南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义

王家凯, 李铁刚, 熊志方, 常凤鸣, 秦秉斌, 王琳淼, 贾奇. 南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义[J]. 海洋地质与第四纪地质, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011
引用本文: 王家凯, 李铁刚, 熊志方, 常凤鸣, 秦秉斌, 王琳淼, 贾奇. 南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义[J]. 海洋地质与第四纪地质, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011
WANG Jiakai, LI Tiegang, XIONG Zhifang, CHANG Fengming, QIN Bingbin, WANG Linmiao, JIA Qi. Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011
Citation: WANG Jiakai, LI Tiegang, XIONG Zhifang, CHANG Fengming, QIN Bingbin, WANG Linmiao, JIA Qi. Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 112-121. doi: 10.16562/j.cnki.0256-1492.2018.05.011

南极罗斯海氧化还原敏感元素沉积地球化学特征及其古海洋意义

  • 基金项目:
    国家自然科学基金项目“80万年来热带西太平洋上层水体pH和pCO2演变及影响机理”(41230959),“MIS 6期以来罗斯海深层水流通性的变化及其对大气CO2冰期旋回的影响”(41606216);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2016ASKJ13)
详细信息
    作者简介: 王家凯(1992—),男,硕士研究生,主要从事地球化学与古海洋研究,E-mail:wangjiakai15@mails.ucas.cn
    通讯作者: 李铁刚(1965—),男,研究员,主要从事古海洋与古环境研究,E-mail:tgli@fio.org.cn
  • 中图分类号: P734.2

  • 蔡秋蓉编辑

Sedimentary gochemical characteristics of the Redox-sensitive elements in Ross Sea, Antarctica: Implications for paleoceanography

More Information
  • 大洋深部氧化还原环境与深部水体流通状况以及表层水体生产力密切相关。表层生产力与深部流通性变化影响着有机碳-呼吸CO2的转化及其在海洋-大气中的转移,最终与大气CO2分压(pCO2)变化密切相关。故探明大洋深部氧化还原环境的变化对于解决大气pCO2冰期旋回机制具有重要意义。本次研究以中国第31和32次南极科考获得的南极罗斯海柱状岩心ANT31-R23及表层样为研究材料。通过元素钙、钛,以及氧化还原敏感元素(RSE)锰、钼、镍、钴、镉的测试分析,以表层样中RSE与Ti的比值作为判断ANT31-R23孔中相应RSE富集程度的背景值。结果显示,Mn在沉积期均表现出富集,表明罗斯海深部在该孔沉积期为氧化环境。根据Mn在不同层位出现的富集峰识别出4次强氧化脉冲事件,可能由南大洋底层水流通性增强和/或生产力降低导致。4次氧化脉冲事件层位中Mo、Ni、Co的明显富集,是由于锰(氢)氧化物对其捕获或吸附所致。此外,推测分析认为罗斯海对冰期大气pCO2降低似乎没有明显贡献,但很可能对冰消期大气pCO2迅速升高起重要作用。然而这些有关南极罗斯海深部氧化还原环境与大气pCO2变化之间关联的推测,有待后续该孔精确年代模式的构建,方可进一步验证。

  • 加载中
  • 图 1  南极罗斯海地理位置、水体和氧含量剖面

    Figure 1. 

    图 2  南极罗斯海ANT31-R23孔Ti、Ca以及Ti标准化的RSE含量深度剖面

    Figure 2. 

    图 3  南极罗斯海ANT31-R23孔不同层位RSE富集因子盒须图

    Figure 3. 

    图 4  南极罗斯海ANT31-R23孔Mn与Mo、Co、Ni的相关性

    Figure 4. 

    表 1  罗斯海研究区表层沉积物碎屑组分常微量元素比率

    Table 1.  Major and minor element ratio in detrital components of surface sediments in study area of Ross Sea

    站号Mn/TiMo/Ti (×10-4)Ni/Ti (×10-4)Co/Ti (×10-4)Cd/Ti (×10-6)Ca (%)Ti (%)
    RB02B0.080.8442.8122.212.650.930.31
    RB03B0.100.6340.2920.716.361.060.29
    RB05B0.081.2437.6719.77.940.870.34
    RB06B0.100.5646.1723.912.251.000.29
    RB07B0.091.3543.6923.08.390.850.40
    RB08B0.081.5442.3822.440.750.810.44
    RB11B0.100.7145.4823.114.061.200.33
    RB16B0.101.0642.8821.732.241.110.27
    平均值0.090.9942.6722.118.080.980.33
    标准偏差0.010.362.721.3611.910.140.06
    变异系数7.11%36.59%6.38%6.18%65.90%13.95%17.75%
    下载: 导出CSV
  • [1]

