Paleo-environment and paleo-productivity of the hydrate reservoirs in the Shenhu area of northern South China Sea
-
摘要:
天然气水合物作为一种新型的清洁能源,其形成需要稳定的有机质供应。南海北部神狐海域为天然气水合物成藏的有利区域,2017年中国地质调查局在神狐海域水合物试采获得突破性成功。为了进一步了解古环境和古生产率对形成水合物有机质供应的影响,对南海北部神狐海域水合物钻探区SH3站位180~215mbsf(meters below the sea floor)层位,尤其是水合物主要赋存层位190~200mbsf的古环境、古生产率以及陆源碎屑物质的地球化学指标进行分析研究。研究表明水合物主要赋存层位陆源碎屑物质(TDM)输入增加,较高的陆源碎屑物质输入和次氧化的沉积环境共同造就了比较好的有机质的外部保存条件;同时较强的水动力条件,有利于藻类生物的繁殖,因此,生物成因有机质比较丰富, 再加上神狐海域有比较良好的热解气的形成条件,这3个层面共同保证了神狐海域具有比较充足的有机质供应。
Abstract:The accumulation of natural gas hydrate requires a stable supply of organic gas. The Shenhu area of the northern part of the South China Sea has been proved a favorable area for natural gas hydrates generation. In the year of 2017, the trial case of hydrate production made a breakthrough there. To further understand the influence of the paleo-environment and paleo- productivity onto organic preservation, this paper is specially devoted to the interval of 180-215 meters below the sea floor at the station of SH3, especially the horizon of 190-200mbsf of the main hydrate storage in the Shenhu area. Studies on the Paleo-environment, redox environment and terrigenous detrital material input suggests that the input of terrigenous detrital material (TDM) increase in the hydrate-bearing horizons and the suboxic depositional environments. The two factors jointly created a favorable external condition for storage and preservation of organic matters. At the same time, the stronger hydrodynamic conditions are conducive to the production of algae, and the biogenic organic gas is relatively abundant. Together with the better conditions for the formation of thermogenic gas, there are enough gas sources for the formation of gas hydrate deposits in the Shenhu area.
-
Key words:
- paleo-productivity /
- paleo-environments /
- Shenhu area /
- gas hydrate
-
图 1 神狐海域钻探区分布图及SH3站位分布位置地形地质图(改编自文献[15])
Figure 1.
表 1 神狐海域钻探区水合物油气体系(SH2、SH3和SH7站位的地球化学数据据文献[3, 25])
Table 1. Characteristics of the gas-hydrate petroleum system in the Shenhu drilling area highlighting the distinct differences between the three sites
站位 水合物稳定条件 气体组成以及气体来源 气体运移体系 SH2 海底温度:4.84℃
海底压力:12.46MPa
水深:1245mCH4:99.89%;δ13C1:-56.7%,生
物气为主导的混合气气烟囱伴有很多微小的断层;低甲
烷通量SH3 海底温度: 5.53℃
海底压力: 12.61MPa
地热梯度: 49.34℃/kmδ13C1: -61.6%, 生物气为主导的
混合气气烟囱伴有很多微小的断层;低甲
烷通量SH7 海底温度: 6.44℃
海底压力: 11.20MPa
地热梯度: 43.65℃/km生物气为主导的混合气 微小断层;低甲烷通量 表 2 主、微量元素随深度的分布
Table 2. Distribution of major and trace elements with depth
