海洋钻探对甲烷渗漏的影响:以南海北部天然气水合物钻探GMGS2-16站位为例

尉建功, 杨胜雄, 梁金强, 陆敬安, 刘胜旋, 张伟. 海洋钻探对甲烷渗漏的影响:以南海北部天然气水合物钻探GMGS2-16站位为例[J]. 海洋地质与第四纪地质, 2018, 38(5): 63-70. doi: 10.16562/j.cnki.0256-1492.2018.05.006
引用本文: 尉建功, 杨胜雄, 梁金强, 陆敬安, 刘胜旋, 张伟. 海洋钻探对甲烷渗漏的影响:以南海北部天然气水合物钻探GMGS2-16站位为例[J]. 海洋地质与第四纪地质, 2018, 38(5): 63-70. doi: 10.16562/j.cnki.0256-1492.2018.05.006
WEI Jiangong, YANG Shengxiong, LIANG Jinqiang, LU Jingan, LIU Shengxuan, ZHANG Wei. Impact of seafloor drilling on methane seepage—enlightenments from natural gas hydrate drilling site GMGS2-16, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 63-70. doi: 10.16562/j.cnki.0256-1492.2018.05.006
Citation: WEI Jiangong, YANG Shengxiong, LIANG Jinqiang, LU Jingan, LIU Shengxuan, ZHANG Wei. Impact of seafloor drilling on methane seepage—enlightenments from natural gas hydrate drilling site GMGS2-16, northern South China Sea[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 63-70. doi: 10.16562/j.cnki.0256-1492.2018.05.006

海洋钻探对甲烷渗漏的影响:以南海北部天然气水合物钻探GMGS2-16站位为例

  • 基金项目:
    国家自然科学基金项目“南海北部陆坡天然气水合物结构及气体成因对比研究”(41602149);国家重点研发计划“4500米载人潜水器深潜海底冷泉系统科学研究”(2016YFC0304905-03)
详细信息
    作者简介: 尉建功(1984—),男,博士,主要从事天然气水合物地质勘探研究,E-mail:weijiangong007@163.com
  • 中图分类号: X145

  • 蔡秋荣编辑

Impact of seafloor drilling on methane seepage—enlightenments from natural gas hydrate drilling site GMGS2-16, northern South China Sea

  • 目前世界上许多国家对海洋天然气水合物开展了调查和试开采,但是对水合物开发与海底甲烷渗漏之间的关系缺乏了解。本文依托我国第二次天然气水合物钻探航次(GMGS2),对GMGS2-16钻孔开展了两次钻后甲烷渗漏调查。第一次使用水下机器人(ROV)在该孔开钻之前、钻探过程中及完钻67天内进行了4次海底观察,其中开钻之前未发现海底甲烷渗漏,而在完钻后的两次海底观察中,发现大量气泡从废弃井口冒出。第二次使用船载多波束在该孔完钻18个月后开展水体调查,发现水体中存在火焰状的高回波强度,表明水体中存在气体羽状流,指示海底发生了甲烷渗漏。地震剖面显示该站位水合物赋存层下伏游离气,甲烷渗漏可能是由于钻探打通了海底与该游离气层,形成了甲烷气体运移的优势通道,造成海底甲烷渗漏。多波束水体数据显示甲烷气泡从海底溢出,在海面以下约650m处消失,表明甲烷气体在通过水体的过程中被完全溶解,因此,钻探导致的甲烷渗漏对大气的影响较小。未来随着井壁的坍塌以及水合物在井内的形成,气体运移的优势通道将会完全关闭,甲烷渗漏终止。

  • 加载中
  • 图 1  GMGS2水合物钻探区的位置及水深地形

    Figure 1. 

    图 2  GMGS2-16站位原位温度测量值及线性拟合结果

    Figure 2. 

    图 3  GMGS2-16站位随钻测井的电阻率和P波速度曲线

    Figure 3. 

    图 4  过GMGS2-16井地震剖面(红线表示GMGS2-16井位置,其长度不表示该站位钻探深度)

    Figure 4. 

