基于浮游有孔虫Mg/Ca温度重建的末次盛冰期以来北欧海次表层温度的变化

洪佳俪, 肖文申, 王汝建, 章陶亮. 基于浮游有孔虫Mg/Ca温度重建的末次盛冰期以来北欧海次表层温度的变化[J]. 海洋地质与第四纪地质, 2019, 39(3): 122-134. doi: 10.16562/j.cnki.0256-1492.2019022803
引用本文: 洪佳俪, 肖文申, 王汝建, 章陶亮. 基于浮游有孔虫Mg/Ca温度重建的末次盛冰期以来北欧海次表层温度的变化[J]. 海洋地质与第四纪地质, 2019, 39(3): 122-134. doi: 10.16562/j.cnki.0256-1492.2019022803
HONG Jiali, XIAO Wenshen, WANG Rujian, ZHANG Taoliang. Sub sea surface temperatures in the Nordic Seas during the LGM by planktic foraminiferal Mg/Ca temperature reconstructions[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 122-134. doi: 10.16562/j.cnki.0256-1492.2019022803
Citation: HONG Jiali, XIAO Wenshen, WANG Rujian, ZHANG Taoliang. Sub sea surface temperatures in the Nordic Seas during the LGM by planktic foraminiferal Mg/Ca temperature reconstructions[J]. Marine Geology & Quaternary Geology, 2019, 39(3): 122-134. doi: 10.16562/j.cnki.0256-1492.2019022803

基于浮游有孔虫Mg/Ca温度重建的末次盛冰期以来北欧海次表层温度的变化

  • 基金项目:
    国家自然科学基金项目“重建晚第四纪冰期—间冰期西北冰洋筏冰输运和表层洋流演变历史”(41776187);南北极专项“2017年北极海域海洋地质考察”(CHINARE2017-03-02)
详细信息
    作者简介: 洪佳俪(1994—),女,硕士生,主要从事海洋地质学及古环境研究,E-mail: jialih0626@yeah.net
    通讯作者: 王汝建(1959—),男,教授,主要从事极地古海洋与古气候学研究,E-mail: rjwang@tongji.edu.cn
  • 中图分类号: P736.22

  • 文凤英编辑

Sub sea surface temperatures in the Nordic Seas during the LGM by planktic foraminiferal Mg/Ca temperature reconstructions

More Information
  • 对我国第五次北极科考在北欧海所采集的两根岩芯样品进行了冰筏碎屑(Ice-Rafted Debris, IRD)丰度、AMS 14C测年、有孔虫丰度统计、浮游有孔虫Neogloboquadrina pachyderma (sin.)(Nps)稳定氧碳同位素及其Mg/Ca重建的次表层海水古温度等指标分析,建立了20ka以来的年代框架。结果表明,在末次盛冰期(20.0~17.5kaBP),次表层温度整体较低(~3℃),钙质生产力下降,冰筏碎屑输入增加;在冰消期(17.5~11.7kaBP)的Heinrich Stadial 1(HS1)事件中较轻的δ18O和δ13C指示大量淡水输入,水体分层加剧,向北输送的北大西洋水聚集在次表层,导致次表层水温逐渐升高。从Bølling-Allerød (B/A)事件开始,次表层水温度达到4.5℃,表明北大西洋水流入增强。早全新世(11.7~8.2kaBP)早期次表层温度达到6.5℃,钙质生产力升高,冰筏碎屑输入降低;在中全新世(8.2~4.2kaBP)早期(8.2~5.6kaBP),钙质生产力逐渐升高反映通风作用增强,导致营养盐供应增加;6.6~5.6kaBP,明显降低的次表层温度(~4 ℃)反映夏季太阳辐射量降低以及大西洋水流入减弱;5.6~4.2kaBP期间次表层水变暖导致δ18O偏轻,而δ13C轻值反映生产力降低。晚全新世(4.2~0.8kaBP)的新冰期(4.2~3.0kaBP),次表层温度逐渐降低,Nps-δ13C偏轻反映生产力下降,Nps-δ18O偏轻以及IRD增加反映冰融水排放。3.0kaBP以来,生产力上升,次表层水体温度不断上升,可能是向北输送的北大西洋水增强。

  • 加载中
  • 图 1  北欧海区域洋流及水深150m温度分布特征和研究岩芯位置(a)及现代北欧海区域4个站位的温度和盐度垂直分布特征(b)(1955—2012年平均)

    Figure 1. 

