Penglaiba Formation of the Gucheng area, Tarim basin and its implications
-
摘要:
塔里木盆地塔东低隆起中下奥陶统白云岩成因众说纷纭,严重阻碍了该区油气勘探步伐。基于岩芯、薄片、阴极发光等观察,针对塔东低隆起古城构造带中下奥陶统蓬莱坝组,对各种粒度白云岩、缝洞方解石、泥晶灰岩进行了系统的稀土元素地球化学特征的测试。各种粒度白云岩、缝洞方解石测试结果用泥晶灰岩稀土元素含量进行标准化。结果表明,样品稀土元素配分曲线可分为三种类型。综合白云岩岩石学特征和地球化学特征发现,较细粒白云岩及缝洞充填物呈现明显的负δCe特征,表明其形成于蒸发环境;较粗粒白云岩和缝洞充填物则分为负δEu型、正δEu型两种,其中负δEu型样品形成于埋藏环境,而正δEu型样品形成于热液环境。而早期形成的白云岩在埋藏过程中可能受到埋藏流体、热液流体的再作用。
Abstract:Disputes have occurred for a long time on the forming mechanism of the dolomite in the Lower Ordovician Penglaiba Formation in the Gucheng area of Tadong low uplift, Tarim Basin, that have seriously hindered oil and gas exploration there. This time, based on the observation of cores, thin sections and cathodoluminescence results, the geochemical characteristics of rare earth elements from various forms of dolomite, such as sparite, cave filling and micrite, are systematically analyzed. All the testing results are standardized by the rare earth elements in micrite. There observed three types of REE distribution patterns which suggest three kinds. The first kind of dolomitization is the buried dolomitization by fluids; the second kind of dolomitization formed in a hydrothermal environment, and the third kind driven by evaporative pump. Some dolomite formed earlier may be further modified and/or reformed by other kinds of dolomitization fluids later on.
-
Key words:
- dolomite /
- REE geochemistry /
- Tarim Basin /
- Penglaiba formation
-
-
表 1 古城地区碳酸盐岩样品稀土元素含量及特征参数
Table 1. REE contents and characteristic parameters of carbonate rocks in Gucheng area
稀土元素质量单位:μg/g 序号 岩性 La Ce Pr Nd Sm Eu Tb Dy Ho Er Tm Yb Lu ΣREE ΣLREE ΣHREE ΣLREE/ΣHREE δCe δEu (La/Yb)N 1 缝洞方解石 0.545 1.376 0.102 0.319 0.080 0.018 0.013 0.069 0.014 0.035 0.007 0.033 0.006 2.617 2.440 0.177 13.785 1.571 0.796 1.022 2 缝洞方解石 0.229 0.330 0.043 0.165 0.035 0.009 0.006 0.034 0.007 0.023 0.003 0.022 0.003 0.909 0.811 0.098 8.276 0.895 0.884 0.644 3 缝洞方解石 1.083 2.944 0.240 0.654 0.145 0.033 0.014 0.082 0.014 0.035 0.005 0.030 0.005 5.284 5.099 0.185 27.562 1.548 1.022 2.234 4 粗-中晶白云岩 0.944 2.560 0.201 0.587 0.139 0.027 0.021 0.109 0.021 0.061 0.011 0.061 0.010 4.752 4.458 0.294 15.163 1.578 0.713 0.958 5 中晶白云岩 0.181 0.339 0.037 0.166 0.069 0.028 0.005 0.023 0.003 0.013 0.002 0.017 0.002 0.885 0.820 0.065 12.615 1.114 2.022 0.659 6 中-细晶白云岩 0.390 0.939 0.072 0.214 0.051 0.011 0.007 0.037 0.007 0.020 0.003 0.018 0.003 1.772 1.677 0.095 17.653 1.509 0.830 1.341 7 中-细晶白云岩 0.319 0.526 0.066 0.374 0.117 0.047 0.010 0.032 0.007 0.026 0.003 0.020 0.003 1.550 1.449 0.101 14.347 0.974 1.890 0.987 8 中-细晶白云岩 0.475 1.255 0.094 0.277 0.071 0.015 0.009 0.050 0.010 0.029 0.005 0.029 0.004 2.323 2.187 0.136 16.081 1.598 0.844 1.014 9 中-细晶白云岩 0.180 0.354 0.061 0.768 0.049 0.013 0.007 0.040 0.008 0.021 0.004 0.024 0.003 