Sub sea surface temperatures in the Nordic Seas during the LGM by planktic foraminiferal Mg/Ca temperature reconstructions
-
摘要:
对我国第五次北极科考在北欧海所采集的两根岩芯样品进行了冰筏碎屑(Ice-Rafted Debris, IRD)丰度、AMS 14C测年、有孔虫丰度统计、浮游有孔虫Neogloboquadrina pachyderma (sin.)(Nps)稳定氧碳同位素及其Mg/Ca重建的次表层海水古温度等指标分析,建立了20ka以来的年代框架。结果表明,在末次盛冰期(20.0~17.5kaBP),次表层温度整体较低(~3℃),钙质生产力下降,冰筏碎屑输入增加;在冰消期(17.5~11.7kaBP)的Heinrich Stadial 1(HS1)事件中较轻的δ18O和δ13C指示大量淡水输入,水体分层加剧,向北输送的北大西洋水聚集在次表层,导致次表层水温逐渐升高。从Bølling-Allerød (B/A)事件开始,次表层水温度达到4.5℃,表明北大西洋水流入增强。早全新世(11.7~8.2kaBP)早期次表层温度达到6.5℃,钙质生产力升高,冰筏碎屑输入降低;在中全新世(8.2~4.2kaBP)早期(8.2~5.6kaBP),钙质生产力逐渐升高反映通风作用增强,导致营养盐供应增加;6.6~5.6kaBP,明显降低的次表层温度(~4 ℃)反映夏季太阳辐射量降低以及大西洋水流入减弱;5.6~4.2kaBP期间次表层水变暖导致δ18O偏轻,而δ13C轻值反映生产力降低。晚全新世(4.2~0.8kaBP)的新冰期(4.2~3.0kaBP),次表层温度逐渐降低,Nps-δ13C偏轻反映生产力下降,Nps-δ18O偏轻以及IRD增加反映冰融水排放。3.0kaBP以来,生产力上升,次表层水体温度不断上升,可能是向北输送的北大西洋水增强。
Abstract:In order to reconstruct the changes in (sub)surface water mass since 20.0kaBP, multiproxy investigations, including Ice Rafted Debris (IRD) abundance, AMS14C dating, foraminiferal abundance, stable oxygen and carbon isotopes of planktonic foraminifera Neogloboquadrina. pachyderma (sin.) (Nps), and (sub)surface temperature derived from Nps Mg/Ca ratios, have been carried out for two cores collected from the Nordic Seas during the Fifth Chinese National Arctic Expedition. The LGM (20.0~17.5kaBP) is characterized by low subsurface water temperature(~3℃), poor calcium productivity, and enhanced IRD input. During the deglaciation (17.5~11.7 kaBP). Nps-δ18O and-δ13C depletions suggested a freshwater event during Heinrich Stadial 1(HS1). Stronger water stratification and north Atlantic water gathering in the subsurface layer caused the increase in subsurface temperature. At the onset of Bølling-Allerød (B/A) event, the subsurface water temperature (4.5℃) indicated an increased advection of Atlantic water. The early Holocene (11.7~8.2kaBP) was characterized by higher subsurface temperature (6.5℃), bioproductivity, and lower IRD input. During the middle Holocene (8.2~4.2kaBP), the gradual increase in bioproductivity during 8.2~5.6kaBP indicated the enhanced ventilation, which led to an increase in nutrient supply. Lower subsurface temperature (~4℃) during the 6.6~5.6kaBP may suggest the decrease in summer solar radiation and weakening of Atlantic water advection. During 5.6~4.2kaBP, the depletion of Nps-δ13C and δ18O values indicated poor bioproductivity and subsurface water warming, respectively. During the late Holocene (4.2~0.8kaBP), the Neoglaciation (4.2~3.0kaBP), was characterized by low subsurface temperature and poor bioproductivity. The light values of Nps-δ18O and the increase in IRD reflected a meltwater event. Since 3kaBP, the continuous increasing of subsurface temperature and bioproductivity may be explained by the increased advection of Atlantic water.