    图 2  挪威海AT06岩芯(a)和BB04岩芯(b)深度-年龄模式及其沉积速率

    Figure 2. 

    图 3  挪威海AT06和BB04岩芯约20.0kaBP以来古海洋与古气候替代指标的变化

    Figure 3. 

    图 4  挪威海BB04和AT06站位与格陵兰中央海PS1878站位[21]各项古气候指标的对比

    Figure 4. 

    图 5  利用TraCE-21模型建立的60°N以北区域的AMOC的强度变化[65](a)与利用TraCE-21模型面积加权平均得出的60°N以北区域的年际温度异常[65](b)及70°N 7月太阳辐射量变化[17](c)及BB04和AT06站位重建的次表层温度(d)及MSM5/5-712-2站位重建的次表层温度[26](e)

    Figure 5. 

    表 1  本文研究岩芯及对比岩芯信息

    Table 1.  Detail information of studied sites and reference sites

    岩芯编号缩写海域纬度/°N经度/°E水深/m柱长/cm来源
    ARC5-AT06AT06挪威海69.182.10326630本文
    ARC5-BB04BB04挪威海72.946.46243337本文
    MSM5/5-712-2712-2弗拉姆海峡78.926.761488894文献[26]
    PS1878PS1878格陵兰海南部73.25-9.023048114文献[21]
    下载: 导出CSV

    表 2  挪威海AT06和BB04岩芯Nps-AMS14C测年数据及校正

    Table 2.  Calibration of Nps-AMS 14C dating of Core AT06 and BB04

    样品编号深度/cmAMS14C年龄/aBP碳储库校正/aBP日历年龄/aBP
    UCIT33499AT06/0-11365±15965±15857±5
    UCIT32780AT06/2-31965±151565±151473±4
    UCIT32781AT06/6-72310±151910±151856±11
    BETA-407693AT06/11-122710±302310±302337±13
    UCIT32782AT06/14-152845±152445±152488±29
    UCIT32715BB04/2-33335±152935±153100±18
    UCIT32716BB04/6-75320±154920±155631±11
    UCIT32717BB04/10-118980±208580±209540±4
    UCIT32718BB04/15-1611495±3011095±3012982±60
    BETA-407694BB04/20-2113420±4013020±4015593±116
    UCIT32719BB04/23-2414960±4014560±4017744±91
    UCIT32720BB04/29-3015925±3515525±3518784±50
    UCIT32721BB04/35-3616695±4516295±4519668±94
    下载: 导出CSV
  • [1]

    Lynch-Stieglitz J. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9: 83-104. doi: 10.1146/annurev-marine-010816-060415

    [2]

    Meland M Y, Jansen E, Elderfield H. Constraints on SST estimates for the northern North Atlantic/Nordic Seas during the LGM[J]. Quaternary Science Reviews, 2005, 24(7-9): 835-852. doi: 10.1016/j.quascirev.2004.05.011

    [3]

    De Vernal A, Rosell-Melé A, Kucera M, et al. Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic[J]. Quaternary Science Reviews, 2006, 25(21-22): 2820-2834. doi: 10.1016/j.quascirev.2006.06.006

    [4]

    Hansen B, Østerhus S. North atlantic-nordic seas exchanges[J]. Progress in Oceanography, 2000, 45(2): 109-208. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229210144/

    [5]

    Blindheim J, Osterhus S. The Nordic Seas, main oceanographic features[J]. Geophysical Monograph-American Geophysical Union, 2005, 158, doi: 10.1029/158GM03.