    Pailler D, Bard E, Rostek F, et al. Burial of redox-sensitive metals and organic matter in the equatorial Indian Ocean linked to precession[J]. Geochimica Et Cosmochimica Acta, 2002, 66(5): 849-865. doi: 10.1016/S0016-7037(01)00817-1

    [2]

    Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369

    [3]

    Jaccard S L, Galbraith E D, Martinez-Garcia A, et al. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age[J]. Nature, 2016, 530(7589): 207-210. doi: 10.1038/nature16514

    [4]

    Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2011, 5(2): 151-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec999cd37b0f8f5720fd8cf4b1d92277

    [5]

    Sigman D M, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 466(7302): 47-55. doi: 10.1038/nature09149

    [6]

    Anderson R F, Ali S, Bradtmiller L I, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5920): 1443-1448. doi: 10.1126/science.1167441

    [7]

    Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep Southern Ocean and deglacial CO2 rise[J]. Science, 2010, 328(5982): 1147-1151. doi: 10.1126/science.1183627

    [8]

    Fischer H, Schmitt J, Lüthi D, et al. The role of Southern Ocean processes in orbital and millennial CO2 variations-A synthesis[J]. Quaternary Science Reviews, 2010, 29(1-2): 193-205. doi: 10.1016/j.quascirev.2009.06.007

    [9]

    Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society, London, Special Publications, 1987, 26(1): 137-151. doi: 10.1144/GSL.SP.1987.026.01.08

    [10]

    Calvert S E, Pedersen T F. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?[J]. The American Association of Petroleum Geologists Bulletin, 1990, 74(4): 454.

    [11]

    Galbraith E D, Jaccard S L, Pedersen T F, et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation[J]. Nature, 2007, 449(7164): 890-893. doi: 10.1038/nature06227

    [12]

    Francois R, Altabet M A, Yu E F, et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period[J]. Nature, 1997, 389(6654): 929-935. doi: 10.1038/40073

    [13]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [14]

    Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine-sediments-implications for the geological record[J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T

    [15]

    Brown E T, Le Callonnec L, German C R. Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi: A diagnostic paleotracer for episodic changes in mixing depth[J]. Geochimica Et Cosmochimica Acta, 2000, 64(20): 3515-3523. doi: 10.1016/S0016-7037(00)00460-9

    [16]

    Calvert S E, Pedersen T F. Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1996, 91(1): 36-47. doi: 10.2113/gsecongeo.91.1.36

    [17]

    Anderson R F, Fleisher M Q, Lehuray A P. Concentration, oxidation-state, and particulate flux of uranium in the Black-Sea[J]. Geochimica Et Cosmochimica Acta, 1989, 53(9): 2215-2224. doi: 10.1016/0016-7037(89)90345-1

    [18]

    Chaillou G, Anschutz P, Lavaux G, et al. The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay[J]. Marine Chemistry, 2002, 80(1): 41-59. doi: 10.1016/S0304-4203(02)00097-X

    [19]

    Howarth R W, Cole J J. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters[J]. Science, 1985, 229(4714): 653-655. doi: 10.1126/science.229.4714.653

    [20]

    Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1-2): 67-88. doi: 10.1016/0025-3227(93)90150-T

    [21]

    Huertadiaz M A, Morse J W. Pyritization of trace-metals in anoxic marine-sediments[J]. Geochimica Et Cosmochimica Acta, 1992, 56(7): 2681-2702. doi: 10.1016/0016-7037(92)90353-K

    [22]

    Erickson B E, Helz G R. Molybdenum(Ⅵ) speciation in sulfidic waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1149-1158. doi: 10.1016/S0016-7037(99)00423-8

    [23]

    Helz G R, Miller C V, Charnock J M, et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence[J]. Geochimica Et Cosmochimica Acta, 1996, 60(19): 3631-3642. doi: 10.1016/0016-7037(96)00195-0

    [24]

    Vorlicek T P, Kahn M D, Kasuya Y, et al. Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides[J]. Geochimica Et Cosmochimica Acta, 2004, 68(3): 547-556. doi: 10.1016/S0016-7037(03)00444-7

    [25]

    Holland M M, Landrum L, Raphael M, et al. Springtime winds drive Ross Sea ice variability and change in the following autumn[J]. Nature Communications, 2017, 8(1): 731. doi: 10.1038/s41467-017-00820-0