深度/mbsf Al/% Si/% Ti/% P/% TOC/% V/×10-6 Cr/×10-6 Ni/×10-6 Th/×10-6 U/×10-6 Mo/×10-6 Co/×10-6 183.52 6.977 21.285 0.476 0.070 0.181 95.959 69.624 39.928 11.778 2.213 0.242 13.5 190.69 6.584 22.489 0.455 0.080 0.464 85.453 65.464 36.708 10.628 2.246 0.819 12.3 190.86 6.572 21.073 0.436 0.075 0.171 81.188 61.827 71.951 10.444 2.142 0.759 26.2 191.05 6.813 21.706 0.451 0.069 0.175 85.115 64.530 37.070 10.908 2.163 0.278 12.5 193.16 5.490 19.593 0.409 0.095 0.145 70.181 53.829 30.255 9.022 2.304 0.268 10.4 193.49 5.513 20.501 0.403 0.080 0.137 67.611 50.653 34.531 9.225 2.125 0.603 9.9 196.02 6.194 22.299 0.436 0.080 0.166 78.922 61.643 36.370 9.842 2.058 0.668 12.7 201.29 6.943 21.585 0.451 0.073 0.193 90.242 66.371 36.960 10.909 2.134 0.270 13.0 201.33 6.845 20.971 0.470 0.072 0.170 88.183 64.591 40.737 10.650 2.130 0.356 13.9 211.62 7.457 22.312 0.453 0.071 0.197 89.906 68.959 37.797 11.755 2.217 0.300 13.1 211.66 7.405 22.836 0.477 0.071 0.198 91.907 70.742 38.436 11.959 2.200 0.245 13.4 最小值 5.490 19.593 0.403 0.069 0.137 67.611 50.653 30.255 9.022 2.058 0.242 9.880 最大值 7.457 22.836 0.477 0.095 0.464 95.959 70.742 71.951 11.959 2.304 0.819 26.179 平均值 6.618 21.514 0.447 0.076 0.200 84.061 63.476 40.068 10.647 2.176 0.437 13.702 表 3 氧化物指标及各元素比值
Table 3. Oxide indexes and ratios of elements
深度/mbsf Al2O3 /% TiO2 /% SiO2/% Al/Ti P/Al p/Ti SiO2/Al2O3 V/Cr V/Ni U/Th U/Mo Ni/Co 183.52 13.179 0.793 45.676 14.658 0.010 0.147 3.466 1.378 2.403 0.188 9.152 2.947 190.69 12.437 0.758 48.260 14.470 0.012 0.176 3.880 1.305 2.328 0.211 2.742 2.995 190.86 12.414 0.727 45.221 15.073 0.011 0.172 3.643 1.313 1.128 0.205 2.822 2.748 191.05 12.869 0.752 46.579 15.106 0.010 0.153 3.619 1.319 2.296 0.198 7.789 2.976 193.16 10.370 0.682 42.045 13.423 0.017 0.232 4.054 1.304 2.320 0.255 8.596 2.914 193.49 10.414 0.672 43.994 13.680 0.015 0.199 4.225 1.335 1.958 0.230 3.526 3.494 196.02 11.700 0.727 47.852 14.206 0.013 0.183 4.090 1.280 2.170 0.209 3.082 2.870 201.29 13.115 0.752 46.320 15.395 0.011 0.162 3.532 1.360 2.442 0.196 7.907 2.850 201.33 12.930 0.783 45.002 14.564 0.011 0.153 3.481 1.365 2.165 0.200 5.985 2.925 211.62 14.086 0.755 47.880 16.461 0.010 0.157 3.399 1.304 2.379 0.189 7.392 2.890 211.66 13.988 0.795 49.004 15.524 0.010 0.149 3.503 1.299 2.391 0.184 8.980 2.868 min 10.370 0.672 42.045 13.423 0.010 0.147 3.399 1.280 1.128 0.184 2.742 2.748 max 14.086 0.795 49.004 16.461 0.017 0.232 4.225 1.378 2.442 0.255 9.152 3.495 ave 12.500 0.745 46.167 14.778 0.012 0.171 3.717 1.324 2.180 0.206 6.179 2.953 -
[1] Collett T S. Natural gas hydrate of the Prudhoe bay and Kuparuk River area, north slope Alaska [J]. AAPG Bulletin, 1993, 77(5): 793-812.
[2] Collett T S, Dallimore S R. Detailed analysis of gas hydrate roceinduced drilling and production hazardsd [R]. Proceedings of the 4th International Conferenceon Gas Hydrates, 2002, 73: 47-52.
[3] Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu area, northern South China Sea: geochemical results [J]. Journal of Geological Research, 2011, 27: 1-10.
