140kaBP以来南海西南部上升流影响区沉积记录及其古海洋环境变化

邹杨浩, 冉莉华, MartinG Wiesner, 刘飞, 梁文, 陈建芳, 刘连文. 140kaBP以来南海西南部上升流影响区沉积记录及其古海洋环境变化[J]. 海洋地质与第四纪地质, 2019, 39(2): 123-133. doi: 10.16562/j.cnki.0256-1492.2018031601
引用本文: 邹杨浩, 冉莉华, MartinG Wiesner, 刘飞, 梁文, 陈建芳, 刘连文. 140kaBP以来南海西南部上升流影响区沉积记录及其古海洋环境变化[J]. 海洋地质与第四纪地质, 2019, 39(2): 123-133. doi: 10.16562/j.cnki.0256-1492.2018031601
ZOU Yanghao, RAN Linhua, Martin G Wiesner, LIU Fei, LIANG Wen, CHEN Jianfang, LIU Lianwen. Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 123-133. doi: 10.16562/j.cnki.0256-1492.2018031601
Citation: ZOU Yanghao, RAN Linhua, Martin G Wiesner, LIU Fei, LIANG Wen, CHEN Jianfang, LIU Lianwen. Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 123-133. doi: 10.16562/j.cnki.0256-1492.2018031601

140kaBP以来南海西南部上升流影响区沉积记录及其古海洋环境变化

  • 基金项目:
    重点研发计划“海洋微生物碳泵与生物泵的互作过程与储碳机制”(2016YFA0601101);国家自然科学基金“南海北部‘生物泵’全深度锚系观测及调控机制研究”(91128212), “南海北部和中部沉积物捕获器中的硅藻记录及其古海洋学意义”(41006034);国家海洋局第二海洋研究所基本科研业务专项资金项目“2015—2016年厄尔尼诺对南海北部硅藻的影响”(JT1401)
详细信息
    作者简介: 邹杨浩(1991—),男,硕士研究生,主要从事古海洋生物地球化学研究,E-mail:zouyh@smail.nju.edu.cn
    通讯作者: 冉莉华(1982—),女,副研究员,从事海洋微体古生物和生物地球化学研究,E-mail: lihuaran@sio.org.cn
  • 中图分类号: P736.21

  • 蔡秋蓉编辑

Sediment records and their paleoceanographic implications in the upwelling area of the southwestern South China Sea during the last 140, 000 years

More Information
  • 对南海西南部现代上升流区沉积物柱样BIS-187-61孔有机碳、生物蛋白石、碳酸盐等各沉积组分进行了详细的分析,试图探讨末次间冰期(MIS 5)以来南海西南部夏季上升流影响区沉积过程及其所反映的海洋环境变化过程。研究结果发现,140kaBP以来该孔沉积记录期总体表现为:碳酸盐百分含量冰期低间冰期高,主要受周边陆源物质输入稀释的控制,为典型的“大西洋型碳酸盐旋回”,有机碳、生物蛋白石、碳酸钙以及陆源沉积物的堆积速率均在MIS 2期、MIS 4期和MIS 5e期出现高值。其中,MIS 2期和MIS 4期生源和陆源沉积堆积速率增加可能与冰期时冬季风增强及海平面下降导致陆源营养物质输入增加对初级生产力的刺激有关,也可能与陆源物质输入增加对海洋生源颗粒物输出的压载作用增强有关。而MIS 5e期南海海平面高度与现代相仿,间冰期较强的夏季风引起的越南沿岸上升流增强是导致该时段本研究区域表层初级生产力增强,沉积物总堆积速率及各组分堆积速率都相应增加的主要原因。

  • 加载中
  • 图 1  沉积物柱样BIS-187-61站位图

    Figure 1. 

    图 2  柱状样BIS-187-61的年龄框架

    Figure 2. 

    图 3  南海西南部柱状样BIS-187-61的沉积速率SR(a),干密度DBD(b)和堆积速率MAR(c)

    Figure 3. 

    图 4  南海西南部柱状样BIS-187-61孔中有机碳百分含量(a);生物蛋白石百分含量(b);陆源物质百分含量(c);碳酸盐百分含量(d);有机碳和氮元素比值(e);XRF中Ca的值(f)

    Figure 4. 

    图 5  南海西部柱状样BIS-187-61碳酸盐的堆积速率(a);有机碳堆积速率(b);生物蛋白石堆积速率(c);陆源物质的堆积速率(d)

    Figure 5. 

    图 6  末次间冰期以来南海西南部上升流海域初级生产力和新生产力变化

    Figure 6. 

    图 7  间冰期(a)和冰期(b)时南海地形地貌[25],及末次间冰期以来全球海平面的平均变化(c)

    Figure 7. 