-
Key words:
- paleoceanography /
- sub SST reconstruction /
- Last Glacial Maximum (LGM) /
- Nordic Sea
-
图 4 挪威海BB04和AT06站位与格陵兰中央海PS1878站位[21]各项古气候指标的对比
Figure 4.
表 1 本文研究岩芯及对比岩芯信息
Table 1. Detail information of studied sites and reference sites
表 2 挪威海AT06和BB04岩芯Nps-AMS14C测年数据及校正
Table 2. Calibration of Nps-AMS 14C dating of Core AT06 and BB04
样品编号 深度/cm AMS14C年龄/aBP 碳储库校正/aBP 日历年龄/aBP UCIT33499 AT06/0-1 1365±15 965±15 857±5 UCIT32780 AT06/2-3 1965±15 1565±15 1473±4 UCIT32781 AT06/6-7 2310±15 1910±15 1856±11 BETA-407693 AT06/11-12 2710±30 2310±30 2337±13 UCIT32782 AT06/14-15 2845±15 2445±15 2488±29 UCIT32715 BB04/2-3 3335±15 2935±15 3100±18 UCIT32716 BB04/6-7 5320±15 4920±15 5631±11 UCIT32717 BB04/10-11 8980±20 8580±20 9540±4 UCIT32718 BB04/15-16 11495±30 11095±30 12982±60 BETA-407694 BB04/20-21 13420±40 13020±40 15593±116 UCIT32719 BB04/23-24 14960±40 14560±40 17744±91 UCIT32720 BB04/29-30 15925±35 15525±35 18784±50 UCIT32721 BB04/35-36 16695±45 16295±45 19668±94 -
[1] Lynch-Stieglitz J. The Atlantic meridional overturning circulation and abrupt climate change[J]. Annual Review of Marine Science, 2017, 9: 83-104. doi: 10.1146/annurev-marine-010816-060415
[2] Meland M Y, Jansen E, Elderfield H. Constraints on SST estimates for the northern North Atlantic/Nordic Seas during the LGM[J]. Quaternary Science Reviews, 2005, 24(7-9): 835-852. doi: 10.1016/j.quascirev.2004.05.011
[3] De Vernal A, Rosell-Melé A, Kucera M, et al. Comparing proxies for the reconstruction of LGM sea-surface conditions in the northern North Atlantic[J]. Quaternary Science Reviews, 2006, 25(21-22): 2820-2834. doi: 10.1016/j.quascirev.2006.06.006
[4] Hansen B, Østerhus S. North atlantic-nordic seas exchanges[J]. Progress in Oceanography, 2000, 45(2): 109-208. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229210144/
[5] Blindheim J, Osterhus S. The Nordic Seas, main oceanographic features[J]. Geophysical Monograph-American Geophysical Union, 2005, 158, doi: 10.1029/158GM03.
[6] Eldevik T, Risebrobakken B, Bjune A E, et al. A brief history of climate-the northern seas from the Last Glacial Maximum to global warming[J]. Quaternary Science Reviews, 2014, 106: 225-246. doi: 10.1016/j.quascirev.2014.06.028
[7] Smith A C, Wynn P M, Barker P A, et al. North Atlantic forcing of moisture delivery to Europe throughout the Holocene[J]. Scientific Reports, 2016, 6: 24745. doi: 10.1038/srep24745
[8] Mcmanus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837. doi: 10.1038/nature02494
[9] Lynch-Stieglitz J, Adkins J F, Curry W B, et al. Atlantic meridional overturning circulation during the Last Glacial Maximum[J]. Science, 2007, 316(5821): 66-69. doi: 10.1126/science.1137127
[10] Gherardi J M, Labeyrie L, Nave S, et al. Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region[J]. Paleoceanography, 2009, 24(2), PA2204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bafc6f6f099029ef044ac89ab46f42c0
[11] Lippold J, Luo Y, Francois R, et al. Strength and geometry of the glacial Atlantic Meridional Overturning Circulation[J]. Nature Geoscience, 2012, 5(11): 813-816. doi: 10.1038/ngeo1608
[12] Hemming S R. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1), RG1005. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2003RG000128/
[13] Stanford J D, Rohling E J, Hunter S E, et al. Timing of meltwater pulse 1a and climate responses to meltwater injections[J]. Paleoceanography, 2006, 21(4): 1-9 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2006PA001340
[14] Stanford J D, Rohling E J, Bacon S, et al. A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic[J]. Quaternary Science Reviews, 2011, 30(9-10): 1047-1066. doi: 10.1016/j.quascirev.2011.02.003