    [6]

    Eldevik T, Risebrobakken B, Bjune A E, et al. A brief history of climate-the northern seas from the Last Glacial Maximum to global warming[J]. Quaternary Science Reviews, 2014, 106: 225-246. doi: 10.1016/j.quascirev.2014.06.028

    [7]

    Smith A C, Wynn P M, Barker P A, et al. North Atlantic forcing of moisture delivery to Europe throughout the Holocene[J]. Scientific Reports, 2016, 6: 24745. doi: 10.1038/srep24745

    [8]

    Mcmanus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494

    [9]

    Lynch-Stieglitz J, Adkins J F, Curry W B, et al. Atlantic meridional overturning circulation during the Last Glacial Maximum[J]. Science, 2007, 316(5821): 66-69. doi: 10.1126/science.1137127

    [10]

    Gherardi J M, Labeyrie L, Nave S, et al. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region[J]. Paleoceanography, 2009, 24(2), PA2204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bafc6f6f099029ef044ac89ab46f42c0

    [11]

    Lippold J, Luo Y, Francois R, et al. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation[J]. Nature Geoscience, 2012, 5(11): 813-816. doi: 10.1038/ngeo1608

    [12]

    Hemming S R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1), RG1005. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2003RG000128/

    [13]

    Stanford J D, Rohling E J, Hunter S E, et al. Timing of meltwater pulse 1a and climate responses to meltwater injections[J]. Paleoceanography, 2006, 21(4): 1-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2006PA001340

    [14]

    Stanford J D, Rohling E J, Bacon S, et al. A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic[J]. Quaternary Science Reviews, 2011, 30(9-10): 1047-1066. doi: 10.1016/j.quascirev.2011.02.003

    [15]

    Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (international commission on stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7): 649-659. doi: 10.1002/jqs.v27.7

    [16]

    Sejrup H P, Haflidason H, Andrews J T. A Holocene North Atlantic SST record and regional climate variability[J]. Quaternary Science Reviews, 2011, 30(21-22): 3181-3195. doi: 10.1016/j.quascirev.2011.07.025

    [17]

    Laskar J. Long-term solution for the insolation quantities of the Earth[J]. Proceedings of the International Astronomical Union, 2006, 2(14): 465-465. doi: 10.1017/S1743921307011404

    [18]

    Nesje A, Matthews J A, Dahl S O, et al. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records[J]. The Holocene, 2001, 11(3): 267-280. doi: 10.1191/095968301669980885

    [19]

    Bauch H A, Erlenkeuser H, Spielhagen R F, et al. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30000 yr[J]. Quaternary Science Reviews, 2001, 20(4): 659-678. doi: 10.1016/S0277-3791(00)00098-6

    [20]

    Rasmussen T L, Thomsen E, S'lubowska M A, et al. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20000 14 C yr BP[J]. Quaternary Research, 2007, 67(1): 100-114. doi: 10.1016/j.yqres.2006.07.002

    [21]

    Telesiński M M, Spielhagen R F, Lind E M. A high-resolution Lateglacial and Holocene palaeoceanographic record from the Greenland Sea[J]. Boreas, 2014, 43(2): 273-285. doi: 10.1111/bor.2014.43.issue-2

    [22]

    Husum K, Hald M. Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions[J]. Marine Micropaleontology, 2012, 96: 38-47. http://www.sciencedirect.com/science/article/pii/S0377839813000297

    [23]

    Kucera M, Weinelt M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 24(7-9): 951-998. doi: 10.1016/j.quascirev.2004.07.014

    [24]

    Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[J]. Colloques Internationaux du CNRS, 1974, 219: 203-209.

