非成岩水合物储层降压开采过程中出砂和沉降实验研究

卢静生, 熊友明, 李栋梁, 梁德青, 金光荣, 何勇, 申小冬. 非成岩水合物储层降压开采过程中出砂和沉降实验研究[J]. 海洋地质与第四纪地质, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301
引用本文: 卢静生, 熊友明, 李栋梁, 梁德青, 金光荣, 何勇, 申小冬. 非成岩水合物储层降压开采过程中出砂和沉降实验研究[J]. 海洋地质与第四纪地质, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301
LU Jingsheng, XIONG Youming, LI Dongliang, LIANG Deqing, JIN Guangrong, HE Yong, SHEN Xiaodong. Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301
Citation: LU Jingsheng, XIONG Youming, LI Dongliang, LIANG Deqing, JIN Guangrong, HE Yong, SHEN Xiaodong. Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production[J]. Marine Geology & Quaternary Geology, 2019, 39(4): 183-195. doi: 10.16562/j.cnki.0256-1492.2019012301

非成岩水合物储层降压开采过程中出砂和沉降实验研究

  • 基金项目:
    国家重点研发计划“南海多类型天然气水合物成藏原理与开采基础研究”(2017YFC0307305);自然资源部海底矿产资源重点实验室开放基金“南海天然气水合物开采过程中的防砂研究”(KLMMR-2018-B-05);广东省自然科学基金“海域天然气水合物开采出砂机理和防砂研究”(2017A030310448),“南海天然气水合物开采过程地层变形机制”(2018B0303110007);广东省促进经济发展专项资金(海洋经济发展用途)“天然气水合物先导区建设与资源区块优选”(GDME-2018D001),“南海天然气水合物高效开采与控制技术研究” (GDME-2018D002);国家自然科学基金项目“南海天然气水合物储层水合物开采过程地质力学参数演化规律研究”(51661165011)
详细信息
    作者简介: 卢静生(1988—),男,助理研究员,博士生,主要从事天然气水合物应用基础和海洋油气工程研究,E-mail: lujs@ms.giec.ac.cn
    通讯作者: 熊友明(1963—),男,教授,博导,主要从事完井工程、防砂技术、深水油气开发技术、水平井技术、增产措施、油气层保护技术等专业方向的研究,E-mail: xiongym@swpu.edu.cn
  • 中图分类号: P754;TE5

  • 蔡秋蓉编辑

Experimental study on sand production and seabottom subsidence of non-diagenetic hydrate reservoirs in depressurization production

More Information
  • 天然气水合物多赋存在非成岩地层中,在开采过程中易出现出砂和沉降情况,制约了天然气水合物的安全高效长期开采。为研究水合物开采过程中的温压、产气、产水、出砂和沉降情况,在自主研发水合物出砂及防砂模拟装置上进行了不同条件下的开采模拟实验。研究表明,在前两个生产阶段,产水含砂率和出砂粒径随着水合物开采而逐渐增大;水合物细砂储层产气速率增加会增大携液能力,导致携砂能力增强而增大出砂风险,同时高产气速率促进井筒温度降低导致冰相生成,存在冰堵的风险;开采过程中的储层沉降与储层水合物含量相关性较大,而产气速率和降压速率对储层沉降的影响与产气模式有关。水合物开采中后期进行增产作业会增加储层出砂风险和沉降速率,进一步探讨了该实验对日本2013年第一次海域水合物试采出砂情况的推测,提出水合物开采分阶段分级防砂的概念。

  • 加载中
  • 图 1  水合物资源金字塔[23-25]

    Figure 1. 

    图 2  水合物出砂及防砂实验装置图[40]

    Figure 2. 

    图 3  砂的粒度分布

    Figure 3. 

    图 4  实验照片

    Figure 4. 

    图 5  实验中温压、流量、流速和沉降

    Figure 5. 

    图 6  实验过程中温度的空间分布

    Figure 6. 

    图 7  不同时间出砂的粒度分类(a) (a中数字标签为出砂时间)和产水含砂率及中值粒度随时间的变化(b) (b中数值标签为产水含砂率,400min为井底沉砂)

    Figure 7. 

    图 8  实验1—5的沉降与压力、产水、产气、水合物含量的情况

    Figure 8. 

