真光层海水过饱和甲烷的来源及机制探讨

张亭亭, 梁前勇, 赵静, 肖曦, 董一飞, 郭斌斌, 钟超, 吴学敏, 杨林. 真光层海水过饱和甲烷的来源及机制探讨[J]. 海洋地质与第四纪地质, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101
引用本文: 张亭亭, 梁前勇, 赵静, 肖曦, 董一飞, 郭斌斌, 钟超, 吴学敏, 杨林. 真光层海水过饱和甲烷的来源及机制探讨[J]. 海洋地质与第四纪地质, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101
ZHANG Tingting, LIANG Qianyong, ZHAO Jing, XIAO Xi, DONG Yifei, GUO Binbin, ZHONG Chao, WU Xuemin, YANG Lin. Discussion on the sources and mechanism of supersaturated methane in euphotic seawater[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101
Citation: ZHANG Tingting, LIANG Qianyong, ZHAO Jing, XIAO Xi, DONG Yifei, GUO Binbin, ZHONG Chao, WU Xuemin, YANG Lin. Discussion on the sources and mechanism of supersaturated methane in euphotic seawater[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 50-59. doi: 10.16562/j.cnki.0256-1492.2018083101

真光层海水过饱和甲烷的来源及机制探讨

  • 基金项目: 南海北部天然气水合物重点区环境调查项目(DD20190218);国家自然科学基金青年基金“海马冷泉甲烷微渗漏范围、幅度及其与水合物稳定带的相互关系”(41806074);国家自然科学基金重点项目“南海北部冷泉和天然气水合物发育区海底浅表层沉积物碳循环数值模拟”(41730528);自然资源部海底矿产资源重点实验室开放基金“海马冷泉区甲烷气体泄露的立体监测体系分析”(KLMMR-2017-A-10);自然资源部海底矿产资源重点实验室开放基金“采薇平顶海山-洋流相互作用及其对沉积动力的潜在影响”(KLMMR-2017-A-02);广州市科技计划项目2018年广东省科技创新战略专项资金任务“南海天然气水合物气源成因:来自热成因烃类微生物降解过程的指示”(201909010002)
详细信息
    作者简介: 张亭亭(1990—),女,助理工程师,主要从事海洋微生物生态学研究,E-mail:Yulanlin126@126.com
    通讯作者: 梁前勇(1983—),男,高级工程师,主要从事天然气水合物环境影响研究,E-mail:tomlqy@163.com
  • 中图分类号: P731

Discussion on the sources and mechanism of supersaturated methane in euphotic seawater

More Information
  • 真光层海水中普遍存在甲烷过饱和现象,尤其是天然气水合物区真光层的甲烷明显异常。由于临近海气界面,真光层过饱和甲烷与大气甲烷排放及全球温室效应密切相关。目前,对真光层海水的过饱和甲烷来源仍没有统一的认识。综合前人研究成果梳理了真光层海水过饱和甲烷的来源,归纳了真光层海水过饱和甲烷现象形成的影响因素,进一步探讨了原位微生物可能参与的甲烷代谢机制。真光层过饱和甲烷可能来源于沉积物、临近河流或原位微生物,且受区域、季节、营养盐等多种因素的影响。由于受氧气影响,真光层海水甲烷产生的代谢机制有其特殊性,目前推测微生物可能依旧利用常规的产甲烷途径,它们存在于海水微厌氧环境中,或自身形成抵抗氧气影响的能力;此外,微生物也可能选择对氧不敏感的新的产甲烷途径。因此,针对天然气水合物区真光层甲烷过饱和现象,开展甲烷的来源和代谢机制的研究,以期为天然气水合物试采与开发的环境评价提供理论支撑,并为探究海水甲烷对大气及全球气候的影响提供理论依据。

  • 加载中
  • 图 1  真光层海水过饱和甲烷可能的来源

    Figure 1. 