    [25]

    Kozdon R, Eisenhauer A, Weinelt M, et al. Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3), Q03005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008GC002169

    [26]

    Aagaard-Sørensen S, Husum K, Hald M, et al. Sub sea surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions[J]. The Holocene, 2014, 24(1): 93-103. doi: 10.1177/0959683613515730

    [27]

    Spielhagen R F, Werner K, Sørensen S A, et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water[J]. Science, 2011, 331(6016): 450-453. doi: 10.1126/science.1197397

    [28]

    Werner K, Spielhagen R F, Bauch D, et al. Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene[J]. Paleoceanography, 2013, 28(2): 283-295. doi: 10.1002/palo.20028

    [29]

    Werner K, Müller J, Husum K, et al. Holocene sea subsurface and surface water masses in the Fram Strait-Comparisons of temperature and sea-ice reconstructions[J]. Quaternary Science Reviews, 2016, 147: 194-209. doi: 10.1016/j.quascirev.2015.09.007

    [30]

    Volkmann R. Planktic foraminifers in the outer Laptev Sea and the Fram Strait-modern distribution and ecology[J]. The Journal of Foraminiferal Research, 2000, 30(3): 157-176. doi: 10.2113/0300157

    [31]

    Risebrobakken B, Dokken T, Smedsrud L H, et al. Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing[J]. Paleoceanography and Paleoclimatology, 2011, 26(4): PA4206.

    [32]

    Hopkins T S. The GIN Sea-A synthesis of its physical oceanography and literature review 1972-1985[J]. Earth-Science Reviews, 1991, 30(3-4): 175-318. doi: 10.1016/0012-8252(91)90001-V

    [33]

    Eldevik T, Nilsen J E Ø. The Arctic-Atlantic thermohaline circulation[J]. Journal of Climate, 2013, 26(21): 8698-8705. doi: 10.1175/JCLI-D-13-00305.1

    [34]

    Schauer U, Fahrbach E, Osterhus S, et al. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements[J]. Journal of Geophysical Research: Oceans, 2004, 109(C6): C06026.

    [35]

    Walczowski W, Piechura J, Osinski R, et al. The West Spitsbergen Current volume and heat transport from synoptic observations in summer[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2005, 52(8): 1374-1391. doi: 10.1016/j.dsr.2005.03.009

    [36]

    Rabe B, Schauer U, Mackensen A, et al. Freshwater components and transports in the Fram Strait: Recent observations and changes since the late 1990s[J]. Ocean Science, 2009, 5: 219-233. doi: 10.5194/os-5-219-2009

    [37]

    Carstens J, Hebbeln D, Wefer G. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait)[J]. Marine Micropaleontology, 1997, 29(3-4): 257-269. doi: 10.1016/S0377-8398(96)00014-X

    [38]

    Wang X, Jian Z, Lückge A, et al. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300000 years[J]. Quaternary Science Reviews, 2018, 192: 123-134. doi: 10.1016/j.quascirev.2018.05.035

    [39]

    Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 803-814. doi: 10.1016/0016-7037(95)00446-7

    [40]

    Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369-2379. doi: 10.1016/S0016-7037(99)00197-0

    [41]

    Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033

    [42]

    Mashiotta T A, Lea D W, Spero H J. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg[J]. Earth and Planetary Science Letters, 1999, 170(4): 417-432. doi: 10.1016/S0012-821X(99)00116-8

    [43]

    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904

    [44]

    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947

    [45]

    Svensson A, Andersen K K, Bigler M, et al. A 60000 year Greenland stratigraphic ice core chronology[J]. Climate of the Past, 2008, 4(1): 47-57. doi: 10.5194/cp-4-47-2008

    [46]

    Rasmussen T L, Thomsen E, Troelstra S R, et al. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60000 years[J]. Marine Micropaleontology, 2003, 47(1-2): 143-176. doi: 10.1016/S0377-8398(02)00115-9

    [47]

    Radi T R, Vernal A V D. Last glacial maximum (LGM) primary productivity in the northern North. [J]. Canadian Journal of Earth Sciences, 2008, 45(11):1299-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c323806c6fbd57757d12a375502c1e3b

    [48]

    Pflaumann U, Sarnthein M, Chapman M, et al. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000[J]. Paleoceanography, 2003, 18(3): 1065.