    表 1  材料属性清单

    Table 1.  Properties of materials

    材料 属性 供应
    d (0.5)=225.67μm, 均匀性0.396, 比表面积0.18m2/g, 密度1.63g/mL, 孔隙度28.52% 广州海洋地质调查局
    去离子水 电阻率18.2mΩ/cm 实验室自制
    甲烷 纯度99.999%(摩尔分数) 世粤气体有限公司
    下载: 导出CSV

    表 2  实验条件及结果

    Table 2.  Experimental conditions and results

    阶段 变量及单位 实验编号
    1 2 3 4 5
    干砂量/kg 2 2 2 2 2
    初始加水量/g 250 350 250 250 250
    样品制备 初始含水率/% 11.11 14.89 11.11 11.11 11.11
    初始水合物饱和度/% 46.71 65.40 46.71 46.71 46.71
    水驱注水量/mL 806.68 855.31 725.55 653.86 673.86
    开采作业 流量计产气限速/sccm 400 1000 1000 500 231
    采水砂时间点/min 1, 1.25, 1.75, 30.33, 85.67, 305.33, 底部 0.82, 0.5, 62.5, 63.3, 165.5, 173.25, 底部 0.5, 1, 1.82, 8.15, 16.27, 44.89, 底部 0.5, 1.27, 1.6, 12.4, 51.93, 底部 20, 60.58, 122, 300, 底部
    开始增产时间点/min N 349 N N 314
    开采结果 产气时长/min 1100 400 179 288 347
    产气量/SL 72.9 113.2 78 77 50.9
    水合物量/mol 0.41 0.63 0.44 0.43 0.28
    水合物饱和度/% 61.84 95.86 67.01 65.32 43.18
    产水砂量/g 640.87 682.58 905.13 887.39 527.42
    出砂量/g 1.14 7.91 7.05 6.63 6.21
    地层沉降/mm -1.93 -2.28 -1.88 -1.96 -1.77
    下载: 导出CSV

    表 3  图 6参数说明(表中参数依次为开采的时间、沉降量、水合物的mol量、孔隙中水合物的含量)

    Table 3.  Description of parameters in Figure 6(m indicates production time min, S indicates subsidence ratio, mol indicates moles of hydrate, Sh indicates hydrate saturation in pore)

    a b c d e
    实验1 0min, S=0%, 0.41mol, Sh=61.84% 18min, S=-0.15%, 0.37mol, Sh=56.58% 125min, S=-0.7%, 0.18mol, Sh=27.99% 325min, S=-1.23%, 0.04mol, Sh=5.85% 600min, S=-1.79%, 0.001mol, Sh=0.09%
    实验2 0min, S=0%, 0.63mol, Sh=95.86% 10min, S=-0.25%, 0.58mol, Sh=88.23% 150min, S=-1.52%, 0.11mol, Sh=16.97% 343min, S=-1.81%, 0.02mol, Sh=3.39% 362min, S=-2.23%, 0mol, Sh=0%
    实验3 0min, S=0%, 0.44mol, Sh=67.01% 13min, S=-0.24%, 0.38mol, Sh=57.69% 80min, S=-1.62%, 0.006mol, Sh=0.85% 170min, S=-1.87%, 0mol, Sh=0% 189min, S=-1.88%, 0mol, Sh=0%
    实验4 0min, S=0%, 0.43mol, Sh=65.32% 10.17min, S=-0.38%, 0.4mol, Sh=61.08% 110.83min, S=-1.26%, 0.12mol, Sh=18.66% 200min, S=-1.66%, 0.02mol, Sh=2.54% 287.17min, S= -1.96%, 0mol, Sh=0%
    实验5 0min, S=0%, 0.28mol, Sh=43.18% 25min, S=-0.27%, 0.26mol, Sh=39.25% 312min, S=-1.58%, 0.04mol, Sh=5.89% 339min, S=-1.75%, 0.01mol, Sh=0.98% 355min, S=-1.76%, 0mol, Sh=0%
    下载: 导出CSV