[15] Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the subcommission on Quaternary stratigraphy (international commission on stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7): 649-659. doi: 10.1002/jqs.v27.7
[16] Sejrup H P, Haflidason H, Andrews J T. A Holocene North Atlantic SST record and regional climate variability[J]. Quaternary Science Reviews, 2011, 30(21-22): 3181-3195. doi: 10.1016/j.quascirev.2011.07.025
[17] Laskar J. Long-term solution for the insolation quantities of the Earth[J]. Proceedings of the International Astronomical Union, 2006, 2(14): 465-465. doi: 10.1017/S1743921307011404
[18] Nesje A, Matthews J A, Dahl S O, et al. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norvay, based on glaciolacustrine sediment records[J]. The Holocene, 2001, 11(3): 267-280. doi: 10.1191/095968301669980885
[19] Bauch H A, Erlenkeuser H, Spielhagen R F, et al. A multiproxy reconstruction of the evolution of deep and surface waters in the subarctic Nordic seas over the last 30000 yr[J]. Quaternary Science Reviews, 2001, 20(4): 659-678. doi: 10.1016/S0277-3791(00)00098-6
[20] Rasmussen T L, Thomsen E, S'lubowska M A, et al. Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20000 14 C yr BP[J]. Quaternary Research, 2007, 67(1): 100-114. doi: 10.1016/j.yqres.2006.07.002
[21] Telesiński M M, Spielhagen R F, Lind E M. A high-resolution Lateglacial and Holocene palaeoceanographic record from the Greenland Sea[J]. Boreas, 2014, 43(2): 273-285. doi: 10.1111/bor.2014.43.issue-2
[22] Husum K, Hald M. Arctic planktic foraminiferal assemblages: Implications for subsurface temperature reconstructions[J]. Marine Micropaleontology, 2012, 96: 38-47. http://www.sciencedirect.com/science/article/pii/S0377839813000297
[23] Kucera M, Weinelt M, Kiefer T, et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans[J]. Quaternary Science Reviews, 2005, 24(7-9): 951-998. doi: 10.1016/j.quascirev.2004.07.014
[24] Shackleton N J. Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial[J]. Colloques Internationaux du CNRS, 1974, 219: 203-209.
[25] Kozdon R, Eisenhauer A, Weinelt M, et al. Reassessing Mg/Ca temperature calibrations of Neogloboquadrina pachyderma (sinistral) using paired δ44/40Ca and Mg/Ca measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3), Q03005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2008GC002169
[26] Aagaard-Sørensen S, Husum K, Hald M, et al. Sub sea surface temperatures in the Polar North Atlantic during the Holocene: Planktic foraminiferal Mg/Ca temperature reconstructions[J]. The Holocene, 2014, 24(1): 93-103. doi: 10.1177/0959683613515730
[27] Spielhagen R F, Werner K, Sørensen S A, et al. Enhanced modern heat transfer to the Arctic by warm Atlantic water[J]. Science, 2011, 331(6016): 450-453. doi: 10.1126/science.1197397
[28] Werner K, Spielhagen R F, Bauch D, et al. Atlantic Water advection versus sea-ice advances in the eastern Fram Strait during the last 9 ka: Multiproxy evidence for a two-phase Holocene[J]. Paleoceanography, 2013, 28(2): 283-295. doi: 10.1002/palo.20028
[29] Werner K, Müller J, Husum K, et al. Holocene sea subsurface and surface water masses in the Fram Strait-Comparisons of temperature and sea-ice reconstructions[J]. Quaternary Science Reviews, 2016, 147: 194-209. doi: 10.1016/j.quascirev.2015.09.007
[30] Volkmann R. Planktic foraminifers in the outer Laptev Sea and the Fram Strait-modern distribution and ecology[J]. The Journal of Foraminiferal Research, 2000, 30(3): 157-176. doi: 10.2113/0300157
[31] Risebrobakken B, Dokken T, Smedsrud L H, et al. Early Holocene temperature variability in the Nordic Seas: The role of oceanic heat advection versus changes in orbital forcing[J]. Paleoceanography and Paleoclimatology, 2011, 26(4): PA4206.
