Late Holocene foraminiferal record from mangrove reserve, Qi’ao Island, Pearl River Estuary and its implications for paleoenvironment
-
摘要:
潮间带有孔虫近年来被广泛地用于高精度古海平面等环境变化的研究中,但是在华南沿海此类研究少见。本文选取珠江口淇澳岛红树林潮间带上部长度为300 cm的QA钻孔进行了AMS14C测年,有孔虫、沉积物粒径、灰度分析,初步探究了研究区有孔虫作为高精度海平面指标的可能性及其所反映的古环境意义。研究结果显示钻孔包含两种有孔虫组合,一种是钙质有壳组合,常见属种为Ammonia becсarii(78.7%),Proelphidium granosum(6.6%)和Elphidiella kiangsuensis(5.6%),沉积底质为黏土质粉砂,对应沉积环境为河口潮下带;另一种是胶结壳组合,常见属种为Arenoparella mexicana(50.6%)、Miliammina fusca(17.5%)、Trochammia sp.(6.8%),沉积底质为砂质粉砂,含丰富植物碎屑,对应沉积环境为潮间带中上部红树林潮滩。结合AMS14C结果,QA钻孔记录了约4 200年以来的沉积,研究区初始为河口浅滩,由于三角洲进积作用浅滩淤积至海平面以上,约2 400年前研究区形成红树林中高潮滩。红树林沉积层中夹有两层粒度较细的钙质壳有孔虫沉积,推测可能由区域性次一级的海平面上升导致。灰度值反映了红树林沉积层中3个有机质含量较高的阶段,指示了温暖潮湿的气候,年代大约为3 000~2 700 cal. aBP, 1 200~1 100 cal. aBP, 600~500 cal. aBP,与海平面上升阶段较为接近。
Abstract:Intertidal foraminifera has been widely used in paleoenvironmental reconstruction, and especially, in researches on high-resolution relative sea-level fluctuation. Unfortunately, such researches are lacking in the South China coast. This time, a long core up to 300 cm in length was retrieved from the upper intertidal zone of the mangrove on the Qi’ao Island of the Pearl River estuary. AMS14C dating, foraminifera, grain size distribution and grayscale analysis were employed to ascertain the possibility to apply the mangrove foraminifera as a high-resolution proxy for sea level fluctuation and paleoenvironmental evolution. Two foraminiferal assemblages were acquired from the core QA, a calcareous group dominated by Ammonia becсarii (78.7%), with common species Proelphidium granosum (6.6%) and Elphidiella kiangsuensis (5.6%), from a clayey slit sediment, indicating an estuarine subtidal environment; and an agglutinated assemblage dominated by Arenoparella mexicana (50.6%) with common species Miliammina fusca (17.5%), Trochammia sp. (6.8%), from a layer of sandy silt deposits with abundant plants debris and residues, indicating an upper or middle mangrove intertidal environment. AMS14C dates suggest that, the sediments formed approximately 4 200 cal. aBP, when the study area was a subtidal or mudflats environments. It turned to a middle-high mangrove at ~2 400 cal. aBP, resulted from the falling of relative sea-level caused by deltaic progradation. Two fine grained layers were intercalated in mangrove sediments, which contain calcareous foraminiferal tests corresponding to 1 022 ~ 729 cal. aBP and 508 ~ 358 cal. aBP respectively, probably related to a sub-regional sea-level rise. The grayscale suggests three phases of high humification, corresponding to ~3 000~2 700 cal. aBP, 1 200~1 100 cal. aBP, 600~500 cal. aBP respectively, indicating a warm and humid climate, which are close to the sea-level rise periods.
-
Key words:
- mangrove /
- intertidal foraminifera /
- relative sea-level changes /
- paleoenviroment /
- the Qi’ao Island
-
图 4 钻孔QA年代-深度模型(Bacon)[31]
Figure 4.
图 6 钻孔QA有孔虫丰度,分异度变化,各属种所占百分比及有序聚类结果(所用软件为Tilia 2.0[32])
Figure 6.
表 1 钻孔QA沉积物AMS14C测年结果
Table 1. AMS14C radiocarbon dates from sediment of core QA
样品编号 实验室编号 深度 /cm 测年材料 δ13C /‰ 14C年龄/a 校正年龄2σ /cal. aBP QA-C1 Poz#2-78133 140 贝壳 –10.2 1 124±28 1 024±64 QA-C3 Poz-78599 195 有机质泥 –26.7 2 868±30 2 996±80 QA-C2 Poz-78598 295 有机质泥 –23.6 3 779±32 3 887±165 -
[1] Frey R W, Basan P B. Coastal salt marshes[M]//Davis R A. Coastal Sedimentary Environments. New York, NY: Springer, 1985: 225-301.
[2] Macdonald K B. Quantitative studies of salt marsh mollusc faunas from the north American Pacific coast [J]. Ecological Monographs, 1969, 39(1): 33-60. doi: 10.2307/1948564
[3] 尤坤元, 朱大奎, 施晓冬. 潮汐盐沼环境特点及高分辨率海面变化有孔虫标尺[J]. 地理科学, 1999, 19(3):277-281 doi: 10.3969/j.issn.1000-0690.1999.03.016
YOU Kunyuan, ZHU Dakun, SHI Xiaodong. Environmental characteristics and high resolution indicators of foraminifer for change of sea levels in the tidal saltmarsh [J]. Scientia Geographica Sinica, 1999, 19(3): 277-281. doi: 10.3969/j.issn.1000-0690.1999.03.016
[4] Scott D S, Medioli F S. Vertical zonations of marsh foraminifera as accurate indicators of former sea-levels [J]. Nature, 1978, 272(5653): 528-531. doi: 10.1038/272528a0
[5] Horton B P, Edwards R. Quantifying Holocene sea level change using intertidal foraminifera: lessons from the british isles[C]. Philadelphia Annual Meeting, 2006.