    表 1  南海不同海域的第四纪古生产力特征

    Table 1.  Characteristics of the reconstructed productivity in different areas in the SCS

    位置站位北纬东经指标变化特征可能的影响因素参考文献
    南海
    北部
    1792818°9′36″119°26′24″底栖有孔虫丰度末次冰期和MIS 6
    期生产力较高
    冰期冬季风增强,冬季上升
    流加强,而且陆源营养物质
    输入量增加
    [31]
    1793719°30′117°39.9′沉积物中有机碳的含
    量及不同有机碳比值
    生产力在MIS 2期
    较高
    冰期冬季风强化, 海水混合程
    度加强, 营养物质利用更充分
    以及陆源输入增多导致营养
    物质增加
    [32]
    南海
    西部
    1795414°48′111°31′48″Ba/(Zr+Rb)值底栖
    有孔虫丰度和有机碳
    通量
    间冰期生产力高,
    MIS 3期最大
    夏季风增强,上升流发育,带
    来大量营养物质
    [33, 34]
    MD05-290114°13′12″110°26′24″生源组分、颗石藻丰度冰期生产力高间冰
    期生产力低、末次冰
    期生产力最高
    冰期海平面下降,陆源物质输
    入增加,东北风发育也促进生
    产力的提高
    [35, 36]
    BIS-187-6111°25.5′111°17.0′有机碳通量、蛋白石通
    冰期生产力高,间冰
    期低
    冰期陆源物质输入增多,营养
    物质增多促进生产力提高
    本研究
    南海
    南部
    ODP11439°12′36″113°10′12″蛋白石百分含量及其堆积
    速率钙质超微化
    石丰度及堆积速率
    间冰期生产力高,冰
    期生产力低
    间冰期夏季风增
    强,上升流增强,营养物质增加
    [21, 22]
    MD05-28968°29′24″111°15′36″Ba/Al比值间冰期生产力高,
    MIS 3期生产力较
    间冰期夏季风增强,上升流增
    强,陆源有机物质输入增多
    [37]
    下载: 导出CSV
  • [1]

    Wang P, Li Q, Li C F. Geology of the China Seas[M]. Elsevier, 2014.

    [2]

    Cheng X, Huang B, Jian Z, et al. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: a present-LGM comparison[J]. Marine Micropaleontology, 2005, 54(1): 125-139.

    [3]

    Zhao M, Huang C Y, Wang C C, et al. A millennial-scale UK′ 37 sea-surface temperature record from the South China Sea(8°N) over the last 150 kar: Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236: 39-55. doi: 10.1016/j.palaeo.2005.11.033

    [4]

    Hellerman S, Rosenstein M. Normal monthly wind stress over the world ocean with error estimates[J]. Journal of Physical Oceanography, 1983, 13(7): 1093-1104. doi: 10.1175/1520-0485(1983)013<1093:NMWSOT>2.0.CO;2

    [5]

    WIESNER M G. Fluxes of pariculate matter in the South China Sea[J]. Particle Flux in the Ocean, Scope 57, 1996: 293-312.

    [6]

    Jian Z, Cheng X, Zhao Q, et al. Oxygen isotope stratigraphy and events in the northern South China Sea during the last 6 million years[J]. Science in China Series D: Earth Sciences, 2001, 44(10): 952-960. doi: 10.1007/BF02907088

    [7]

    Tamburini F, Adatte T, Föllmi K, et al. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0-140 000 years): mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology, 2003, 201(1): 147-168.

    [8]

    Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record[J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033

    [9]

    Ragueneau O, Tréguer P, Leynaert A, et al. A review of the Si cycle in the modern ocean: recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy[J]. Global and Planetary Change, 2000, 26(4): 317-365. doi: 10.1016/S0921-8181(00)00052-7

    [10]

    Wells M L, Vallis G K, Silver E A. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 1999, 398(6728): 601. doi: 10.1038/19281

    [11]

    Archer D, Lyle M, Rodgers K, et al. What controls opal preservation in tropical deep-sea sediments?[J]. Paleoceanography, 1993, 8(1): 7-21. doi: 10.1029/92PA02803

    [12]

    DeMaster D J. The supply and accumulation of silica in the marine environment[J]. Geochimica et Cosmochimica acta, 1981, 45(10): 1715-1732. doi: 10.1016/0016-7037(81)90006-5

    [13]

    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    [14]

    Hurd D C, Theyer F. Changes in the physical and chemical properties of biogenic silica from the central equatorial Pacific; Part Ⅱ, Refractive index, density, and water content of acid-cleaned samples[J]. American Journal of Science, 1977, 277(9): 1168-1202. doi: 10.2475/ajs.277.9.1168

    [15]

    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    [16]

    Imbrie J, Hays J D, Martinson D G, et al. The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record[C]. Milankovitch & Climate: Understanding the Response to Astronomical Forcing. Milankovitch and Climate: Understanding the Response to Astronomical Forcing, 1984.