[32] Hopkins T S. The GIN Sea-A synthesis of its physical oceanography and literature review 1972-1985[J]. Earth-Science Reviews, 1991, 30(3-4): 175-318. doi: 10.1016/0012-8252(91)90001-V
[33] Eldevik T, Nilsen J E Ø. The Arctic-Atlantic thermohaline circulation[J]. Journal of Climate, 2013, 26(21): 8698-8705. doi: 10.1175/JCLI-D-13-00305.1
[34] Schauer U, Fahrbach E, Osterhus S, et al. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements[J]. Journal of Geophysical Research: Oceans, 2004, 109(C6): C06026.
[35] Walczowski W, Piechura J, Osinski R, et al. The West Spitsbergen Current volume and heat transport from synoptic observations in summer[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2005, 52(8): 1374-1391. doi: 10.1016/j.dsr.2005.03.009
[36] Rabe B, Schauer U, Mackensen A, et al. Freshwater components and transports in the Fram Strait: Recent observations and changes since the late 1990s[J]. Ocean Science, 2009, 5: 219-233. doi: 10.5194/os-5-219-2009
[37] Carstens J, Hebbeln D, Wefer G. Distribution of planktic foraminifera at the ice margin in the Arctic (Fram Strait)[J]. Marine Micropaleontology, 1997, 29(3-4): 257-269. doi: 10.1016/S0377-8398(96)00014-X
[38] Wang X, Jian Z, Lückge A, et al. Precession-paced thermocline water temperature changes in response to upwelling conditions off southern Sumatra over the past 300000 years[J]. Quaternary Science Reviews, 2018, 192: 123-134. doi: 10.1016/j.quascirev.2018.05.035
[39] Nürnberg D, Bijma J, Hemleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta, 1996, 60(5): 803-814. doi: 10.1016/0016-7037(95)00446-7
[40] Lea D W, Mashiotta T A, Spero H J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing[J]. Geochimica et Cosmochimica Acta, 1999, 63(16): 2369-2379. doi: 10.1016/S0016-7037(99)00197-0
[41] Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785): 442-445. doi: 10.1038/35013033
[42] Mashiotta T A, Lea D W, Spero H J. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg[J]. Earth and Planetary Science Letters, 1999, 170(4): 417-432. doi: 10.1016/S0012-821X(99)00116-8
[43] Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215-230. doi: 10.1017/S0033822200013904
[44] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947
[45] Svensson A, Andersen K K, Bigler M, et al. A 60000 year Greenland stratigraphic ice core chronology[J]. Climate of the Past, 2008, 4(1): 47-57. doi: 10.5194/cp-4-47-2008
[46] Rasmussen T L, Thomsen E, Troelstra S R, et al. Millennial-scale glacial variability versus Holocene stability: changes in planktic and benthic foraminifera faunas and ocean circulation in the North Atlantic during the last 60000 years[J]. Marine Micropaleontology, 2003, 47(1-2): 143-176. doi: 10.1016/S0377-8398(02)00115-9
[47] Radi T R, Vernal A V D. Last glacial maximum (LGM) primary productivity in the northern North. [J]. Canadian Journal of Earth Sciences, 2008, 45(11):1299-1316. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c323806c6fbd57757d12a375502c1e3b
[48] Pflaumann U, Sarnthein M, Chapman M, et al. Glacial North Atlantic: Sea-surface conditions reconstructed by GLAMAP 2000[J]. Paleoceanography, 2003, 18(3): 1065.