    [26]

    Jacobs S S. Bottom water production and its links with the thermohaline circulation[J]. Antarctic Science, 2004, 16(4): 427-437. doi: 10.1017/S095410200400224X

    [27]

    Orsi A H, Johnson G C, Bullister J L. Circulation, mixing, and production of Antarctic Bottom Water[J]. Progress in Oceanography, 1999, 43(1): 55-109. doi: 10.1016/S0079-6611(99)00004-X

    [28]

    Gordon A L, Orsi A H, Muench R, et al. Western Ross Sea continental slope gravity currents[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2009, 56(13-14): 796-817. doi: 10.1016/j.dsr2.2008.10.037

    [29]

    Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2009, 56(13-14): 778-795. doi: 10.1016/j.dsr2.2008.10.033

    [30]

    Tamura T, Ohshima K I, Nihashi S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophysical Research Letters, 2008, 35(7): 284-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2007GL032903

    [31]

    Ferrari R, Jansen M F, Adkins J F, et al. Antarctic sea ice control on ocean circulation in present and glacial climates[J]. Proceedings of the National Academy of Sciences of America, 2014, 111(24): 8753-8758. doi: 10.1073/pnas.1323922111

    [32]

    Whitworth T, Orsi A H. Antarctic Bottom Water production and export by tides in the Ross Sea[J]. Geophysical Research Letters, 2006, 33(12): 285-293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2006GL026357

    [33]

    Rivaro P, Massolo S, Bergamasco A, et al. Chemical evidence of the changes of the Antarctic Bottom Water ventilation in the western Ross Sea between 1997 and 2003[J]. Deep-Sea Research Part I-Oceanographic Research Papers, 2010, 57(5): 639-652. doi: 10.1016/j.dsr.2010.03.005

    [34]

    Van Wijk E M, Rintoul S R. Freshening drives contraction of Antarctic Bottom Water in the Australian Antarctic Basin[J]. Geophysical Research Letters, 2014, 41(5): 1657-1664. doi: 10.1002/2013GL058921

    [35]

    Parker M L, Donnelly J, Torres J J. Invertebrate micronekton and macrozooplankton in the Marguerite Bay region of the Western Antarctic Peninsula[J]. Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography, 2011, 58(13-16): 1580-1598. doi: 10.1016/j.dsr2.2010.08.020

    [36]

    Truesdale G A, Downing A L, Lowden G F. The solubility of oxygen in pure water and sea-water[J]. Journal of Chemical Technology & Biotechnology, 1955, 5(2): 53-62. https://onlinelibrary.wiley.com/doi/abs/10.1002/jctb.5010050201

    [37]

    Merlin O H, Salvador G L, Vitturi L M, et al. Geochemical characteristics of western Ross Sea (Antarctica) sediments[J]. Marine Geology, 1991, 99(1-2): 209-229. doi: 10.1016/0025-3227(91)90092-I

    [38]

    Brumsack H J. Geochemistry of recent toc-rich sediments from the gulf of California and the Black-Sea[J]. Geologische Rundschau, 1989, 78(3): 851-882. doi: 10.1007/BF01829327

    [39]

    Middelburg J J, Delange G J, Vanderweijden C H. Manganese solubility control in marine pore waters[J]. Geochimica Et Cosmochimica Acta, 1987, 51(3): 759-763. doi: 10.1016/0016-7037(87)90086-X

    [40]

    Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1-4): 355-369. doi: 10.1016/S0025-3227(00)00160-2

    [41]

    Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3-4): 289-318. doi: 10.1016/j.chemgeo.2003.12.009

    [42]

    Boyle E A. Cadmium: chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4): 471-489. doi: 10.1029/PA003i004p00471

    [43]

    Rosenthal Y, Lam P, Boyle E A, et al. Authigenic cadmium enrichments in suboxic sediments-precipitation and postdepositional mobility[J]. Earth and Planetary Science Letters, 1995, 132(1-4): 99-111. doi: 10.1016/0012-821X(95)00056-I

    [44]

    Piper D Z, Perkins R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3-4): 177-197. doi: 10.1016/j.chemgeo.2003.12.006

    [45]

    Pujol F, Berner Z, Stüben D. Palaeoenvironmental changes at the Frasnian/Famennian boundary in key European sections: Chemostratigraphic constraints[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 240(1-2): 120-145. doi: 10.1016/j.palaeo.2006.03.055