    表 4  实验1—5沉降的相关性分析

    Table 4.  Correlation of subsidence in experiments 1—5

    r 实验1 实验2 实验3 实验4 实验5
    沉降量 1 1 1 1 1
    孔隙压力 0.95 0.92 0.90 0.60 0.81
    产气速率 0.95 0.89 0.77 -0.48 0.48
    水合物摩尔量 0.95 0.97 0.99 0.96 0.92
    孔隙水合物饱和度 0.95 0.97 0.99 0.97 0.92
    累计产水量 -0.93 -0.91 -0.82 -0.79 -0.92
    下载: 导出CSV
  • [1]

    Sloan E D, Koh C. Clathrate Hydrates of Natural Gases, 3rd Edition[M]. Boca Raton: Taylor & Francis Group, Chemical Rubber Company Press, 2007:1-10.

    [2]

    江泽民.对中国能源问题的思考[J].上海交通大学学报, 2008, 42(3):345-359. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb200803001

    JIANG Zemin. Reflections on energy issues in China[J]. Journal of Shanghai Jiao Tong University, 2008, 42(3):345-359. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb200803001

    [3]

    邹才能, 杨智, 何东博, 等.常规-非常规天然气理论、技术及前景[J].石油勘探与开发, 2018, 45(4):1-13. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804004

    ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 1-13. http://d.old.wanfangdata.com.cn/Periodical/syktykf201804004

    [4]

    Li J, Ye J, Qin X, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 2096-5192(1):5-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=energies-09-00222

    [5]

    吴能友, 黄丽, 胡高伟, 等.海域天然气水合物开采的地质控制因素和科学挑战[J].海洋地质与第四纪地质, 2017, 37(5):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705001

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation[J]. Marine Geology & Quaternary Geology, 2017, 37(5):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705001

    [6]

    周守为, 陈伟, 李清平, 等.深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J].中国海上油气, 2017, 29(4):1-8. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201704001

    ZHOU Shouwei, CHEN Wei, LI Qingping, et al. Research on the solid fluidization well testing and production for shallow non-diagenetic natural gas hydrate in deep water area[J]. China Offshore Oil Gas, 2017, 29(4):1-8. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201704001

    [7]

    刘昌岭, 李彦龙, 孙建业, 等.天然气水合物试采:从实验模拟到场地实施[J].海洋地质与第四纪地质, 2017, 37(5):12-26. http://d.old.wanfangdata.com.cn/Periodical/syztjs201605008

    LIU Changling, LI Yanlong, SUN Jianye, et al. Gas hydrate production test: from experimental simulation to field practice[J]. Marine Geology & Quaternary Geology, 2017, 37(5):12-26. http://d.old.wanfangdata.com.cn/Periodical/syztjs201605008

    [8]

    Collett T, Bahk J, Baker R, et al. Methane hydrates in nature—current knowledge and challenges[J]. Journal of Chemical & Engineering Data, 2014, 60(2):319-329.

    [9]

    宁伏龙.天然气水合物地层井壁稳定性研究[D].中国地质大学, 2005.

    NING Fulong. Research on wellbore stability in gas hydrate formation[D].China University of Geoscience, 2005.

    [10]

    李彦龙, 刘乐乐, 刘昌岭, 等.天然气水合物开采过程中的出砂与防砂问题[J].海洋地质前沿, 2016, 32(7):36-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201607005

    LI Yanlong, LIU Leilei, LIU Changling, et al. Sand prediction and sand- control technology in hydrate exploitation: a review and discussion[J]. Marine Geology Frontiers, 2016, 32(7):36-43. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201607005

    [11]

    李彦龙, 胡高伟, 刘昌岭, 等.天然气水合物开采井防砂充填层砾石尺寸设计方法[J].石油勘探与开发, 2017, 44(6):961-966. http://d.old.wanfangdata.com.cn/Periodical/syktykf201706014

    LI Yanlong, HU Gaowei, LIU Changling, et al. Gravel sizing method for marine hydrate production test wells[J]. Petroleum Exploration and Development, 2017, 44(6): 1-6. http://d.old.wanfangdata.com.cn/Periodical/syktykf201706014

    [12]

    卢静生, 李栋梁, 何勇, 等.天然气水合物开采过程中出砂研究现状[J].新能源进展, 2017, 5(5):394-402. doi: 10.3969/j.issn.2095-560X.2017.05.011