    [17]

    Wetzel A, Tjallingii R, Wiesner M G. Bioturbational structures record environmental changes in the upwelling area off Vietnam (South China Sea) for the last 150, 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 311(3-4): 256-267. doi: 10.1016/j.palaeo.2011.09.003

    [18]

    Wang P, Wang L, Bian Y, et al. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles[J]. Marine Geology, 1995, 127(1-4): 145-165. doi: 10.1016/0025-3227(95)00008-M

    [19]

    Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156(1): 245-284. https://www.sciencedirect.com/science/article/abs/pii/S0025322798001820

    [20]

    Wang Y, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years[J]. Nature, 2008, 451(7182): 1090-1093. doi: 10.1038/nature06692

    [21]

    王汝建, 李建.南海ODP1143站第四纪高分辨率的蛋白石记录及其古生产力意义[J].科学通报, 2003, 48(1): 74-77. doi: 10.3321/j.issn:0023-074X.2003.01.019

    WANG Rujian, LI Jian. Quaternary high resolution opal record and its paleoproductivity implication at ODP site 1143, southern South China Sea[J]. Chinese Science Bulletin, 2003, 48(1): 74-77. doi: 10.3321/j.issn:0023-074X.2003.01.019

    [22]

    刘传联, 祝幼华, 成鑫荣.南海南部第四纪表层海水古生产力变化的钙质超微化石证据[J].海洋地质与第四纪地质, 2001, 21(4): 61-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=11661e2f-87e7-4fbe-b362-07f952db01ae

    LIU Chuanlian, ZHU Youhua, CHENG Xinrong. Calcareous nanno- fossil evidence for variations in Quaternary surface water paleopro- ductivity in the southern South China Sea[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 61-66. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=11661e2f-87e7-4fbe-b362-07f952db01ae

    [23]

    Zhao M, Huang C Y, Wang C C, et al. A millennial-scale U 37 K′ sea-surface temperature record from the South China Sea (8 N) over the last 150 kar: Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1): 39-55. https://www.sciencedirect.com/science/article/pii/S0031018206001313

    [24]

    Wang P X, Min Q B, Bian Y H, et al. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130, 000 years and their paleo-oceanographic implications [J]. Acta Geologica Sinica, 1986, 60(3): 215-225.

    [25]

    Liu Z, Zhao Y, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    [26]

    Stevenson F J, Cheng C N. Organic geochemistry of the Argentine Basin sediments: carbon-nitrogen relationships and Quaternary correlations[J]. Geochimica et Cosmochimica Acta, 1972, 36(6): 653-671. doi: 10.1016/0016-7037(72)90109-3

    [27]

    Emerson S, Hedges J I. Processes controlling the organic carbon content of open ocean sediments[J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621

    [28]

    Thunell R C, Qingmin M, Calvert S E, et al. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7(2): 143-162. doi: 10.1029/92PA00278

    [29]

    Sarnthein M, Winn K, Duplessy J C, et al. Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21, 000 years[J]. Paleoceanography, 1988, 3(3): 361-399. doi: 10.1029/PA003i003p00361

    [30]

    Eppley R W, Peterson B J. Particulate organic matter flux and planktonic new production in the deep ocean[J]. Nature, 1979, 282(5740): 677. doi: 10.1038/282677a0

    [31]

    黄宝琦, 翦知湣, 林慧玲.南海东北部晚第四纪古生产力变化[J].海洋地质与第四纪地质, 2000, 20(2): 65-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=2d853c8f-0b28-460b-abca-d9a69ce2d700

    HUANG Baoqi, JIAN Zhimin, LIN Huiling. Late Quaternary chan- ges of paleoproductivity in the northeastern South China Sea[J]. Marine Geology & Quaternary Geology, 2000, 20(2): 65-68. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=2d853c8f-0b28-460b-abca-d9a69ce2d700

    [32]

    李丽, 王慧, 罗布次仁, 等.南海北部4万年以来有机碳和碳酸盐含量变化及古海洋学意义[J].海洋地质与第四纪地质, 2008, 28(6): 79-85. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=23581573-de42-4095-96de-54ca3ac9c70c

    LI li, WANG Hui, LUO Buciren, et al. The characterizations and paleoceanographic significances of organic and inorganic carbon in northern South China Sea during past 40ka[J]. Marine Geology & Quaternary Geology, 2008, 28(6): 79-85. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=23581573-de42-4095-96de-54ca3ac9c70c