    [46]

    Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032. doi: 10.1016/j.gca.2005.05.015

    [47]

    Piper D Z. The metal-oxide fraction of pelagic sediment in the equatorial north Pacific-Ocean-a source of metals in ferromanganese nodules[J]. Geochimica Et Cosmochimica Acta, 1988, 52(8): 2127-2145. doi: 10.1016/0016-7037(88)90193-7

    [48]

    Krishnaswami S. Authigenic transition-elements in Pacific pelagic clays[J]. Geochimica Et Cosmochimica Acta, 1976, 40(4): 425-434. doi: 10.1016/0016-7037(76)90007-7

    [49]

    Grill P B E. The effect of manganese oxide scavenging on molybdenum in saanich inlet, British Columbia[J]. Marine Chemistry, 1974, 2(2): 125-148. doi: 10.1016/0304-4203(74)90033-4

    [50]

    Li Y H. Ultimate removal mechanisms of elements from the ocean[J]. Geochimica Et Cosmochimica Acta, 1981, 45: 1659-1664. doi: 10.1016/0016-7037(81)90001-6

    [51]

    Ceccaroni L, Frank M, Frignani M, et al. Late Quaternary fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica[J]. Journal of Marine Systems, 1998, 17(1-4): 515-525. doi: 10.1016/S0924-7963(98)00061-X

    [52]

    Martinson D G. Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation[J]. Journal of Geophysical Research, 1990, 95(C7): 11641-11654. doi: 10.1029/JC095iC07p11641

    [53]

    Picco P, Bergamasco A, Demicheli L, et al. Large-scale circulation features in the central and western Ross Sea (Antarctica)[J]. Ross Sea Ecology: Springer, 2000: 95-105. https://link.springer.com/chapter/10.1007%2F978-3-642-59607-0_8

    [54]

    Li Y H. Geochemical cycles of elements and human perturbation[J]. Geochimica Et Cosmochimica Acta, 1981, 45(11): 2073-2084. doi: 10.1016/0016-7037(81)90061-2

    [55]

    Ullermann J, Lamy F, Ninnemann U, et al. Pacific-Atlantic Circumpolar Deep Water coupling during the last 500ka[J]. Paleoceanography, 2016, 31(6): 639-650. doi: 10.1002/2016PA002932

    [56]

    Yamamoto A, Abe-Ouchi A, Shigemitsu M, et al. Global deep ocean oxygenation by enhanced ventilation in the Southern Ocean under long-term global warming[J]. Global Biogeochemical Cycles, 2015, 29(10): 1801-1815. doi: 10.1002/2015GB005181

    [57]

    Galbraith E D, Jaccard S L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies[J]. Quaternary Science Reviews, 2015, 109: 38-48. doi: 10.1016/j.quascirev.2014.11.012

    [58]

    Xiao W S, Esper O, Gersonde R. Last Glacial - Holocene climate variability in the Atlantic sector of the Southern Ocean[J]. Quaternary Science Reviews, 2016, 135: 115-137. doi: 10.1016/j.quascirev.2016.01.023

    [59]

    Wagner M, Hendy I L. Trace metal evidence for a poorly ventilated glacial Southern Ocean[J]. Quaternary Science Reviews, 2017, 170(2): 109-120. https://www.sciencedirect.com/science/article/abs/pii/S0277379117301427

    [60]

    Toggweiler J R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water[J]. Paleoceanography, 1999, 14(5): 571-588. doi: 10.1029/1999PA900033

    [61]

    Wu L, Wang R, Xiao W, et al. Productivity-climate coupling recorded in Pleistocene sediments off Prydz Bay (East Antarctica)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 260-270. doi: 10.1016/j.palaeo.2017.06.018

    [62]

    Mcmillan D G, Constable C G, Parker R L. Assessing the dipolar signal in stacked paleointensity records using a statistical error model and geodynamo simulations[J]. Physics of the Earth and Planetary Interiors, 2004, 145(1-4): 37-54. doi: 10.1016/j.pepi.2004.02.011

    [63]

    Prokopenko A A, Khursevich G K. Plio-Pleistocene transition in the continental record from Lake Baikal: Diatom biostratigraphy and age model[J]. Quaternary International, 2010, 219(1-2): 26-36. doi: 10.1016/j.quaint.2009.09.027

  • 加载中

(4)

(1)

计量
  • 文章访问数:  2308
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2017-12-27
修回日期:  2018-02-06
刊出日期:  2018-10-28

目录