    图 2  真光层海水甲烷产生可能存在的代谢途径(据文献[95,10,106]修改)

    Figure 2. 

    表 1  真光层海水甲烷过饱和现象的实例

    Table 1.  Examples of methane supersaturation in euphotic zone of the ocean

    位置海域甲烷分布真光层过饱和甲烷浓度参考文献
    东、黄海春季表层海水中溶解甲烷浓度自沿岸向外海里呈逐渐降低趋势,在长江口外甲烷浓度呈明显的舌状分布黄海表层甲烷春季为3.43±0.23 nM;东海表层甲烷
    春季为3.24±0.59 nM,夏季为12.8±14.0 nM
    [27]
    南海北部从珠江口到外海表层海水甲烷浓度逐渐降低表层甲烷浓度为2.4~5.9 nM,过饱和度达134%~297%[26]
    易北河口及相邻的
    北海
    甲烷分布受河口富甲烷输入和外海贫甲烷稀释的
    共同影响
    海岸附近的甲烷平均浓度为30±13 nM、外海浓度为
    14±6 nM
    [28]
    南海北部陆坡天然气水合物区不同季节,表层海水甲烷浓度变化较大部分季节上层100 m甲烷浓度过饱和,高达20~30 nM[9]
    亚热带北太平洋表层海水甲烷浓度与季节无明显关系表层海水(<300 m)甲烷浓度2~3 nM,
    甲烷通量达到1.6 μmol·m−2·d−1
    [29]
    北极洋大陆架西伯利亚东部海域超过50%水域的表层海水甲烷过饱和表层海水浓度范围是0~200 nM[22]
    波罗的海中部哥特兰盆地东部水域甲烷偏高,受极地水输入的影响东部水域表层海水甲烷浓度与大气甲烷平衡(~3 nM),而浅层海水(20~40 m)浓度达15~77 nM[30]
    极地陆架区域斯图尔峡湾表层海水和次表层海水的甲烷互不影响水体甲烷浓度范围是5~55 nM[31]
    智利中部大陆架甲烷浓度可能受风力驱动的沿海上升流影响表层海水(0~30 m)甲烷饱和度为125%~550%
    (O2饱和度>100%)
    [32]
    弗拉姆海峡西部区域寡营养的北部极地水输入,甲烷浓度偏高水体浅表层(<20 m)表层甲烷浓度范围是6~9 nM[7]
    黑海研究区域位于冷泉区,甲烷浓度随深度逐渐升高近表层甲烷浓度约为5 nM[5]
    波罗的海表层海水盐度偏低,从底层到表层溶解甲烷浓度
    呈梯度下降
    表层甲烷浓度约为4 nM[6]
    下载: 导出CSV

    表 2  存活于有氧环境下产甲烷古菌类群

    Table 2.  The surviving methanogenic archaeal communities in oxic environments

    产甲烷古菌类型产甲烷古菌类群参考文献
    氢营养型Methanomicrobiales(目)Methanogenium(科)[49, 54]
    Methanobacteriales(目)Methanobacterium(属), Methanobrevibacter(属)[49, 59]
    Methanocellales(目)Methanocella(属)[50-51, 54]
    乙酸营养型Methanosarcinales(目)Methanosaeta/Methanothrix(种)[52, 54]
    Methanosarcina(属)[50-51, 54]
    甲基营养型Methanosarcinales(目)Methanosarcinaceae(科)[54, 56]
    Methanosarcinales(目)Methanomicrococcus blatticola(种)[60]
    下载: 导出CSV
  • [1]

    ICPP. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.