    LU Jingsheng, LI Dongliang, HE Yong, et al. Research status of sand production during the gas hydrate exploitation process[J]. Advances in New and Renewable Energy, 2017, 5(5):394-402. doi: 10.3969/j.issn.2095-560X.2017.05.011

    [13]

    张卫东, 王瑞和, 任韶然, 等.由麦索雅哈水合物气田的开发谈水合物的开采[J].石油钻探技术, 2007, 35(4):94-96. doi: 10.3969/j.issn.1001-0890.2007.04.029

    ZHANG Weidong, WANG Ruihe, REN Shaoran, et al. Gas hydrate development based on Messoyakha hydrate gas field[J]. Petroleum Drilling Technique, 2007, 35(4):94-96. doi: 10.3969/j.issn.1001-0890.2007.04.029

    [14]

    Grover T, Moridis G, Holditch S A. Analysis of reservoir performance of Messoyakha gas hydrate field[C]// Eighteenth International Offshore and Polar Engineering Conference, Vancouver, BC, Canada: The International Society of Offshore and Polar Engineers (ISOPE).2008: 49-56

    [15]

    Haberer R M, Mangelsdorf K, Wilkes H, et al. Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada)[J]. Organic Geochemistry, 2006, 37(5):519-538. doi: 10.1016/j.orggeochem.2006.01.004

    [16]

    Yamamoto K, Dallimore S. Aurora-JOGMEC-NRCan Mallik 2006-2008 Gas Hydrate Research Project progress[J].Fire in the Ice, 2008, 8(3):1-5.

    [17]

    Oyama H, Nagao J, Suzuki K, et al. Experimental analysis of sand production from methane hydrate bearing sediments applying depressurization method[J]. Journal of MMIJ, 2010, 126(8/9):497-502. doi: 10.2473/journalofmmij.126.497

    [18]

    Ayling I, Matsuzawa M, Wingstrom L, et al. A completion system application for the world'sfirst marine hydrate production test[C]// Offshore Technology Conference, Houston, Texas, USA: Offshore Technology Conference, 2014.

    [19]

    Terumichi I, Matsuzawa M, Terao Y, et al. Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough[C] // Offshore Technology Conference, Houston, Texas, USA: Offshore Technology Conference, 2014.

    [20]

    Konno Y, Fujii T, Sato A, et al. Key findings of the world's first offshore methane hydrate production test off the coast of Japan: Toward future commercial production[J]. Energy & Fuels, 2017, 31(3):2607-2616.

    [21]

    付强, 周守为, 李清平.天然气水合物资源勘探与试采技术研究现状与发展战略[J].中国工程科学, 2015, 17(9):123-132. doi: 10.3969/j.issn.1009-1742.2015.09.020

    FU Qiang, ZHOU Shouwei, LI Qingping. Natural gas hydrate exploration and production technology research status and development strategy[J]. Engineering Science, 2015, 17 (9):123-132. doi: 10.3969/j.issn.1009-1742.2015.09.020

    [22]

    许帆婷.天然气水合物开发要探求更经济途径——访北京大学工学院教授、我国天然气水合物首次试采工程首席科学家卢海龙[J].中国石化, 2018 (5):55-58. doi: 10.3969/j.issn.1005-457X.2018.05.015

    XU Fanting. Gas hydrate development need to explore more economical way-Interviewing Professor Lu Hailong, from College of Engineering in Peking University, the Chief scientist of the China's first offshore natural gas hydrate trial production engineering[J]. Sinopec, 2018 (5): 55-58. doi: 10.3969/j.issn.1005-457X.2018.05.015

    [23]

    Boswell R. Is gas hydrate energy within reach?[J]. Science, 2009, 325(5943):957-958. doi: 10.1126/science.1175074

    [24]

    Boswell R, Collett T. The gas hydrates resource pyramid[J]. Fire In the Ice, 2006, 6(3):5-7.

