411037.htm YE Jun.Mineralization of Polymetallic Sulfides on Ultra-slow Spreading Southwest Indian Ridge at 49.6°E[D].University of Chinese Academy of Sciences, 2010.
[26] 李小虎, 初凤友, 雷吉江, 等.西南印度洋中脊热液硫化物成矿物质来源探讨:同位素证据[J].地球科学与环境学报, 2014, 36 (1) :193-200. http://d.old.wanfangdata.com.cn/Conference/8315628
LI Xiaohu, CHU Fengyou, LEI Jijiang, et al.Discussion on Sources of Metallogenic Materials of Hydrothermal Sulfide from Southwest Indian Ridge:Isotope Evidences[J]Journal of Earth Sciences and Environment, 2014, 36 (1) :193-200. http://d.old.wanfangdata.com.cn/Conference/8315628
[27] Sun Z, Li J, Huang W, et al.Generation of hydrothermal Fe-Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations[J].Journal of Geophysical Research Biogeosciences, 2015, 120 (1) :187-203. doi: 10.1002/2014JG002764
[28] Yuan B, Yang Y, Yu H, et al.Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6°E Southwest Indian Ridge[J].Marine Geophysical Research, 2017 (4) :1-21. https://link.springer.com/article/10.1007%2Fs11001-017-9324-5
[29] Rona P A, Klinkhammer G, Nelsen T A, et al.Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge[J].Nature, 1986, 321:33. doi: 10.1038/321033a0
[30] Charlou J L, Fouquet Y, Bougault H, et al.Intense CH4, plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge[J].Geochimica Et Cosmochimica Acta, 1998, 62 (13) :2323-2333. doi: 10.1016/S0016-7037(98)00138-0
[31] Patriat P D, Sauter M, Munschy, and Parson L M.A survey of the Southwest Indian Ridge axis between Atlantis ll Fracture Zone and the Indian Triple Junction:Regional setting and large scale segmentation[J].Mar.Geophys.Res.1997, 19:457-480. doi: 10.1023/A:1004312623534
[32] Mendel V, Sauter D.Seamount volcanism at the super slowspreading Southwest Indian Ridge between 57°E and 70°E[J].Geology, 1997, 25:99-102. doi: 10.1130/0091-7613(1997)025<0099:SVATSS>2.3.CO;2
[33] Baines A G, Cheadle M J, Dick H J B, et al.Evolution of the southwest Indian Ridge from 55°45′E to 62°E:Changes in plate-boundary geometry since 26Ma[J].Geochemistry, Geophysics, and Geosytems, 2007, 8 (6) :1-31.
[34] Dick H J B, Lin J, Schouten H.An ultraslow-spreading class of ocean ridge[J].Nature, 2003, 426 (6965) :405-412. doi: 10.1038/nature02128
[35] Searle R C, Bralee A V.Asymmetric generation of oceanic crust at the ultraslow spreading Southwest Indian Ridge, 64°E[J].Geochemistry, Geophysics and Geo-systems, 2007, 8 (1) :1-28.
[36] Sauter D, Patriat P, Rommevaux-Jestin C, et al.The Southwest Indian Ridge between 49°15′E and 57°E:focused accretion and magma redistribution[J].Earth & Planetary Science Letters, 2001, 192 (3) :303-317.
[37] Cannat M, Sauter D, Mendel V, et al.Modes of seafloor generation at a melt-poor ultraslow-spreading ridge[J].Geology, 2006, 34 (7) :605-608. doi: 10.1130/G22486.1
[38] Tao C H, Li H M, Huang W, et al.Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J].Chinese Science Bulletin, 2011, 56 (26) :2828-2838. doi: 10.1007/s11434-011-4619-4
[39] Liang Y Y, Li J B, Li S J, et al.The morphotectonics and its evolutionary dynamics of the central Southwest Indian Ridge (49°to 51°E) [J].Acta Oceanologica Sinica, 2013, 32 (12) :87-95. doi: 10.1007/s13131-013-0394-1
[40] Blackman D K, Canales J P, Harding A.Geophysical signatures of oceanic core complexes[J].Geophys J.Int., 2009, 178:593-613. doi: 10.1111/j.1365-246X.2009.04184.x
[41] 张涛, 高金耀.西南印度洋中脊热液区的岩浆活动与构造特征[J].中国科学: 地球科学, 2013, 43 (11) : 1834-1846.
http://www.cnki.com.cn/Article/CJFDTotal-JDXK201311013.htm ZHANG Tao, LIN Jian, GAO Jinyao.Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge[J].Science China: Earth Sciences, 2013, 43 (11) : 1834-1846.
[42] Zhu J, Lin J, Chen Y J, et al.A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge[J].Geophysical Research Letters, 2010, 37 (18) :389-390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010GL043542
[43] Koski R A, Clague D A, Oudin E.Mineralogy and chemistry of massive sulfide deposits from the Juan de Fuca Ridge[J].Geological Society of America Bulletin, 1984, 95 (8) :930-945. doi: 10.1130/0016-7606(1984)95<930:MACOMS>2.0.CO;2
[44] Graham U M, Bluth G J, Ohmoto, H.Sulfide-sulfate chimneys on the EastPacific Rise, 11°and 13°N; Part I, Mineralogy and paragenesis[J].Canadian Mineralogist.1988, 26 (3) :487-504.