    [2]

    Judd A G, Hovland M, Dimitrov L I, et al. The geological methane budget at Continental Margins and its influence on climate change [J]. Geofluids, 2002, 2(2): 109-126. doi: 10.1046/j.1468-8123.2002.00027.x

    [3]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [4]

    Cicerone R J, Oremland R S. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochemical Cycles, 1988, 2(4): 299-327. doi: 10.1029/GB002i004p00299

    [5]

    Schmale O, Beaubien S E, Rehder G, et al. Gas seepage in the Dnepr paleo-delta area (NW-Black Sea) and its regional impact on the water column methane cycle [J]. Journal of Marine Systems, 2010, 80(1-2): 90-100. doi: 10.1016/j.jmarsys.2009.10.003

    [6]

    Schmale O, Blumenberg M, Kießlich K, et al. Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea) [J]. Biogeosciences, 2012, 9(12): 4969-4977. doi: 10.5194/bg-9-4969-2012

    [7]

    Damm E, Thoms S, Beszczynska-Möller A, et al. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox [J]. Polar Science, 2015, 9(3): 327-334. doi: 10.1016/j.polar.2015.05.001

    [8]

    张桂玲, 张经. 海洋中溶存甲烷研究进展[J]. 地球科学进展, 2001, 16(6):829-835 doi: 10.3321/j.issn:1001-8166.2001.06.012

    ZHANG Guiling, ZHANG Jing. Advances in studies of dissolved methane in seawater [J]. Advance in Earth Sciences, 2001, 16(6): 829-835. doi: 10.3321/j.issn:1001-8166.2001.06.012

    [9]

    梁前勇, 赵静, 夏真, 等. 南海北部陆坡天然气水合物区海水甲烷浓度分布特征及其影响因素探讨[J]. 地学前缘, 2017, 24(4):89-101

    LIANG Qianyong, ZHAO Jing, XIA Zhen, et al. Distribution characteristics and influential factors of dissolved methane in sea water above gas hydrate area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 89-101.

    [10]

    Tang K W, Mcginnis D F, Ionescu D, et al. Methane production in oxic lake waters potentially increases aquatic methane flux to air [J]. Environmental Science & Technology Letters, 2016, 3(6): 227-233.

    [11]

    McGinnis D F, Kirillin G, Tang K W, et al. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis [J]. Environmental Science & Technology Letters, 2015, 49(2): 873-880.

    [12]

    Wolfe R S. Microbial formation of methane [J]. Advances in Microbial Physiology, 1971, 6: 107-146. doi: 10.1016/S0065-2911(08)60068-5

    [13]

    Lamontagne R A, Swinnerton J W, Linnenbom V J, et al. Methane concentrations in various marine environments [J]. Journal of Geophysical Research, 1973, 78(24): 5317-5324. doi: 10.1029/JC078i024p05317

    [14]

    Hinrichs K U, Boetius A. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry[M]//Wefer G, Billett D, Hebbeln D, et al. Ocean Margin Systems. Berlin, Heidelberg: Springer, 2002: 457-477.

    [15]

    尉建功, 杨胜雄, 梁金强, 等. 海洋钻探对甲烷渗漏的影响: 以南海北部天然气水合物钻探GMGS2-16站位为例[J]. 海洋地质与第四纪地质, 2018, 38(5):63-70

    WEI Jiangong, YANG Shengxiong, LIANG Jinqiang, et al. Impact of seafloor drilling on methane seepage—enlightenments from natural gas hydrate drilling site GMGS2-16, northern South China Sea [J]. Marine Geology & Quaternary Geology, 2018, 38(5): 63-70.

    [16]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    [17]

    Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate [J]. Global Biogeochemical Cycles, 2004, 18(4): GB4009.

    [18]

    DelSontro T, Kunz M J, Kempter T, et al. Spatial heterogeneity of methane ebullition in a large tropical reservoir [J]. Environmental Science & Technology, 2011, 45(23): 9866-9873.

    [19]

    Ostrovsky I, McGinnis D F, Lapidus L, et al. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium‐sized lake [J]. Limnology and Oceanography: Methods, 2008, 6(2): 105-118. doi: 10.4319/lom.2008.6.105

    [20]

    DelSontro T, McGinnis D F, Sobek S, et al. Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments [J]. Environmental Science & Technology, 2010, 44(7): 2419-2425.