[49] Peltier W R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE[J]. Annu. Rev. Earth Planet. Sci., 2004, 32: 111-149. doi: 10.1146/annurev.earth.32.082503.144359
[50] Mackas D L, Greve W, Edwards M, et al. Changing zooplankton seasonality in a changing ocean: comparing time series of zooplankton phenology[J]. Progress in Oceanography, 2012, 97: 31-62. http://www.sciencedirect.com/science/article/pii/S0079661111001236
[51] Jonkers L, Brummer G J A, Peeters F J C, et al. Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N. pachyderma and T. quinqueloba in the western subpolar North Atlantic[J]. Paleoceanography and Paleoclimatology, 2010, 25(2): PA2204. http://www.researchgate.net/publication/254762276_Seasonal_stratification_shell_flux_and_oxygen_isotope_dynamics_of_left-coiling_N._pachyderma_and_T._quinqueloba_in_the_western_sub-polar_North_Atlantic
[52] Jonkers L, van Heuven S, Zahn R, et al. Seasonal patterns of shell flux, δ18O and δ13C of small and large N. pachyderma(s) and G. bulloides in the subpolar North Atlantic[J]. Paleoceanography, 2013, 28(1): 164-174. doi: 10.1002/palo.v28.1
[53] Jonkers L, Kučera M. Global analysis of seasonality in the shell flux of extant planktonic Foraminifera[J]. Biogeosciences, 2015, 12(7): 2207-2226. doi: 10.5194/bg-12-2207-2015
[54] Sarnthein M, Jansen E, Weinelt M, et al. Variations in Atlantic surface ocean paleoceanography, 50°-80°N: A time-slice record of the last 30000 years[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 1063-1094.
[55] Hillaire-Marcel C, de Vernal A. Stable isotope clue to episodic sea ice formation in the glacial North Atlantic[J]. Earth and Planetary Science Letters, 2008, 268(1-2): 143-150. doi: 10.1016/j.epsl.2008.01.012
[56] Nørgaard-Pedersen N, Spielhagen R F, Erlenkeuser H, et al. Arctic Ocean during the Last Glacial Maximum: Atlantic and polar domains of surface water mass distribution and ice cover[J]. Paleoceanography, 2003, 18(3): 1-19.
[57] Li C, Battisti D S, Bitz C M. Can North Atlantic sea ice anomalies account for Dansgaard-Oeschger climate signals?[J]. Journal of Climate, 2010, 23(20):5457-5475. doi: 10.1175/2010JCLI3409.1
[58] Brendryen J, Haflidason H, Rise L, et al. Ice sheet dynamics on the Lofoten-Vesterålen shelf, north Norway, from Late MIS-3 to Heinrich Stadial 1[J]. Quaternary Science Reviews, 2015, 119: 136-156. doi: 10.1016/j.quascirev.2015.03.015
[59] Goosse H, Brovkin V, Fichefet T, et al. Description of the Earth system model of intermediate complexity LOVECLIM version 1.2[J]. Geoscientific Model Development, 2010, 3: 603-633. doi: 10.5194/gmd-3-603-2010
[60] Rainsley E, Menviel L, Fogwill C J, et al. Greenland ice mass loss during the Younger Dryas driven by Atlantic Meridional Overturning Circulation feedbacks[J]. Scientific Reports, 2018, 8(1): 11307. doi: 10.1038/s41598-018-29226-8
[61] álvarez-Solas J, Montoya M, Ritz C, et al. Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes[J]. Climate of the Past, 2011, 7(4): 1297-1306. doi: 10.5194/cp-7-1297-2011
[62] Dokken T M, Jansen E. Rapid changes in the mechanism of ocean convection during the last glacial period[J]. Nature, 1999, 401(6752): 458-461. doi: 10.1038/46753
[63] Ślubowska M A, Koç N, Rasmussen T L, et al. Changes in the flow of Atlantic water into the Arctic Ocean since the last deglaciation: evidence from the northern Svalbard continental margin, 80 N[J]. Paleoceanography and Paleoclimatology, 2005, 20(4): PA4014.