    [25]

    苏明, 匡增桂, 乔少华, 等.海域天然气水合物钻探研究进展及启示(I):站位选择[J].新能源进展, 2015, 3(2):116-130. doi: 10.3969/j.issn.2095-560X.2015.02.007

    SU Ming, KUANG Zenggui, QIAO Shaohua, et al, The progresses and revelations of marine gas hydrate explorations (I):Purposes and selection evidences of the hydrate drilling sites[J]. Advances in New and Renewable Energy, 2015, 3(2):116-130. doi: 10.3969/j.issn.2095-560X.2015.02.007

    [26]

    乔少华, 苏明, 杨睿, 等.海域天然气水合物钻探研究进展及启示:储集层特征[J].新能源进展, 2015, 3(5):357-366. doi: 10.3969/j.issn.2095-560X.2015.05.007

    QIAO Shaohua, SU Ming, YANG Rui, et al. The progress and revelations of marine gas hydrate explorations: Reservoir characteristics[J]. Advances in New And Renewable Energy, 2015, 3(5):357-366. doi: 10.3969/j.issn.2095-560X.2015.05.007

    [27]

    戴金星, 倪云燕, 黄士鹏, 等.中国天然气水合物气的成因类型[J].石油勘探与开发, 2017, 44(6):837-848. http://d.old.wanfangdata.com.cn/Periodical/syktykf201706001

    DAI Jinxing, NI Yunyan, HUANG Shipeng, et al. Genetic types of gas hydrates in China[J]. Petroleum Exploration and Development, 2017, 44(6): 837-848. http://d.old.wanfangdata.com.cn/Periodical/syktykf201706001

    [28]

    Jung J W, Jang J, Santamarina J C, et al. Gas production from hydrate-bearing sediments: The role of fine particles[J]. Energy & Fuels, 2012, 26(1):480-487.

    [29]

    Suzuki S, Kuwano R. Evaluation on stability of sand control in mining methane hydrate[J]. Seisan Kenkyu, 2016, 68(4):311-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_82885

    [30]

    Murphy A, Soga K, Yamamoto K. A laboratory investigation of sand production simulating the 2013 Daini- Atsumi Knoll gas hydrate production trial using a high pressure plane strain testing apparatus[C]// 9th International Conferences on Gas Hydrate, Denver, USA: 9th International Conferences on Gas Hydrate, 2017.

    [31]

    Lee J, Ahn T, Lee J Y, et al. Laboratory test to evaluate the performance of sand control screens during hydrate dissociation process by depressurization[C]//Tenth (2013) ISOPE Ocean Mining and Gas Hydrates Symposium, Szczecin, Poland: The International Society of Offshore and Polar Engineers (ISOPE), 2013: 150-153.

    [32]

    Moridis G, Collett T S, Pooladi-darvish M, et al. Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(1):76-112. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223144391/

    [33]

    Uchida S, Klar A, Yamamoto K. Sand production model in gas hydrate-bearing sediments[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:303-316. doi: 10.1016/j.ijrmms.2016.04.009

    [34]

    Uchida S, Klar A, Yamamoto K.Sand production modelling of the 2013 Nankai offshore gas production test[C]// 1st International Conference on Energy Geotechnics, 2016: 451-458.

    [35]

    Ning F, Sun J, Liu Z, et al. Prediction of sand production in gas recovery from the Shenhu hydrate reservoir by depressurization[C]// 9th International Conference on Gas Hydrate, Denver USA, 2017.

    [36]

    刘浩伽, 李彦龙, 刘昌岭, 等.水合物分解区地层砂粒启动运移临界流速计算模型[J].海洋地质与第四纪地质, 2017, 37(5):166-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705018

    LIU Haojia, LI Yanlong, LIU Changling, et al. Calculation model for critical velocity of sand movement in decomposed hydrate cemented sediment[J]. Marine Geology & Quaternary Geology, 2017, 37(5):166-173. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705018

    [37]

    公彬, 蒋宇静, 王刚, 等.南海天然气水合物开采海底沉降预测[J].山东科技大学学报:自然科学版, 2015, 34(5):61-68. http://d.old.wanfangdata.com.cn/Periodical/sdkjdxxb201505010

    GONG Bin, JIANG Yujing, WANG Gang, et al. Prediction of seabed settlement caused by natural gas hydrate exploitation in South China Sea[J]. Journal of Shandong University of Science and Technology (Natural Science), 2015, 34(5):61-68. http://d.old.wanfangdata.com.cn/Periodical/sdkjdxxb201505010

    [38]