[4] Wu J F, Sunda W, Boyle E A, et al. Phosphate depletion in the western North Atlantic Ocean [J]. Science, 2000, 289: 759-762. doi: 10.1126/science.289.5480.759
[5] Miao Q, Thunell R C. Late Pleistocene-Holocene distribution of deep-sea benthic foraminifera in the South China Sea[R]: Paleoceanography implications[J]. Journal of Foraminifera Research, 1996, 26(1): 9-23.
[6] Zhang S L, Chen D F, Huang J Q. Conditions of accumulation of gas hydrate in Baiyun Sag [J]. Natural Gas Industry, 2007, 27: 7-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200709002
[7] 吴能友, 邬黛黛, 陈雪刚, 等.南海东北部东沙海域沉积物烃类有机地球化学研究及其意义[J].南海地质研究, 2007, 23: 1-14. http://www.cqvip.com/Main/Detail.aspx?id=29623366
WU Nengyou, WU Daidai, CHEN Xuegang, et al. Hydrocarbon organic geochemistry of sediments in the Dongsha area of the northeastern South China Sea and its significance[J]. South China Sea Geological Research, 2007, 23: 1-14. http://www.cqvip.com/Main/Detail.aspx?id=29623366
[8] 陈多福, 姚伯初, 赵振华, 等.珠江口和琼东南盆地天然气水合物形成和稳定分布的地球化学边界条件及其分布区[J].海洋地质与第四纪地质, 2001, 21(4): 73-78. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=b820ad45-6ebd-45ea-b8e7-2f0f5a143172
CHEN Duofu, YAO Bochu, ZHAO Zhenghua, et al. Geochemical boundary conditions and distribution of natural gas hydrate formation in the Pearl River Estuary and Qiongdongnan basin[J]. Marine Geology and Quaternary Geology, 2001, 21(4): 73-78. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=b820ad45-6ebd-45ea-b8e7-2f0f5a143172
[9] 邬黛黛, 吴能友, 张美, 等.东沙海域SMI与甲烷通量的关系及对水合物的指示[J].地球科学-中国地质大学学报, 2013, 38(6): 1309-1320. http://d.old.wanfangdata.com.cn/Periodical/dqkx201306014
WU Daidai, WU Nengyou, ZHANG Mei, et al. Relationship between SMI and methane fluxes in the Dongsha sea and their indications for hydrates [J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6): 1309-1320. http://d.old.wanfangdata.com.cn/Periodical/dqkx201306014
[10] 刘昌玲, 孟庆国, 李承峰, 等.南海北部陆坡天然气水合物及其赋存沉积物特征[J].地学前缘, 2017, 24(4): 41-50. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704005
LIU Changling, MENG Qingguo, LI Chengfeng, et al. Characteristics of gas hydrates and sedimentary sediments in the northern slopes of the South China Sea[J]. Earth Science Frontier, 2017, 24(4): 41-50. http://d.old.wanfangdata.com.cn/Periodical/dxqy201704005
[11] 苏丕波, 梁金强, 付少英, 等.南海北部天然气水合物成藏地质条件及成因模式探讨[J].中国地质, 2017, 44(3): 415-427. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201703001
SU Pibo, LIANG Jingqiang, FU Shaoying, et al. Geological conditions and genetic models of gas hydrate accumulation in the northern South China Sea[J]. Chinese Geology, 2017. 44(3): 415-427. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201703001
[12] Archer D, Buffett B, Brovkin V. Ocean methane hydrates as a slow tipping point in the global carbon cycle [J]. Proceedings of the National Academy of Sciences of the United States of America-Physical Sciences, 2009, 106: 20596-20601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af0285ca07b3ed347305c74d17785596
[13] Tyson R V. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study [J]. Organic Geochemistry, 2001, 32: 333-339. doi: 10.1016/S0146-6380(00)00161-3
[14] Wan Z X, Xu X, Wang B, et al. Geothermal analysis of boreholes in the Shenhu gas hydrate drilling area, northern South China Sea: Influence of mud diapirs on hydrate occurrence [J]. Journal of Petroleum Science and Engineering, 2017, 158: 424-432. doi: 10.1016/j.petrol.2017.08.053