    [49]

    Peltier W R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE[J]. Annu. Rev. Earth Planet. Sci., 2004, 32: 111-149. doi: 10.1146/annurev.earth.32.082503.144359

    [50]

    Mackas D L, Greve W, Edwards M, et al. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology[J]. Progress in Oceanography, 2012, 97: 31-62. http://www.sciencedirect.com/science/article/pii/S0079661111001236

    [51]

    Jonkers L, Brummer G J A, Peeters F J C, et al. Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic[J]. Paleoceanography and Paleoclimatology, 2010, 25(2): PA2204. http://www.researchgate.net/publication/254762276_Seasonal_stratification_shell_flux_and_oxygen_isotope_dynamics_of_left-coiling_N._pachyderma_and_T._quinqueloba_in_the_western_sub-polar_North_Atlantic

    [52]

    Jonkers L, van Heuven S, Zahn R, et al. Seasonal patterns of shell flux, δ18O and δ13C of small and large N. pachyderma(s) and G. bulloides in the subpolar North Atlantic[J]. Paleoceanography, 2013, 28(1): 164-174. doi: 10.1002/palo.v28.1

    [53]

    Jonkers L, Kučera M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera[J]. Biogeosciences, 2015, 12(7): 2207-2226. doi: 10.5194/bg-12-2207-2015

    [54]

    Sarnthein M, Jansen E, Weinelt M, et al. Variations in Atlantic surface ocean paleoceanography, 50°-80°N: A time-slice record of the last 30000 years[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 1063-1094.

    [55]

    Hillaire-Marcel C, de Vernal A. Stable isotope clue to episodic sea ice formation in the glacial North Atlantic[J]. Earth and Planetary Science Letters, 2008, 268(1-2): 143-150. doi: 10.1016/j.epsl.2008.01.012

    [56]

    Nørgaard-Pedersen N, Spielhagen R F, Erlenkeuser H, et al. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover[J]. Paleoceanography, 2003, 18(3): 1-19.

    [57]

    Li C, Battisti D S, Bitz C M. Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals?[J]. Journal of Climate, 2010, 23(20):5457-5475. doi: 10.1175/2010JCLI3409.1

    [58]

    Brendryen J, Haflidason H, Rise L, et al. Ice sheet dynamics on the Lofoten-Vesterålen shelf, north Norway, from Late MIS-3 to Heinrich Stadial 1[J]. Quaternary Science Reviews, 2015, 119: 136-156. doi: 10.1016/j.quascirev.2015.03.015

    [59]

    Goosse H, Brovkin V, Fichefet T, et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2[J]. Geoscientific Model Development, 2010, 3: 603-633. doi: 10.5194/gmd-3-603-2010

    [60]

    Rainsley E, Menviel L, Fogwill C J, et al. Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks[J]. Scientific Reports, 2018, 8(1): 11307. doi: 10.1038/s41598-018-29226-8

    [61]

    álvarez-Solas J, Montoya M, Ritz C, et al. Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes[J]. Climate of the Past, 2011, 7(4): 1297-1306. doi: 10.5194/cp-7-1297-2011

    [62]

    Dokken T M, Jansen E. Rapid changes in the mechanism of ocean convection during the last glacial period[J]. Nature, 1999, 401(6752): 458-461. doi: 10.1038/46753

    [63]

    Ślubowska M A, Koç N, Rasmussen T L, et al. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80 N[J]. Paleoceanography and Paleoclimatology, 2005, 20(4): PA4014.