    图 5  A:钻探开始前的ROV海底观察;B:钻探结束后刷井眼过程中ROV观察发现有气泡冒出;C和D: 16A完钻60天后的ROV海底观察;E: 16A完钻67天后的ROV海底观察

    Figure 5. 

    图 6  A和B为多波束调查发现的水体羽状流;C为水体羽状流区域(蓝色)与GMGS2-16井位的位置关系,黑线为调查船行驶路线;D为水体多波束与海底地形的三维视图

    Figure 6. 

    图 7  I型纯甲烷水合物在3.5%NaCl海水中的稳定域

    Figure 7. 

  • [1]

    Sloan Jr E D, Koh C. Clathrate Hydrates of Natural Gases[M]. CRC Press, 2007.

    [2]

    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470.

    [3]

    Milkov A V. Global estimates of hydrate-bound gas in marine sediments: how much is really out there?[J]. Earth-Science Reviews, 2004, 66(3-4): 183-197. doi: 10.1016/j.earscirev.2003.11.002

    [4]

    Lee S Y, Holder G D. Methane Hydrates Potential as a Future Energy Source[M]. Fuel Processing Technology, 2001, 71(1-3): 181-186.

    [5]

    Moridis G J, Collett T S, Boswell R, et al. Gas Hydrates as a Potential Energy Source: State of Knowledge and Challenges, in Advanced Biofuels and Bioproducts[M]. Advanced Biofuels and Bioproducts, Springer, 2013: 977-1033.

    [6]

    Katz M E, Pak D K, Dickens G R, et al. The source and fate of massive carbon input during the latest Paleocene thermal maximum[J]. Science, 1999, 286(5444): 1531-1533. doi: 10.1126/science.286.5444.1531

    [7]

    Maslin M, Mikkelsen N, Vilela C, et al. Sealevel and gashydrate controlled catastrophic sediment failures of the Amazon Fan[J]. Geology, 1998, 26(12): 1107-1110. doi: 10.1130/0091-7613(1998)026<1107:SLAGHC>2.3.CO;2

    [8]

    Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X

    [9]

    Klaucke I, Sahling H, Weinrebe W, et al. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea[J]. Marine Geology, 2006, 231(1-4): 51-67. doi: 10.1016/j.margeo.2006.05.011

    [10]

    Klapp S A, Bohrmann G, Kuhs W F, et al. Microstructures of structure I and II gas hydrates from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2010, 27(1): 116-125. doi: 10.1016/j.marpetgeo.2009.03.004

    [11]

    Wei J, Pape T, Sultan N, et al. Gas hydrate distributions in sediments of pockmarks from the Nigerian margin-Results and interpretation from shallow drilling[J]. Marine and Petroleum Geology, 2015, 59: 359-370. doi: 10.1016/j.marpetgeo.2014.09.013

    [12]

    Bourry C, Chazallon B, Charlou J L, et al. Free gas and gas hydrates from the Sea of Marmara, Turkey: Chemical and structural characterization[J]. Chemical Geology, 2009, 264(1-4): 197-206. doi: 10.1016/j.chemgeo.2009.03.007

    [13]

    Rõmer M, Sahling H, Pape T, et al. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan)[J]. Journal of Geophysical Research: Oceans, 2012, 117(C10). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2011JC007424

    [14]

    Dewangan P, Sriram G, Ramprasad T, et al. Fault system and thermal regime in the vicinity of site NGHP-01-10, Krishna-Godavari basin, Bay of Bengal[J]. Marine and Petroleum Geology, 2011, 28(10): 1899-1914. doi: 10.1016/j.marpetgeo.2011.03.009

    [15]

    Kim G Y, Yi B Y, Yoo D G, et al. Evidence of gas hydrate from downhole logging data in the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2011, 28(10): 1979-1985. doi: 10.1016/j.marpetgeo.2011.01.011

    [16]

    Yang S, Liang J, Lei Y, et al. GMGS4 gas hydrate drilling expedition in the South China Sea[J]. Fire In The Ice, 2017, 17(1): 7-11.