1.532 1.425 0.107 13.318 0.870 1.002 0.464 10 细晶白云岩 2.595 6.590 0.557 1.603 0.360 0.064 0.046 0.241 0.047 0.137 0.024 0.141 0.022 12.427 11.769 0.658 17.886 1.472 0.708 1.139 11 细晶白云岩 2.873 7.213 0.609 1.703 0.388 0.070 0.051 0.255 0.050 0.149 0.026 0.147 0.023 13.557 12.856 0.701 18.340 1.465 0.709 1.210 12 细-粉晶白云岩 0.401 0.742 0.132 1.363 0.090 0.023 0.013 0.063 0.013 0.036 0.006 0.038 0.006 2.926 2.751 0.175 15.720 0.834 0.960 0.653 13 细-粉晶白云岩 0.875 1.590 0.290 2.434 0.201 0.045 0.029 0.153 0.029 0.081 0.014 0.086 0.014 5.841 5.435 0.406 13.387 0.815 0.841 0.630 14 粉晶白云岩 0.553 1.124 0.203 1.884 0.165 0.045 0.023 0.127 0.024 0.066 0.012 0.075 0.012 4.313 3.974 0.339 11.723 0.853 1.042 0.456 注:下标N代表白云岩样品稀土元素的泥晶灰岩标准化值,ΣREE、ΣLREE、ΣHREE代表总稀土、轻稀土、重稀土元素量。
δCe=2×CeN/(LaN+PrN),δEu=2×EuN/(SmN+TbN)。表 2 古城地区中下奥陶统泥晶灰岩稀土元素含量及特征参数
Table 2. REE contents and characteristic parameters of Middle-Lower Ordovician micrite in Gucheng area
稀土元素质量单位:μg/g 序号 La Ce Pr Nd Sm Eu Tb Dy Ho Er Tm Yb Lu ΣREE ΣLREE ΣHREE ΣLREE/ΣHREE δCeNASC δEuNASC (La/Yb)NASC 15 0.621 1.083 0.130 0.460 0.091 0.023 0.012 0.067 0.012 0.035 0.006 0.035 0.005 2.580 2.408 0.172 14.000 0.827 1.233 1.719 16 1.641 2.652 0.293 1.074 0.208 0.061 0.029 0.146 0.027 0.083 0.013 0.078 0.012 6.317 5.929 0.388 15.281 0.822 1.393 2.038 17 1.251 1.914 0.201 0.795 0.150 0.043 0.021 0.114 0.021 0.069 0.011 0.063 0.011 4.664 4.354 0.310 14.045 0.813 1.359 1.924 18 2.160 3.315 0.410 1.512 0.321 0.083 0.053 0.277 0.057 0.179 0.031 0.176 0.030 8.604 7.801 0.803 9.715 0.761 1.128 1.189 19 0.402 0.751 0.092 0.354 0.069 0.016 0.009 0.047 0.009 0.025 0.005 0.024 0.004 1.807 1.684 0.123 13.691 0.850 1.137 1.623 注:下标NASC代表泥晶灰岩样品稀土元素的北美页岩(NASC)标准化值,ΣREE、ΣLREE、ΣHREE代表总稀土、轻稀土、重稀土元素量。
δCeNASC=2×CeNASC/(LaNASC+PrNASC),δEuNASC=2×EuNASC/(SmNASC+TbNASC)。 -
[1] Mclennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Geochemistry and Mineralogy of Rare Earth Elements, 1989, 21: 169-200.
[2] 赵文智, 沈安江, 胡素云, 等.塔里木盆地寒武-奥陶系白云岩储层类型与分布特征[J].岩石学报, 2012, 28(3): 758-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203005
ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201203005
[3] 郑剑锋, 沈安江, 刘永福, 等.塔里木盆地寒武—奥陶系白云岩成因及分布规律[J].新疆石油地质, 2011, 32(6): 600-604. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015530033.htm
ZHENG Jianfeng, SHEN Anjiang, LIU Yongfu, et al. Genesis and distribution of the Cambrian-Ordovician dolomite in Tarim Basin[J]. Xinjiang Petroleum Geology, 2011, 32(6): 600-604. http://cdmd.cnki.com.cn/Article/CDMD-10616-1015530033.htm
[4] 黄擎宇.塔里木盆地中央隆起区寒武—奥陶系白云石化作用及白云岩储层成因研究[D].成都: 成都理工大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10616-1015530033.htm HUANG Qingyu. Dolomitization and origin of the Cambrian-Ordovician dolomite reservoirs in the Central Uplift, Tarim[D]. Chengdu: Chengdu University of Technology, 2014.