    [21]

    DelSontro T, McGinnis D F, Wehrli B, et al. Size does matter: importance of large bubbles and small-scale hot spots for methane transport [J]. Environmental Science & Technology, 2015, 49(3): 1268-1276.

    [22]

    Shakhova N, Semiletov I, Salyuk A, et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf [J]. Science, 2010, 327(5970): 1246-1250. doi: 10.1126/science.1182221

    [23]

    Schmale O, Haeckel M, McGinnis D F. Response of the Black Sea methane budget to massive short-term submarine inputs of methane [J]. Biogeosciences, 2011, 8(4): 911-918. doi: 10.5194/bg-8-911-2011

    [24]

    Bastviken D, Ejlertsson J, Tranvik L. Measurement of methane oxidation in lakes: a comparison of methods [J]. Environmental Science & Technology, 2002, 36(15): 3354-3361.

    [25]

    Kankaala P, Huotari J, Peltomaa E, et al. Methanotrophic activity in relation to primary and bacterial production in a boreal humic lake [J]. SIL Proceedings, 1922-2010, 2005, 29(1): 250-253. doi: 10.1080/03680770.2005.11902007

    [26]

    Zhou H Y, Yin X J, Yang Q H, et al. Distribution, source and flux of methane in the western Pearl River Estuary and northern South China Sea [J]. Marine Chemistry, 2009, 117(1-4): 21-31. doi: 10.1016/j.marchem.2009.07.011

    [27]

    张桂玲. 中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究[D]. 中国海洋大学博士学位论文, 2004.

    ZHANG Guiling. Studies on biogeochemistry of dissolved methane and nitrous oxide in the coastal waters of China[D]. Doctor Dissertation of Ocean University of China, 2004.

    [28]

    Osudar R, Matoušů A, Alawi M, et al. Environmental factors affecting methane distribution and bacterial methane oxidation in the German Bight (North Sea) [J]. Estuarine, Coastal and Shelf Science, 2015, 160: 10-21. doi: 10.1016/j.ecss.2015.03.028

    [29]

    Holmes M E, Sansone F J, Rust T M, et al. Methane production, consumption, and air-sea exchange in the open ocean: an evaluation based on carbon isotopic ratios [J]. Global Biogeochemical Cycles, 2000, 14(1): 1-10. doi: 10.1029/1999GB001209

    [30]

    Schmale O, Wäge J, Mohrholz V, et al. The contribution of zooplankton to methane supersaturation in the oxygenated upper waters of the central Baltic Sea [J]. Limnology and Oceanography, 2018, 63(1): 412-430. doi: 10.1002/lno.10640

    [31]

    Damm E, Kiene R P, Schwarz J, et al. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP [J]. Marine Chemistry, 2008, 109(1-2): 45-59. doi: 10.1016/j.marchem.2007.12.003

    [32]

    Florez-Leiva L, Damm E, Farías L. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem [J]. Progress in Oceanography, 2013, 112-113: 38-48. doi: 10.1016/j.pocean.2013.03.005

    [33]

    Owens N J P, Law C S, Mantoura R F C, et al. Methane flux to the atmosphere from the Arabian Sea [J]. Nature, 1991, 354(6351): 293-296. doi: 10.1038/354293a0

    [34]

    Tilbrook B D, Karl D M. Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre [J]. Marine Chemistry, 1995, 49(1): 51-64. doi: 10.1016/0304-4203(94)00058-L

    [35]

    Schulz M, Faber E, Hollerbach A, et al. The methane cycle in the epilimnion of Lake Constance [J]. Archiv für Hydrobiologie, 2001, 151(1): 157-176. doi: 10.1127/archiv-hydrobiol/151/2001/157

    [36]

    Fetzer S, Conrad R. Effect of redox potential on methanogenesis by Methanosarcina barkeri [J]. Archives of Microbiology, 1993, 160(2): 108-113. doi: 10.1007/BF00288711