[15] Ding X J, Liu G D, Lu X J, et al. The impact on organic matter preservation by the degree of oxidation and reduction and sedimentation rates of Erlian Basin [J]. Natural Gas Geoscience, 2014, 25: 810-817. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201406003
[16] Li W H, Zhang Z H, Li Y C. Some aspects of excellent marine source rock formation: implications on enrichment regularity of organic matter in continental margin basins [J]. Chinese Journal of Geochemistry. 2015, 34: 47-54. doi: 10.1007/s11631-014-0018-2
[17] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview [J]. Geological Society of London Special Publication, 1991, 58: 1-24. doi: 10.1144/GSL.SP.1991.058.01.01
[18] 董军社, 陈平富.南海北部陆架晚第三纪δ13C记录与古生产力[J].海洋地质与第四纪地质, 1997, 17(1): 40-44. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=ba13178e-487a-4690-9faa-32257f5c7506
DONG Junshe, CHEN Pingfu. Neogene carbon isotope records from the northern south china sea and their bearing on paleoproductivity. [J]. Marine Geology and Quaternary Geology, 1997, 17(1): 40-44. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=ba13178e-487a-4690-9faa-32257f5c7506
[19] 黄宝琦.南海东北部晚第四纪古生产力变化[J].海洋地质与第四纪地, 2000, 20(2): 65-68. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200002011
HUANG Baoqi. Changes of Late Quaternary productivity in the northeastern South China Sea[J]. Marine Geology and Quaternary Geology, 2000, 20(2): 65-68. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200002011
[20] 李建, 王汝建.南海北部一百万年以来的表层古生产力变化:来自ODP1144站的蛋白石记录[J].地质学报, 2004, 78(2): 228-233. doi: 10.3321/j.issn:0001-5717.2004.02.012
LI Jian, WANG Rujian. Changes in surface productivity in the northern South China Sea over 1 million years: Opal records from ODP 1144 station [J]. Geological Journal, 2004, 78(2): 228-233. doi: 10.3321/j.issn:0001-5717.2004.02.012
[21] 李鹤, 黄宝琦, 王娜.南海北部MD12-3429站位海水古生产力和溶解氧含量特征[J].古生物学报, 2017, 56(2): 238-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gswxb201702010
LI He, HUANG Baoqi, WANG Na. Palo- Productivity and dissolved oxygen contents in the seawater of MD12-3429 station in the northern South China Sea[J]. Acta Palaeontologica Sinica, 2017, 56(2): 238-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gswxb201702010
[22] 吴聪, 陈炽新, 陈芳, 等.南海北部陆坡SH1B孔MIS6期以来的古生产力和古环境变化的硅藻记录[J].海洋地质与第四纪地质, 2015, 35(5): 95-102. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=09fe8f87-0723-4897-b010-b9c351f3b2c6
WU Cong, CHENG Zhixing, CHENG Fang, et al. The paleo-productivity and paleo-environmental change of diatom records since the MIS6 period of the SH1B hole in the northern slope of the South China Sea [J]. Marine Geology and Quaternary Geology, 2015, 35(5): 95-102. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=09fe8f87-0723-4897-b010-b9c351f3b2c6
[23] Zhu Y H, Su P B. Gas sources of natural gas hydrates in the Shenhu drilling area, South China Sea: geochemical evidence and geological analysis [J]. Journal of the Geological Society of China, 2013, 87(3): 767-776. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxb-e201303014
[24] Li S J, Chu F Y, Fang Y X, et al. Associated interpretation of sub-bottom and single-channel seismic profiles from slope of Shenhu Area in the northern South China Sea: Characteristics of gas hydrate sediment [J]. Journal of Tropical Oceanography, 2010, 29(4): 56-62. http://www.jto.ac.cn/en/y2010/v29/i4/56