    万义钊, 吴能友, 胡高伟, 等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015

    [39]

    Jin G, Lei H, Xu T, et al. Simulated geomechanical responses to marine methane hydrate recovery using horizontal wells in the Shenhu area, South China Sea[J]. Marine and Petroleum Geology, 2018, 92:424-436. doi: 10.1016/j.marpetgeo.2017.11.007

    [40]

    Lu J, Xiong Y, Li D, et al. Experimental investigation of characteristics of sand production in wellbore during hydrate exploitation by the depressurization method[J]. Energies, 2018, 11(7):1673. doi: 10.3390/en11071673

    [41]

    陆敬安, 杨胜雄, 吴能友, 等.南海神狐海域天然气水合物地球物理测井评价[J].现代地质, 2008, 22(3):447-451. doi: 10.3969/j.issn.1000-8527.2008.03.015

    LU Jingan, YANG Shengxiong, WU Nengyou, et al. Well logging evaluation of gas hydrate in Shenhu area, South China Sea[J]. Geoscience, 2008, 22(3):447-451. doi: 10.3969/j.issn.1000-8527.2008.03.015

    [42]

    李刚, 李小森, 陈琦, 等.南海神狐海域天然气水合物开采数值模拟[J].化学学报, 2010, 68(11):1083-1092. http://d.old.wanfangdata.com.cn/Periodical/hgxb201102026

    LI Gang, LI Xiaosen, CHEN Qi, et al. Numerical simulation of gas production from gas hydrate zone in Shenhu area, South China Sea[J]. Acta Chimica Sinica, 2010, 68(11):1083-1092. http://d.old.wanfangdata.com.cn/Periodical/hgxb201102026

    [43]

    李传亮.油藏工程原理[M].石油工业出版社, 2005.

    LI Chuanliang. Principle of Reservoir Engineering[M]. Petroleum Industry Press, 2005.

    [44]

    Wang Y, Feng J, Li X, et al. Experimental investigation on sediment deformation during gas hydrate decomposition for different hydrate reservoir types[J]. Energy Procedia, 2017, 142:4110-4116. doi: 10.1016/j.egypro.2017.12.333

    [45]

    Han H, Wang Y, Li X, et al. Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus[J]. Fuel, 2016, 182:446-453. doi: 10.1016/j.fuel.2016.05.112

    [46]

    Li D, Wu Q, Wang Z, et al. Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization[J]. Energies, 2018, 11(7):1819. doi: 10.3390/en11071819

    [47]

    Murphy A J. Sediment heterogeneity and sand production in gas hydrate extraction- Daini-Atsumi Knoll, Nankai Trough, Japan[D]. University of Cambridge, 2017.

    [48]

    马帅, 熊友明, 于东, 等.海上高产气田防砂挡砂精度设计研究[J].石油钻采工艺, 2013, 35(6):48-51. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201306012

    MA Shuai, XIONG Youming, YU Dong, et al. Research on precision design of sand control on high yield offshore gas field[J]. Oil Drilling & Production Technology, 2013, 35(6):48-51. http://d.old.wanfangdata.com.cn/Periodical/syzcgy201306012

    [49]

    熊友明, 徐家年, 冯胜利, 等.气田防砂效果评价方法与标准探索[J].天然气地球科学, 2011, 22(2):331-334. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201102021

    XIONG Youming, XU Jianian, FENG Shengli, et al. Evaluation method and standard exploration for gas field sand control technology[J]. Natural Gas Geoscience, 2011, 22(2):331-334. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201102021

    [50]

    邓金根, 李萍, 周建良, 等.中国海上疏松砂岩适度出砂井防砂方式优选[J].石油学报, 2012, 33(4):676-680. doi: 10.3969/j.issn.1001-8719.2012.04.025

    DENG Jingen, LI Ping, ZHOU Jianliang, et al. Sand control optimization applied to moderately sanding wells in offshore loose sandstone reservoirs[J]. Acta Petrolei Sinica, 2012, 33(4):676-680. doi: 10.3969/j.issn.1001-8719.2012.04.025

  • 加载中

(8)

(4)

计量
  • 文章访问数:  2613
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2019-01-23
修回日期:  2019-04-29
刊出日期:  2019-08-28

目录