    [37]

    Fetzer S, Bak F, Conrad R. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation [J]. FEMS Microbiology Ecology, 1993, 12(2): 107-115. doi: 10.1111/j.1574-6941.1993.tb00022.x

    [38]

    Thauer R K, Kaster A K, Goenrich M, et al. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage [J]. Annual Review of Biochemistry, 2010, 79: 507-536. doi: 10.1146/annurev.biochem.030508.152103

    [39]

    Yuan Y L, Conrad R, Lu Y H. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil [J]. Environmental Microbiology Reports, 2011, 3(3): 320-328. doi: 10.1111/j.1758-2229.2010.00228.x

    [40]

    Faber E, Berner U, Gerling P, et al. Isotopic tracing of methane in water and exchange with the atmosphere [J]. Energy Conversion and Management, 1996, 37(6-8): 1193-1198. doi: 10.1016/0196-8904(95)00319-3

    [41]

    Bogard M J, del Giorgio P A, Boutet L, et al. Oxic water column methanogenesis as a major component of aquatic CH4 fluxes [J]. Nature Communications, 2014, 5(1): 5350. doi: 10.1038/ncomms6350

    [42]

    Marty D, Nival P, Yoon W D. Methanoarchaea associated with sinking particles and zooplankton collected in the Northeastern tropical Atlantic [J]. Oceanologica Acta, 1997, 20(6): 863-869.

    [43]

    Karl D M, Tilbrook B D. Production and transport of methane in oceanic particulate organic matter [J]. Nature, 1994, 368(6473): 732-734. doi: 10.1038/368732a0

    [44]

    Sasakawa M, Tsunogai U, Kameyama S, et al. Carbon isotopic characterization for the origin of excess methane in subsurface seawater [J]. Journal of Geophysical Research, 2008, 113(C3): C03012.

    [45]

    Oremland R S. Methanogenic activity in plankton samples and fish intestines A mechanism for in situ methanogenesis in oceanic surface waters [J]. Limnology and Oceanography, 1979, 24(6): 1136-1141. doi: 10.4319/lo.1979.24.6.1136

    [46]

    Van Der Maarel M J E C, Sprenger W, Haanstra R, et al. Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species [J]. FEMS Microbiology Letters, 1999, 173(1): 189-194. doi: 10.1111/j.1574-6968.1999.tb13501.x

    [47]

    Bianchi M, Marty D, Teyssie J L, et al. Strictly aerobic and anaerobic bacteria associated with sinking particulate matter and zooplankton fecal pellets [J]. Marine Ecology Progress Series, 1992, 88: 55-60. doi: 10.3354/meps088055

    [48]

    de Angelis M A, Lee C. Methane production during zooplankton grazing on marine phytoplankton [J]. Limnology and Oceanography, 1994, 39(6): 1298-1308. doi: 10.4319/lo.1994.39.6.1298

    [49]

    Ditchfield A K, Wilson S T, Hart M C, et al. Identification of putative methylotrophic and hydrogenotrophic methanogens within sedimenting material and copepod faecal pellets [J]. Aquatic Microbial Ecology, 2012, 67(2): 151-160. doi: 10.3354/ame01585

    [50]

    Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions [J]. The ISME Journal, 2012, 6(4): 847-862. doi: 10.1038/ismej.2011.141

    [51]

    Angel R, Matthies D, Conrad R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen [J]. PLoS One, 2011, 6(5): e20453. doi: 10.1371/journal.pone.0020453

    [52]

    Grossart H P, Frindte K, Dziallas C, et al. Microbial methane production in oxygenated water column of an oligotrophic lake [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19657-19661. doi: 10.1073/pnas.1110716108

    [53]

    Paganin P, Chiarini L, Bevivino A, et al. Vertical distribution of bacterioplankton in Lake Averno in relation to water chemistry [J]. FEMS Microbiology Ecology, 2013, 84(1): 176-188. doi: 10.1111/1574-6941.12048