[25] Su M, Yang R, Wu N Y, et al. Structural characteristics in the Shenhu area, northern continental slope of South China Sea, and their influence on gas hydrate [J]. Acta Geologica Sinica, 2014, 88(3): 318-326. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201403002.htm
[26] Liang J Q, Wang H B, Su X, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea [J]. Natural Gas Industry, 2014, 34(7): 128-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201407022
[27] Zhong Z H, Shi H S, Zhu M, et al. A discussion on the tectonic-stratigraphic framework and its origin mechanism in Pearl River Mouth Basin [J]. China Offshore Oil and Gas, 2014, 26(5): 20-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201405004
[28] Zhu W L, Huang B J, Mi L J, et al. Geochemistry, origin, and deep-water exploration potential of natural gases in the Pearl River Mouth and Qiongdongnan basins, South China Sea [J]. American Association of Petroleum Geologists Bulletin, 2009, 93: 741-761. doi: 10.1306/02170908099
[29] Lin C C, Lin A S, Liu C S, et al. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan [J]. Marine Geophysical Research, 2013, 12: 11-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ac0b035e8ba97e25d4a8c2a9f5dc2e8
[30] Liu C S, Huang I L, Teng L S. Structural features off southwestern Taiwan [J]. Marine Geology, 1997, 137: 305-319. doi: 10.1016/S0025-3227(96)00093-X
[31] Suess E, Huang Y Y, Wu N Y, et al. Cruise report SO-177, Sino-German cooperative project, South China Sea. in: distribution, formation and effect of methane & gas hydrate on the environment[R]. 2004.
[32] Han X, Suess E, Huang Y, et al. Jiulong methane reef: microbial mediation of seep-carbonates in the South China Sea[J]. Marine Geology, 2008, 248(3-4): 243-256. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.margeo.2007.11.012/
[33] Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production [J]. Nature, 1999, 400: 525-531. doi: 10.1038/22941
[34] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean [J]. Nature, 1997, 387: 272-275. doi: 10.1038/387272a0
[35] Luo Q Y, Zhong N N, Zhu L, et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China [J]. Chinese Science Bulletin, 2013, 58: 1299-1309. doi: 10.1007/s11434-012-5534-z
[36] Li W, Zhang Z. Paleoenvironment and its control of the formation of oligocene marine source rocks in the deep-water area of the northern South China Sea [J]. Energy & Fuels, 2017, 31(10): 10598-10611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=338a30a1c81365416408fe4406e675a8
[37] Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr [J]. Paleoceanography, 2000, 15: 570-592. doi: 10.1029/1999PA000457
[38] Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean [J]. Paleogeography, Paleoclimatology, Paleoecology, 2011, 308: 65-83. doi: 10.1016/j.palaeo.2010.07.007
[39] Li Y T, Zhang G S, Ellis, et al. Depositional environment and organic matter accumulation of Upper Ordovician-Lower Silurian marine shale in the Upper Yangtze Platform, South China [J]. Paleogeography, Paleoclimatology, Paleoecology, 2017, 466: 252-264. doi: 10.1016/j.palaeo.2016.11.037
[40] Li D, Li R, Zhu Z, et al. Origin of organic matter and paleo-sedimentary environment reconstruction of the Triassic oil shale in Tongchuan City, southern Ordos Basin (China) [J]. Fuel, 2017, 208: 223-235. doi: 10.1016/j.fuel.2017.07.008
[41] Mclennan. relationship between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochemistry, Geophsics, Geosystem, 2011, 73: 181-187.