    [17]

    EIA U. Annual energy outlook 2013[J]. US Energy Information Administration, Washington, DC, 2013: 60-62. http://d.old.wanfangdata.com.cn/Periodical/syqc201401043

    [18]

    Riedel M, Collett T, Shankar U. Documenting channel features associated with gas hydrates in the Krishna-Godavari Basin, offshore India[J]. Marine Geology, 2011, 279(1-4): 1-11. doi: 10.1016/j.margeo.2010.10.008

    [19]

    Li X S, Xu C G, Zhang Y, et al. Investigation into gas production from natural gas hydrate: A review[J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101

    [20]

    Kim J H, Torres M E, Hong W L, et al. Pore fluid chemistry from the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2): Source, mechanisms and consequences of fluid freshening in the central part of the Ulleung Basin, East Sea[J]. Marine and Petroleum Geology, 2013, 47: 99-112. doi: 10.1016/j.marpetgeo.2012.12.011

    [21]

    Horozal S, Kim G Y, Bahk J J, et al. Core and sediment physical property correlation of the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) results in the East Sea (Japan Sea)[J]. Marine and Petroleum Geology, 2015, 59: 535-562. doi: 10.1016/j.marpetgeo.2014.09.019

    [22]

    Yamamoto K. Overview and introduction: Pressure core-sampling and analyses in the 2012-2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66: 296-309. doi: 10.1016/j.marpetgeo.2015.02.024

    [23]

    Leifer I, Solomon E, von Deimling J S, et al. The fate of bubbles in a large, intense bubble megaplume for stratified and unstratified water: Numerical simulations of 22/4b expedition field data[J]. Marine and Petroleum Geology, 2015, 68: 806-823. doi: 10.1016/j.marpetgeo.2015.07.025

    [24]

    Judd A. The significance of the 22/4b blow-out site methane emissions in the context of the North Sea[J]. Marine and Petroleum Geology, 2015, 68: 836-847. doi: 10.1016/j.marpetgeo.2015.07.031

    [25]

    Vielstädte L, Karstens J, Haeckel M, et al. Quantification of methane emissions at abandoned gas wells in the Central North Sea[J]. Marine and Petroleum Geology, 2015, 68: 848-860. doi: 10.1016/j.marpetgeo.2015.07.030

    [26]

    Wiggins S M, Leifer I, Linke P, et al. Long-term acoustic monitoring at North Sea well site 22/4b[J]. Marine and Petroleum Geology, 2015, 68: 776-788. doi: 10.1016/j.marpetgeo.2015.02.011

    [27]

    Sha Z, Liang J, Zhang G, et al. A seepage gas hydrate system in northern South China Sea: Seismic and well log interpretations[J]. Marine Geology, 2015, 366: 69-78. doi: 10.1016/j.margeo.2015.04.006

    [28]

    Zhang G, Liang J, Lu J A, et al. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2015, 67: 356-367. doi: 10.1016/j.marpetgeo.2015.05.021

    [29]

    Sultan N, Bohrmann G, Ruffine L, et al. Pockmark formation and evolution in deep water Nigeria: Rapid hydrate growth versus slow hydrate dissolution[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(4): 2679-2694. doi: 10.1002/2013JB010546

    [30]

    Bohrmann G, Torres M E.Gas Hydrates in Marine Sediments, in Marine Geochemistry[M]. Springer, 2006: 481-512.

    [31]

    Torres M, Wallmann K, Tréhu A, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1-2): 225-241. doi: 10.1016/j.epsl.2004.07.029

    [32]

    McGinnis D F, Greinert J, Artemov Y, et al. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?[J]. Journal of Geophysical Research: Oceans, 2006, 111(C9). http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2005JC003183/

    [33]

    Rehder G, Brewer P W, Peltzer E T, et al. Enhanced lifetime of methane bubble streams within the deep ocean[J]. Geophysical Research Letters, 2002, 29(15): 21-1-21-4. doi: 10.1029/2001GL013966

  • 加载中

(7)

计量
  • 文章访问数:  1679
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2017-04-19
修回日期:  2017-06-16
刊出日期:  2018-10-28

目录