[64] Broecker W S, Denton G H, Edwards R L, et al. Putting the Younger Dryas cold event into context[J]. Quaternary Science Reviews, 2010, 29(9-10): 1078-1081. doi: 10.1016/j.quascirev.2010.02.019
[65] McKay N P, Kaufman D S, Routson C C, et al. The onset and rate of Holocene Neoglacial cooling in the Arctic[J]. Geophysical Research Letters, 2018, 45(22): 12487-12496. doi: 10.1029/2018GL079773
[66] Ebbesen H, Hald M, Eplet T H. Lateglacial and early Holocene climatic oscillations on the western Svalbard margin, European Arctic[J]. Quaternary Science Reviews, 2007, 26(15-16): 1999-2011. doi: 10.1016/j.quascirev.2006.07.020
[67] Hald M, Andersson C, Ebbesen H, et al. Variations in temperature and extent of Atlantic Water in the northern North Atlantic during the Holocene[J]. Quaternary Science Reviews, 2007, 26(25-28): 3423-3440. doi: 10.1016/j.quascirev.2007.10.005
[68] Sarnthein M, Van Kreveld S, Erlenkeuser H, et al. Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N[J]. Boreas, 2003, 32(3): 447-461. doi: 10.1080/03009480310003351
[69] Gudmundsson G. Distributional limits of Pyrgo species at the biogeographic boundaries of the Arctic and the North-Atlantic Boreal regions[J]. The Journal of Foraminiferal Research, 1998, 28(3): 240-256.
[70] Zhuravleva A, Bauch H A, Spielhagen R F. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial[J]. Global and Planetary Change, 2017, 157: 232-243. doi: 10.1016/j.gloplacha.2017.09.005
[71] Risebrobakken B, Jansen E, Andersson C, et al. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas[J]. Paleoceanography, 2003, 18(1): 1017-1031. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3269ef075045b201697b0aa2baf74fb
[72] Spielhagen R F, Erlenkeuser H. Stable oxygen and carbon isotopes in planktic foraminifers from Arctic Ocean surface sediments: Reflection of the low salinity surface water layer[J]. Marine Geology, 1994, 119(3-4): 227-250. doi: 10.1016/0025-3227(94)90183-X
[73] Blaschek M, Renssen H. The Influence of Greenland melt water on the temporal and spatial response of the Holocene Thermal Maximum in the Nordic Seas: a modelling study[C]//EGU General Assembly Conference Abstracts. 2012, 14: 10679.
[74] Solomina O N, Bradley R S, Hodgson D A, et al. Holocene glacier fluctuations[J]. Quaternary Science Reviews, 2015, 111: 9-34. doi: 10.1016/j.quascirev.2014.11.018
[75] Olsen J, Anderson N J, Knudsen M F. Variability of the North Atlantic Oscillation over the past 5200 years[J]. Nature Geoscience, 2012, 5(11): 808-812. doi: 10.1038/ngeo1589
[76] Nesje A, Jansen E, Birks H J B, et al. Holocene climate variability in the northern North Atlantic region: a review of terrestrial and marine evidence[J]. Geophysical Monograph- American Geophysical Union, 2005, 158: 289-321.
[77] Jennings A E, Knudsen K L, Hald M, et al. A mid-Holocene shift in Arctic sea-ice variability on the East Greenland Shelf[J]. The Holocene, 2002, 12(1): 49-58. doi: 10.1191/0959683602hl519rp
[78] Porter S C. GLACIATIONS | Neoglaciation in the American Cordilleras[J]. Encyclopedia of Quaternary Science, 2007:1133-1142.
[79] Müller J, Werner K, Stein R, et al. Holocene cooling culminates in sea ice oscillations in Fram Strait[J]. Quaternary Science Reviews, 2012, 47: 1-14. doi: 10.1016/j.quascirev.2012.04.024
[80] Andersen C, Koc N, Moros M. A highly unstable Holocene climate in the subpolar North Atlantic: evidence from diatoms[J]. Quaternary Science Reviews, 2004, 23(20-22): 2155-2166. doi: 10.1016/j.quascirev.2004.08.004
[81] Andersson C, Pausata F S R, Jansen E, et al. Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean[J]. Climate of the Past Discussions, 2009, 5(4): 2081-2113. doi: 10.5194/cpd-5-2081-2009