[5] 吴仕强, 朱井泉, 胡文瑄, 等.塔里木盆地寒武系-奥陶系白云岩稀土元素特征及其成因意义[J].现代地质, 2009, 23(4): 638-647. doi: 10.3969/j.issn.1000-8527.2009.04.008
WU Shiqiang, ZHU Jingquan, HU Wenxuan, et al. Rare earth element geochemistry characteristics of Cambrian-Ordovician dolostones in the Tarim Basin and their implications for the origin[J]. Geoscience, 2009, 23(4): 638-647. doi: 10.3969/j.issn.1000-8527.2009.04.008
[6] 张振伟.塔里木盆地古城构造带中下奥陶统白云岩稀土元素地球化学特征及其成因[J].矿物岩石地球化学通报, 2016, 35(2): 368-373. doi: 10.3969/j.issn.1007-2802.2016.02.019
ZHANG Zhenwei. REE geochemical characteristics and genesis of the Middle-Lower Ordovician Dolomite in the Gucheng low uplift of the Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(2): 368-373. doi: 10.3969/j.issn.1007-2802.2016.02.019
[7] 蒋裕强, 谷一凡, 刘均, 等.川东北龙岗东地区二叠系—三叠系热液活动证据及意义[J].沉积学报, 2018, 36(1): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201801001
JIANG Yuqiang, GU Yifan, LIU Jun, et al. The evidence of Hydrothermal activity and its significance of Permian-Triassic strata, Eastern Longgang area, Northeastern Sichuan Basin[J]. Acta Sedimentary Sinica, 2018, 36(1): 1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201801001
[8] 李小可, 黄思静, 黄可可, 等.四川盆地中二叠统栖霞组白云石化海相流体的地球化学依据[J].地质勘探, 2016, 36(10): 35-44. http://d.old.wanfangdata.com.cn/Periodical/trqgy201610005
LI Xiaoke, HUANG Sijing, HUANG Keke, et al. Geochemical characteristics of Middle Permian Qixia Fm dolomitized marine fluids in the Sichuan Basin[J]. Nature Gas and Industry, 2016, 36(10): 35-44. http://d.old.wanfangdata.com.cn/Periodical/trqgy201610005
[9] 黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社, 2010.
HUANG Sijing. Carbonate diagenesis[M]. Beijing: Geologyical Publishing House, 2010.
[10] 胡忠贵, 郑荣才, 胡九珍, 等.川东-渝北地区黄龙组白云岩储层稀土元素地球化学特征[J].地质学报, 2009, 83(6): 782-790. doi: 10.3321/j.issn:0001-5717.2009.06.004
HU Zhonggui, ZHENG Rongcai, HU Jiuzhen, et al. Geochemical characteristics of rare earth elements of Huanglong Formation dolomites reservoirs in eastern Sichuan-northern Chongqing Area[J]. Acta Geologica Sinica, 2009, 83(6): 782-790. doi: 10.3321/j.issn:0001-5717.2009.06.004
[11] 张文.川西-北地区中二叠统白云岩储层成因及控制因素[D].成都: 成都理工大学, 2014.
http://cdmd.cnki.com.cn/article/cdmd-10616-1015522775.htm ZHANG Wen. The Dolostone Reservoirs from the Middle Permian in northwestern Sichuan Basin: genesis, controlling factors[D]. Chengdu: Chengdu University of Technology, 2014.
[12] 贺训云, 寿建峰, 沈安江, 等.白云岩地球化学特征及成因——以鄂尔多斯盆地靖西马五段中组合为例[J].石油勘探与开发, 2014, 41(3): 1-9. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403016
HE Xunyun, SHOU Jianfeng, SHEN Anjiang, et al. Geochemical characteristics and origin of the dolomite: a case study from the middle assemblage of majiagou formation member 5th of the west of Jinbian gas field, Ordos Basin, north China[J]. Petroleum Exploration and Development, 2014, 41(3): 1-9. http://d.old.wanfangdata.com.cn/Periodical/syktykf201403016
[13] 苏中堂, 陈洪德, 徐粉燕, 等.鄂尔多斯盆地马家沟组白云岩地球化学特征及白云岩化机制分析[J].岩石学报, 2011, 27(8): 2230-2238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108002
SU Zhongtang, CHEN Hongde, XU Fenyan, et al. Geochemistry and dolomitization mechanism of Majiagou dolomites in Ordovician, Ordos, China[J]. Acta Petrologica Sinica, 2011, 27(8): 2230-2238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108002
[14] 金振奎, 杨有星, 余宽宏, 等.塔里木盆地东部地区寒武系白云岩成因类型[J].古地理学报, 2012, 14(6): 747-756. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201206006
JIN Zhenkui, YANG Youxing, YU Kuanhong, et al. Genetic types of dolostones in the Cambrian, eastern Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(6): 747-756. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201206006
[15] 王招明, 杨海军, 齐英敏, 等.塔里木盆地古城地区奥陶系天然气勘探重大突破及其启示[J].天然气工业, 2014, 34(1): 1-9. doi: 10.3787/j.issn.1000-0976.2014.01.001
WANG Zhaoming, YANG Haijun, QI Yingmin, et al. Ordovician gas exploration breakthrough in the Gucheng Lower uplift of the Tarim Basin and its enlightenment[J]. Natural Gas Industry, 2014, 34(1): 1-9. doi: 10.3787/j.issn.1000-0976.2014.01.001
[16] 贾承造.塔里木盆地及周边地层:各纪地层总结各分区地层表[M].北京:科学出版社, 2004.