[42] Li N, Feng D, Chen L, et al. Compositions of foraminifera-rich turbidite sediments from the Shenhu area on the northern slope of the South China Sea: Implication for the presence of deep water bottom currents [J]. Journal of Asian Earth Sciences, 2017, 138: 148-160. doi: 10.1016/j.jseaes.2017.02.010
[43] Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60: 3869-3878. doi: 10.1016/0016-7037(96)00236-0
[44] 张辉, 卢海龙, 梁金强, 等.南海北部神狐海域沉积物颗粒对于天然气水合物聚集的主要影响[J].科学通报, 2016, 61(3): 388-397. http://www.cqvip.com/QK/94252X/201603/667908763.html
ZHANG Hui, LU Jinghai, LIANG Jingqiang, et al. The main influence of sediment particles in the Shenhu area of the northern South China Sea on gas hydrate accumulation [J]. Science Bulletin, 2016, 61(3): 388-397. http://www.cqvip.com/QK/94252X/201603/667908763.html
[45] Qin J Z, Tenger, Fu X D. Study of formation condition on marine excellent source rocks and its evaluation [J]. Petroleum Geology & Experimrnt, 2009, 31(4): 366-372. http://www.sysydz.net/EN/Y2009/V31/I4/366
[46] Bahk J J, Umik, Holland M. Core lithologies and their constraints on gas-hydrate occurrence in the East Sea, offshore Korea: results from the site UBGH1-9 [J]. Marine and Petroleum Geology, 2 011, 28(10): 1943-1952. doi: 10.1016/j.marpetgeo.2010.12.003
[47] 何家雄, 马文宏, 祝有海, 等.南海北部边缘盆地天然气成因类型及成藏时间综合判识与确定[J].中国地质, 2011, 38(1): 145-160. doi: 10.3969/j.issn.1000-3657.2011.01.016
HE Jiangxiong, MA Wenhong, ZHU Youhai, et al. Comprehensive identification and determination of genetic types and formation time of natural gas in the northern marginal basin of the South China Sea [J]. Chinese Geology, 2011, 38(1): 145-160. doi: 10.3969/j.issn.1000-3657.2011.01.016
[48] 苏丕波, 梁金强, 沙志彬, 等.南海北部神狐海域天然气水合物成藏动力学模拟[J].石油学报, 2011, 32(2): 226-232. http://d.old.wanfangdata.com.cn/Periodical/syxb201102006
SU Pibo, LIANG Jingqiang, SHA Zhibing, et al. Dynamics simulation of gas hydrate formation in Shenhu area, northern South China Sea [J]. Acta Petroleum Sinica, 2011, 32(2): 226-232. http://d.old.wanfangdata.com.cn/Periodical/syxb201102006
[49] 苏丕波, 梁金强, 沙志彬, 等.神狐深水海域天然气水合物成藏的起源条件[J].西南石油大学学报:自然科学版, 2014, 36(2): 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb201402001
SU Pibo, LIANG Jingqiang, SHA Zhibing, et al. Gas sources condition of gas hydrate formation in Shenhu deep water sea zone[J]. Journal of Southwest Petroleum University: Natural Science Edition, 2014, 36(2):: 1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb201402001
[50] Sadiq M. Thermodynamic solubility relationships of inorganic vanadium in the marine-environment [J]. Marine Chemistry, 1988, 23: 87-96. doi: 10.1016/0304-4203(88)90024-2
[51] Achterberg E P, Boussemart M, Davison W. Speciation and cycling of trace metals in Esthwaite Water: A productive English lake with seasonal deep-water anoxia [J]. Geochemistry & Geophysics, 1997, 61: 5233-5253. https://www.sciencedirect.com/science/article/pii/S0016703797003165
[52] Jones B, Manning D A. Comparison of geochemical indexes used for the interpretation of paleoredox conditions in ancient mudstones[J]. Chemical Geology. 1994, 111(1-4): 111-129. doi: 10.1016/0009-2541(94)90085-X
[53] Bahk J J, Kim D H, Chun J H, et al. Gas hydrate occurrences and their relation to host sediment properties: results from second Ulleung Basin gas hydrate drilling expedition, East Sea [J]. Marine and Petroleum Geology, 2013. 47(11): 21-29. https://www.sciencedirect.com/science/article/abs/pii/S0264817213001293
[54] Meyer E E, Burgreen B N, Lackey H, et al. Evidence for basin restriction during syn-collisional basin formation in the Silurian Arisaig Group, Nova Scotia [J]. Chemical Geology, 2008, 256(1-2): 1-11. doi: 10.1016/j.chemgeo.2008.06.016