    [54]

    Lyu Z, Lu Y H. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments [J]. The ISME Journal, 2018, 12(2): 411-423. doi: 10.1038/ismej.2017.173

    [55]

    Liu Y C, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea [J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189. doi: 10.1196/annals.1419.019

    [56]

    Sieburth J M, Donaghay P L. Planktonic methane production and oxidation within the algal maximum of the pycnocline: seasonal fine-scale observations in an anoxic estuarine basin [J]. Marine Ecology Progress Series, 1993, 100: 3-15. doi: 10.3354/meps100003

    [57]

    Tang K W, McGinnis D F, Frindte K, et al. Paradox reconsidered: methane oversaturation in well‐oxygenated lake waters [J]. Limnology and Oceanography, 2014, 59(1): 275-284. doi: 10.4319/lo.2014.59.1.0275

    [58]

    Conrad R, Seiler W. Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget [J]. Journal of Geophysical Research, 1980, 85(C10): 5493-5498. doi: 10.1029/JC085iC10p05493

    [59]

    Tholen A, Pester M, Brune A. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes [J]. FEMS Microbiology Ecology, 2007, 62(3): 303-312. doi: 10.1111/j.1574-6941.2007.00390.x

    [60]

    Sprenger W W, Hackstein J H P, Keltjens J T, et al. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics [J]. FEMS Microbiology Ecology, 2007, 60(2): 266-275. doi: 10.1111/j.1574-6941.2007.00287.x

    [61]

    Bruhn D, Mikkelsen T N, Øbro J, et al. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material [J]. Plant Biology, 2009, 11(S1): 43-48.

    [62]

    Ghyczy M, Torday C, Kaszaki J, et al. Hypoxia-induced generation of methane in mitochondria and eukaryotic cells-an alternative approach to methanogenesis [J]. Cellular Physiology and Biochemistry, 2008, 21(1-3): 251-258. doi: 10.1159/000113766

    [63]

    Keppler F, Hamilton J T G, Braß M, et al. Methane emissions from terrestrial plants under aerobic conditions [J]. Nature, 2006, 439(7073): 187-191. doi: 10.1038/nature04420

    [64]

    Lenhart K, Bunge M, Ratering S, et al. Evidence for methane production by saprotrophic fungi [J]. Nature Communications, 2012, 3(1): 1046. doi: 10.1038/ncomms2049

    [65]

    Wang Z P, Chang S X, Chen H, et al. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses [J]. Earth-Science Reviews, 2013, 127(2): 193-202.

    [66]

    Liu J G, Chen H, Zhu Q, et al. A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview [J]. Atmospheric Environment, 2015, 115: 26-35. doi: 10.1016/j.atmosenv.2015.05.019

    [67]

    Keller M D, Bellows W K, Guillard R R L. Dimethyl sulfide production in marine phytoplankton[M]//Saltzman E S, Cooper W J. Biogenic Sulfur in the Environment. Washington DC: American Chemical Society, 1989: 167-182.

    [68]

    Zindler C, Bracher A, Marandino C A, et al. Sulphur compounds, methane, and phytoplankton: interactions along a north-south transit in the western Pacific Ocean [J]. Biogeosciences Discussion, 2012, 9(10): 15011-15049. doi: 10.5194/bgd-9-15011-2012

    [69]

    Damm E, Helmke E, Thoms S, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean [J]. Biogeosciences, 2010, 7(3): 1099-1108. doi: 10.5194/bg-7-1099-2010

    [70]

    Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle [J]. Marine Chemistry, 1990, 30: 1-29. doi: 10.1016/0304-4203(90)90059-L

    [71]

    Taylor B F, Gilchrist D C. New routes for aerobic biodegradation of dimethylsulfoniopropionate [J]. Applied and Environmental Microbiology, 1991, 57(12): 3581-3584.