    [33]

    青子琪, 刘连文, 郑洪波.越南岸外夏季上升流区22万年来东亚季风的沉积与地球化学记录[J].海洋地质与第四纪地质, 2005, 25(2): 68-72. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=58a23395-3883-471e-a1ae-85c46b683084

    QING Ziqi, LIU Lianwen, ZHENG Hongbo. Sedimentological and geochemical records of East Asian Monsoon in summer upwelling region off the coast of Vietnam for the past 220ka[J]. Marine Geology & Quaternary Geology, 2005, 25(2): 68-72. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=58a23395-3883-471e-a1ae-85c46b683084

    [34]

    黄宝琦, 翦知湣.越南岸外晚第四纪上升流与东亚夏季风变迁[J].第四纪研究, 1999, 19(6): 518-526. doi: 10.3321/j.issn:1001-7410.1999.06.004

    HUANG Baoqi, JIAN Zhimin. Late Quaternary coastal upwelling and variations of the East Asian summer Monsoon off the Vietnam coast[J]. Quaternary Research, 1999, 19(6): 518-526. doi: 10.3321/j.issn:1001-7410.1999.06.004

    [35]

    向菲, 王汝建, 李建如, 等.越南岸外上升流区48万年来高分辨率的生源组分记录及其古海洋学意义[J].海洋地质与第四纪地质, 2006, 26(6): 81-89. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=566e7f8c-2d53-4d5c-8e7c-d098e12dab86

    XIANG Fei, WANG Rujian, LI Jianru, et al. High-resolution records of biogenic components and their Paleoceanographic implications in the upper upwelling area of the South China Sea off eastern Viet- nam over past 480 ka[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 81-89. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=566e7f8c-2d53-4d5c-8e7c-d098e12dab86

    [36]

    苏翔, 刘传联, 李建如.越南岸外上升流区45万年来上层海水变化的颗石藻证据[J].海洋地质与第四纪地质, 2007, 27: 71-76. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=d3e7634c-256a-4ddc-94f8-be2e98c4d2f8

    SU Xiang, LIU Chuanlian, LI Jianru. Coccolith evidence for variations in upper ocean water in upwelling area off the coast of Viet- nam for the past 450 ka[J]. Marine Geology & Quaternary Geology, 2007, 27: 71-76. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=d3e7634c-256a-4ddc-94f8-be2e98c4d2f8

    [37]

    梅西, 张驯华, 郑洪波, 等.南海南部120 ka以来元素地球化学记录的东亚夏季风变迁[J].矿物岩石地球化学通报, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004

    MEI Xi, ZHANG Xunhua, ZHENG Hongbo, et al. Element Geo- chemical record in southern South China Sea sediments during the past 120 ka and its implications for East Asian summer Mon- soon variation[J]. Bulletin of Mineralogy, Petrology and Geo-Chemistry, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004

    [38]

    Pennington J T, Chavez F P. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989-1996 in Monterey Bay, California[J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2000, 47(5-6): 947-973. doi: 10.1016/S0967-0645(99)00132-0

    [39]

    Ning X R, Chai F, Xue H, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C10). https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JC002968

    [40]

    Chen C, Wang G. Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon[J]. Journal of Geophysical Research: Oceans, 2014, 119(9): 5745-5754. doi: 10.1002/2014JC010309

    [41]

    Honjo S. Seasonality and interaction of biogenic and lithogenic particulate flux at the Panama Basin[J]. Science, 1982, 218(4575): 883-884. doi: 10.1126/science.218.4575.883

    [42]

    Jickells T D, Dorling S, Deuser W G, et al. Air-borne dust fluxes to a deep water sediment trap in the Sargasso Sea[J]. Global Biogeochemical Cycles, 1998, 12(2): 311-320. doi: 10.1029/97GB03368

    [43]

    Honjo S, Manganini S J, Cole J J. Sedimentation of biogenic matter in the deep ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1982, 29(5): 609-625. doi: 10.1016/0198-0149(82)90079-6

    [44]

    Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack[J]. Climate of the Past, 2016, 12(4): 1079. doi: 10.5194/cp-12-1079-2016

    [45]

    Lambeck K, Chappell J. Sea level change through the last glacial cycle[J]. Science, 2001, 292(5517): 679-686. doi: 10.1126/science.1059549

  • 加载中

(7)

(1)

计量
  • 文章访问数:  3297
  • PDF下载数:  70
  • 施引文献:  0
出版历程
收稿日期:  2018-03-16
修回日期:  2018-09-28
刊出日期:  2019-04-28

目录