JIA Chengzao. Stratigraphy of the Tarim Basin and Adjacent Areas: Summary of the Stratigraphy[M]. Beijing: Science Press, 2004.
[17] 林畅松, 李思田, 刘景彦, 等.塔里木盆地古生代重要演化阶段的古构造格局与古地理演化[J].岩石学报, 2011, 27(1): 210-218. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101013
LIN Changsong, LI Sitian, LIU Jingyan, et al. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages[J]. Acta Petrologica Sinica, 2011, 27(1): 210-218. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201101013
[18] 冯增昭, 鲍志东, 吴茂炳, 等.塔里木地区奥陶纪岩相古地理[J].古地理学报, 2007, 9(5): 447-460. doi: 10.3969/j.issn.1671-1505.2007.05.003
FENG Zengzhao, BAO Zhidong, WU Maobing, et al. Lithofacies paleogeography of the Orodovician in Tarim area[J]. Joural of Palaeogeography, 2007, 9(5): 447-460. doi: 10.3969/j.issn.1671-1505.2007.05.003
[19] 赵宗举, 罗家洪, 张运波, 等.塔里木盆地寒武纪层序岩相古地理[J].石油学报, 2011, 32(6): 37-48. http://d.old.wanfangdata.com.cn/Periodical/syxb201106003
ZHAO Zongju, LUO Jiahong, ZHANG Yunbo, et al. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 2011, 32(6): 37-48. http://d.old.wanfangdata.com.cn/Periodical/syxb201106003
[20] 陈永权, 徐彦龙, 张艳秋, 等.塔中-巴楚地区下奥陶统云灰岩地球化学与成因探讨[J].天然气地球科学, 2015, 26(7): 1344-1353.
CHEN Yongquan, XU Yanlong, ZHANG Yanqiu, et al. Geochemistry and genesis research on Lower Ordovician limestones-dolostones transitional rocks in Tazhong-Bachu Uplift, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1344-1353.
[21] 朱东亚, 金之均, 胡文瑄.塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J].中国科学:地球科学, 2010, 40(2):28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000351464
ZHU Dongya, JIN Zhijun, HU Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science in China:Earth Science, 2010, 40(2): 28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201000351464
[22] Kawabe I. Convex tetrad effect variations in REE abundances of "North American shale composite" and "Post-Archean Australian average shale"[J]. Geochemical Journal, 1996, 30(3): 149-153. doi: 10.2343/geochemj.30.149
[23] Bau M and Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman Iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79: 37-55. doi: 10.1016/0301-9268(95)00087-9
[24] Zhang J and Nozaki Y. Rare earth elements and yttrium in Seawater: ICP-MS determinations in the east Caroline, Coral Sea, and South Fiji Basins of the western South Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1
[25] Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258: 338-353. doi: 10.1016/j.chemgeo.2008.10.033
[26] Haas J R, Shock E L, Sassani D C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare rarth rlements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 1995, 59(21): 4329-4350. doi: 10.1016/0016-7037(95)00314-P
[27] 陈汉林, 杨树锋, 董传万, 等.塔里木盆地地质热事件研究[J].科学通报, 1997, 42(10): 1096-1098. doi: 10.3321/j.issn:0023-074X.1997.10.021
CHEN Hanlin, YANG Shufeng, DONG Chuanwan, et al. Study on geological thermal events in Tarim Basin[J]. Chinese Science Bulletin, 1997, 42(10): 1096-1098. doi: 10.3321/j.issn:0023-074X.1997.10.021
[28] 方大钧, 沈忠悦.塔里木地块各时代视磁极及板块漂移[J].浙江大学学报:理学版, 2001, 28(1):100-106. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb200101018
FANG Dajun, SHEN Zhongyue. Phanerozoic apparent polar-wander paths of Tarim and plate motion[J]. Journal of Zhejiang University (Science Edition), 2001, 28(1):100-106. http://d.old.wanfangdata.com.cn/Periodical/zjdxxb200101018
-