    [72]

    Kiene R P, Oremland R S, Catena A, et al. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen [J]. Applied and Environmental Microbiology, 1986, 52(5): 1037-1045.

    [73]

    Finster K, Tanimoto Y, Bak F. Fermentation of methanethiol and dimethylsulfide by a newly isolated methanogenic bacterium [J]. Archives of Microbiology, 1992, 157(5): 425-430. doi: 10.1007/BF00249099

    [74]

    Karl D M, Beversdorf L, Björkman K M, et al. Aerobic production of methane in the sea [J]. Nature Geoscience, 2008, 1(7): 473-478. doi: 10.1038/ngeo234

    [75]

    Villarreal-Chiu J F, Quinn J P, Mcgrath J W. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment [J]. Frontiers in Microbiology, 2012, 3: 19.

    [76]

    Wang Q, Dore J E, McDermott T R. Methylphosphonate metabolism by Pseudomonas sp. populations contributes to the methane oversaturation paradox in an oxic freshwater lake [J]. Environmental Microbiology, 2017, 19(6): 2366-2378. doi: 10.1111/1462-2920.13747

    [77]

    Carini P, White A E, Campbell E O, et al. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria [J]. Nature Communications, 2014, 5(1): 4346. doi: 10.1038/ncomms5346

    [78]

    Metcalf W W, Griffin B M, Cicchillo R M, et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean [J]. Science, 2015, 337(6098): 1104-1107.

    [79]

    Karner M B, DeLong E F, Karl D M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean [J]. Nature, 2001, 409(6819): 507-510. doi: 10.1038/35054051

    [80]

    Könneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon [J]. Nature, 2005, 437(7058): 543-546. doi: 10.1038/nature03911

    [81]

    Kolowith L C, Ingall E D, Benner R. Composition and cycling of marine organic phosphorus [J]. Limnology and Oceanography, 2001, 46(2): 309-320. doi: 10.4319/lo.2001.46.2.0309

    [82]

    Sannigrahi P, Ingall E D, Benner R. Cycling of dissolved and particulate organic matter at station Aloha: insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2005, 52(8): 1429-1444. doi: 10.1016/j.dsr.2005.04.001

    [83]

    Santoro A E, Dupont C L, Richter R A, et al. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1173-1178. doi: 10.1073/pnas.1416223112

    [84]

    Del Valle D A, Karl D M. Aerobic production of methane from dissolved water-column methylphosphonate and sinking particles in the North Pacific Subtropical Gyre [J]. Aquatic Microbial Ecology, 2014, 73(2): 93-105. doi: 10.3354/ame01714

    [85]

    Repeta D J, Ferrón S, Sosa O A, et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter [J]. Nature Geoscience, 2016, 9(12): 884-887. doi: 10.1038/ngeo2837

    [86]

    Yu X M, Doroghazi J R, Janga S C, et al. Diversity and abundance of phosphonate biosynthetic genes in nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): 20759-20764. doi: 10.1073/pnas.1315107110

    [87]

    Gomez-Garcia M R, Davison M, Blain-Hartnung M, et al. Alternative pathways for phosphonate metabolism in thermophilic cyanobacteria from microbial mats [J]. The ISME Journal, 2011, 5(1): 141-149. doi: 10.1038/ismej.2010.96

    [88]

    Scranton M I, Farrington J W. Methane production in the waters off Walvis Bay [J]. Journal of Geophysical Research, 1977, 82(31): 4947-4953. doi: 10.1029/JC082i031p04947

    [89]

    Scranton M I, Brewer P G. Occurrence of methane in the near-surface waters of the western subtropical North-Atlantic [J]. Deep Sea Research, 1977, 24(2): 127-138. doi: 10.1016/0146-6291(77)90548-3

    [90]