[45] Sugaki A, Shima H, Kitakaze A, et al.Isothermal phase relations in the system Cu-Fe-S under hydrothermal conditions at 350℃ and 300℃[J].Economic Geology, 1975, 70 (4) :806-823. doi: 10.2113/gsecongeo.70.4.806
[46] Barton Jr P B, Bethke P M.Chalcopyrite disease in sphalerite:pathology and epidemiology[J].American Mineralogist, 1987, 72 (5-6) :451-467. http://cn.bing.com/academic/profile?id=17b6a722a9a13414bb7eb3a3f8983bf0&encoded=0&v=paper_preview&mkt=zh-cn
[47] 初凤友, 胡大千, 于洪林, 等.黄铁矿晶体形态标型在金矿评价中的意义[J].吉林大学学报:地球科学版, 2004, 34 (4) :531-535. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200404008
CHU Fengyou, HU Daqian, YU Honglin, et al.The Significance of Crystal form Typomorphosm of Pyritein Assessment of Gold Deposit[J].Journal of Jilin University:Earth Science Edition, 2004, 34 (4) :531-535. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb200404008
[48] Xu Q, Scott S D.Spherulitic pyrite in seafloor hydrothermal deposits: products of rapid crystallization from mixing fluids[C]//Mineral deposit research: meeting the global challenge.Springer Berlin Heidelberg, 2005: 711-713.
https://link.springer.com/chapter/10.1007%2F3-540-27946-6_181 [49] Huston D L, Taylor B E, Bleeker W, et al.Isotope Mapping Around the Kidd Creek Deposit, Ontario:Application to Exploration and Comparison with Other Geochemical Indicators[J].Exploration & Mining Geology, 1995, 4 (3) :175-185. http://cn.bing.com/academic/profile?id=75b153f87ab71818ef2846f7f727f8b2&encoded=0&v=paper_preview&mkt=zh-cn
[50] Yund R A, Hall H T.Hexagonal and monoclinic pyrrhotites[J].Economic Geology, 1969, 64 (4) :420-423. doi: 10.2113/gsecongeo.64.4.420
[51] 杨镇, 杨立强, 刘江涛, 等.云南羊拉铜矿床磁黄铁矿标型矿物学特征及成矿意义[J].岩石学报, 2014, 30 (9) :2669-2680. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409017
YANG Zhen, YANG Liqiang, LIU Jiangtao, et al.Mineralogy typomorphic characteristicsof pyrrhotite and mineralization significance of Yangla copper deposit, Yunnan, China[J].Acta Petrologica Sinica, 2014, 30 (9) :2669-2680. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201409017
[52] Arnold R G.Pyrrhotite phase relations below 304±60℃ at 1atm total pressure[J].Econ Geol, 1969, 64:405-419. doi: 10.2113/gsecongeo.64.4.405
[53] Arnold R G.Equilibrium relations between pyrrhotite and pyrite from 325°to 743℃[J].Economic Geology, 1962, 57 (1) :72-90.
[54] Kissin S A, Scott S D.Phase relations involving pyrrhotite below 350℃[J].Econ Geol., 1982, 77:1739-1754. doi: 10.2113/gsecongeo.77.7.1739
[55] Gu L X, Vokes F M.Intergrowth of hexagonal and monoclinic pyrrhotites in some sulphide ores from Norway[J].Mineralogical Magazine, 1996, 60, 304-316.
[56] Cook N J, Ciobanu C L, Pring A, et al, Trace and minor elements in sphalerite:a LA-ICP-MS study[J].Geochim.Cosmochim.Acta, 2009, 73:4761-4791. doi: 10.1016/j.gca.2009.05.045
[57] 潘兆橹.结晶学及矿物学[M].地质出版社, 1994.
PAN Zhaolu.Crystallography and Mineralogy[M].Geological Press, 1994.
[58] Lafitte M, R Maury.Variations de stoechiométrie de chalcopyrites naturelles[J].Bull.Mineral, 1982, 105:57-61.
[59] Caye R, Cervelle B, Cesbron F, et al.Isocubanite, a new definition of the cubic polymorph of cubanite CuFe2S3[J].Mineral.Mag, 1988, 52:509-514. doi: 10.1180/minmag.1988.052.367.10
[60] Mozgova N N, Gablina I F, Bogdanov, et al.Composition field and specific features of isocubanite isomorphism[J].Geochem.Int, 1995, 33:533-552.
[61] Kelly W C, Turneaure F S.Mineralogy, peragensis, and geothermometry of the tin and tungsten deposits of East ern Andes, Bolivia[J].Econ.Geol, 1970, 65:609-680. doi: 10.2113/gsecongeo.65.6.609
[62] Waal S A, Johnson J A.Chemical het erogeneity of sphalerite in a base metal sulfide deposit[J].Econ.Geol, 1981, 76:649-705.
[63] Buerger N W.The unmixing of chalcopyrite from sphalerite.Amer[J].Mineral., 1934, 19:525-530.
[64] Marignac C.Sphalerite stars in chalcopyrite:Are they always the result of an unmixing process?[J].Mineralium Deposita, 1989, 24 (3) :176-182. doi: 10.1007/BF00206440
[65] Lusk J, Bray, D M.Phase relations and the electrochemical de-termination of sulfur fugacity for selected reactions in the Cu-Fe-S and Fe-S systems at 1bar and temperatures between 185 and 460℃[J].Chemical Geology, 2002, 192:227-248. doi: 10.1016/S0009-2541(02)00194-8