    [64]

    Broecker W S, Denton G H, Edwards R L, et al. Putting the Younger Dryas cold event into context[J]. Quaternary Science Reviews, 2010, 29(9-10): 1078-1081. doi: 10.1016/j.quascirev.2010.02.019

    [65]

    McKay N P, Kaufman D S, Routson C C, et al. The onset and rate of Holocene Neoglacial cooling in the Arctic[J]. Geophysical Research Letters, 2018, 45(22): 12487-12496. doi: 10.1029/2018GL079773

    [66]

    Ebbesen H, Hald M, Eplet T H. Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic[J]. Quaternary Science Reviews, 2007, 26(15-16): 1999-2011. doi: 10.1016/j.quascirev.2006.07.020

    [67]

    Hald M, Andersson C, Ebbesen H, et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene[J]. Quaternary Science Reviews, 2007, 26(25-28): 3423-3440. doi: 10.1016/j.quascirev.2007.10.005

    [68]

    Sarnthein M, Van Kreveld S, Erlenkeuser H, et al. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N[J]. Boreas, 2003, 32(3): 447-461. doi: 10.1080/03009480310003351

    [69]

    Gudmundsson G. Distributional limits of Pyrgo species at the biogeographic boundaries of the Arctic and the North-Atlantic Boreal regions[J]. The Journal of Foraminiferal Research, 1998, 28(3): 240-256.

    [70]

    Zhuravleva A, Bauch H A, Spielhagen R F. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial[J]. Global and Planetary Change, 2017, 157: 232-243. doi: 10.1016/j.gloplacha.2017.09.005

    [71]

    Risebrobakken B, Jansen E, Andersson C, et al. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas[J]. Paleoceanography, 2003, 18(1): 1017-1031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3269ef075045b201697b0aa2baf74fb

    [72]

    Spielhagen R F, Erlenkeuser H. Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surface water layer[J]. Marine Geology, 1994, 119(3-4): 227-250. doi: 10.1016/0025-3227(94)90183-X

    [73]

    Blaschek M, Renssen H. The Influence of Greenland melt water on the temporal and spatial response of the Holocene Thermal Maximum in the Nordic Seas: a modelling study[C]//EGU General Assembly Conference Abstracts. 2012, 14: 10679.

    [74]

    Solomina O N, Bradley R S, Hodgson D A, et al. Holocene glacier fluctuations[J]. Quaternary Science Reviews, 2015, 111: 9-34. doi: 10.1016/j.quascirev.2014.11.018

    [75]

    Olsen J, Anderson N J, Knudsen M F. Variability of the North Atlantic Oscillation over the past 5200 years[J]. Nature Geoscience, 2012, 5(11): 808-812. doi: 10.1038/ngeo1589

    [76]

    Nesje A, Jansen E, Birks H J B, et al. Holocene climate variability in the northern North Atlantic region: a review of terrestrial and marine evidence[J]. Geophysical Monograph- American Geophysical Union, 2005, 158: 289-321.

    [77]

    Jennings A E, Knudsen K L, Hald M, et al. A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf[J]. The Holocene, 2002, 12(1): 49-58. doi: 10.1191/0959683602hl519rp

    [78]

    Porter S C. GLACIATIONS | Neoglaciation in the American Cordilleras[J]. Encyclopedia of Quaternary Science, 2007:1133-1142.

    [79]

    Müller J, Werner K, Stein R, et al. Holocene cooling culminates in sea ice oscillations in Fram Strait[J]. Quaternary Science Reviews, 2012, 47: 1-14. doi: 10.1016/j.quascirev.2012.04.024

    [80]

    Andersen C, Koc N, Moros M. A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms[J]. Quaternary Science Reviews, 2004, 23(20-22): 2155-2166. doi: 10.1016/j.quascirev.2004.08.004

    [81]

    Andersson C, Pausata F S R, Jansen E, et al. Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean[J]. Climate of the Past Discussions, 2009, 5(4): 2081-2113. doi: 10.5194/cpd-5-2081-2009

  • 加载中

(5)

(2)

计量
  • 文章访问数:  2086
  • PDF下载数:  61
  • 施引文献:  0
出版历程
收稿日期:  2019-02-28
修回日期:  2019-03-24
刊出日期:  2019-06-28

目录