    Lenhart K, Klintzsch T, Langer G, et al. Evidence for methane production by the marine algae Emiliana huxleyi [J]. Biogeosciences Discussions, 2015, 12(24): 20323-20360. doi: 10.5194/bgd-12-20323-2015

    [91]

    Althoff F, Jugold A, Keppler F. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide [J]. Chemosphere, 2010, 80(3): 286-292. doi: 10.1016/j.chemosphere.2010.04.004

    [92]

    Althoff F, Benzing K, Comba P, et al. Abiotic methanogenesis from organosulphur compounds under ambient conditions [J]. Nature Communications, 2014, 5(1): 4205. doi: 10.1038/ncomms5205

    [93]

    Bange H W, Uher G. Photochemical production of methane in natural waters: implications for its present and past oceanic source [J]. Chemosphere, 2005, 58(2): 177-183. doi: 10.1016/j.chemosphere.2004.06.022

    [94]

    耿澜涛. 加拿大北极亚北极海水中溶解甲烷的分布及其生物地球化学研究[D]. 中国地质大学博士学位论文, 2017.

    GENG Lantao. Studies on the distribution of dissolved methane and its biogeochemistry in Canadian Arctic and sub-Arctic Seas[D]. Doctor Dissertation of China University of Geosciences, 2017.

    [95]

    Bižić-Ionescu M, Ionescu D, Günthel M, et al. Oxic methane cycling: new evidence for methane formation in oxic lake water[M]//Stams A J M, Sousa D. Biogenesis of Hydrocarbons. Cham: Springer, 2018: 1-22.

    [96]

    Ward B B, Kilpatrick K A, Novelli P C, et al. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters [J]. Nature, 1987, 327(6119): 226-229. doi: 10.1038/327226a0

    [97]

    Pack M A, Heintz M B, Reeburgh W S, et al. Methane oxidation in the eastern tropical North Pacific Ocean water column [J]. Journal of Geophysical Research, 2015, 120(6): 1078-1092.

    [98]

    Murase J, Sugimoto A. Inhibitory effect of light on methane oxidation in the pelagic water column of a mesotrophic lake (Lake Biwa, Japan) [J]. Limnology and Oceanography, 2005, 50(4): 1339-1343. doi: 10.4319/lo.2005.50.4.1339

    [99]

    Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture [J]. Microbiology, 1998, 144(9): 2377-2406. doi: 10.1099/00221287-144-9-2377

    [100]

    Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2014, 1837(7): 1130-1147. doi: 10.1016/j.bbabio.2013.12.002

    [101]

    Costa K C, Leigh J A. Metabolic versatility in methanogens [J]. Current Opinion in Biotechnology, 2014, 29: 70-75. doi: 10.1016/j.copbio.2014.02.012

    [102]

    Ermler U, Grabarse W, Shima S, et al. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation [J]. Science, 1997, 278(5342): 1457-1462. doi: 10.1126/science.278.5342.1457

    [103]

    Scheller S, Goenrich M, Boecher R, et al. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane [J]. Nature, 2010, 465(7298): 606-608. doi: 10.1038/nature09015

    [104]

    Lueders T, Chin K J, Conrad R, et al. Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage [J]. Environmental Microbiology, 2001, 3(3): 194-204. doi: 10.1046/j.1462-2920.2001.00179.x

    [105]

    Imlay J A. Cellular defenses against superoxide and hydrogen peroxide [J]. Annual Review of Biochemistry, 2008, 77: 755-776. doi: 10.1146/annurev.biochem.77.061606.161055

    [106]

    承磊, 郑珍珍, 王聪, 等. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5):1143-1164

    CHENG Lei, ZHENG Zhenzhen, WANG Cong, et al. Recent advances in methanoges [J]. Microbiology China, 2016, 43(5): 1143-1164.

  • 加载中

(2)

(2)

计量
  • 文章访问数:  2472
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2018-08-31
修回日期:  2019-03-21
刊出日期:  2020-02-25

目录