[6] Kemp A C, Horton B P, Culver S J. Distribution of modern salt-marsh foraminifera in the Albemarle-Pamlico estuarine system of North Carolina, USA: Implications for sea-level research [J]. Marine Micropaleontology, 2009, 72(3-4): 222-238. doi: 10.1016/j.marmicro.2009.06.002
[7] Liu S M. Comparison of mangrove and salt marsh foraminifera as sea-level indicators [J]. Quaternary International, 2012, 279-280: 285.
[8] Woodroffe S, Horton B P, Larcombe P, et al. Intertidal mangrove foraminifera from the central Great Barrier Reef shelf, Australia: implications for sea-level reconstruction [J]. Journal of Foraminiferal Research, 2005, 35(3): 259-270. doi: 10.2113/35.3.259
[9] Horton B P, Larcombe P, Woodroffe S A, et al. Contemporary foraminiferal distributions of a mangrove environment, Great Barrier Reef coastline, Australia: implications for sea-level reconstructions [J]. Marine Geology, 2003, 198(3-4): 225-243. doi: 10.1016/S0025-3227(03)00117-8
[10] Debenay J P, Guiral D. Mangrove swamp foraminifera, indicators of sea level or paleoclimate? [J]. Revue De Paleobiologie, 2006, 25(2): 567-574.
[11] 李建芬, 商志文, 姜兴钰, 等. 渤海湾沿岸贝壳堤对潮滩有孔虫海面变化指示意义的影响[J]. 地质通报, 2016, 35(10):1578-1583 doi: 10.3969/j.issn.1671-2552.2016.10.003
LI Jianfen, SHANG Zhiwen, JIANG Xingyu, et al. Sea-level indicated by foraminifera assemblages liv-ing in the open muddy flats with or without influence of the chenier ridges in Bohai Bay coastal area [J]. Geological Bulletin of China, 2016, 35(10): 1578-1583. doi: 10.3969/j.issn.1671-2552.2016.10.003
[12] 王绍鸿, 喻鸣同, 唐丽玉, 等. 福建深沪湾潮间带全新世有孔虫及其环境意义[J]. 台湾海峡, 2002, 21(1):6-11
WANG Shaohong, YU Mingtong, Tang Liyu, et al. Holocene foraminifera and it's environmental significance in Shenhu Bay, Fujian [J]. Journal of Oceanography in Taiwan Strait, 2002, 21(1): 6-11.
[13] 尤坤元, 陈才俊, 吴小根, 等. 我国苏北建川潮汐盐沼有孔虫垂直分带的发现和特征[J]. 海洋学报, 2002, 24(1):59-64
YOU Kunyuan, CHEN Caijun, WU Xiaogen, et al. Discovery and features of vertical zonations of tidal salt-marsh foraminifera in Jianchuan, North Jiangsu Province, China [J]. Acta Oceanologica Sinica, 2002, 24(1): 59-64.
[14] 吴乃琴, 汪品先. 我国海岸带胶结壳有孔虫分布的控制因素[J]. 科学通报, 1989(12):924-927 doi: 10.3321/j.issn:0023-074X.1989.12.001
WU Naiqin, WANG Pingxian. The distribution and constraining factors of agglutinated foraminifera of Chinese coast [J]. Chinese Science Bulletin, 1989(12): 924-927. doi: 10.3321/j.issn:0023-074X.1989.12.001
[15] 李建芬, 商志文, 王宏, 等. 渤海湾西部现代有孔虫群垂直分带的特征及其对全新世海面、地质环境变化的指示[J]. 地质通报, 2010, 29(5):650-659 doi: 10.3969/j.issn.1671-2552.2010.05.003
LI Jianfen, SHANG Zhiwen, WANG Hong, et al. Modern foraminifera assemblages: vertical zonation and its indication for Holocene sea level and geoenvironmental reconstruction in Bohai Bay, China [J]. Geological Bulletin of China, 2010, 29(5): 650-659. doi: 10.3969/j.issn.1671-2552.2010.05.003
[16] 龙海燕. 胶州湾盐沼有孔虫分布特征及其环境意义研究[D]. 中国海洋大学博士学位论文, 2009.
LONG Haiyan. Distribution of salt marsh foraminifera in Jiaozhou Bay and its environmental implication[D]. Doctoral Dissertation of Ocean University of China, 2009.
[17] 张留恩, 廖宝文. 珠海市淇澳岛红树林湿地的研究进展与展望[J]. 生态科学, 2011, 30(1):81-87 doi: 10.3969/j.issn.1008-8873.2011.01.015
ZHANG Liuen, LIAO Baowen. Research progress of mangrove wetlands on Qi’ao island, Zhuhai [J]. Ecological Science, 2011, 30(1): 81-87. doi: 10.3969/j.issn.1008-8873.2011.01.015
[18] 叶翔, 李靖, 王爱军. 珠江口淇澳岛滨海湿地沉积环境演化及其对人类活动的响应[J]. 海洋学报, 2018, 40(7):79-89
YE Xiang, LI Jing, WANG Aijun. Sedimentary environment and its response to anthropogenic impacts in the coastal wetland of the Qi’ao Island, Zhujiang River estuary [J]. Acta Oceanologica Sinica, 2018, 40(7): 79-89.
[19] 雷振胜, 李玫, 廖宝文. 珠海淇澳红树林湿地生物多样性现状及保护[J]. 广东林业科技, 2008, 24(5):56-60
LEI Zhengsheng, LI Mei, LIAO Baowen. Current situation and protection of mangrove wetlands biodiversity on Qi'ao Island, Zhuhai city [J]. Guangdong Forestry Science and Technology, 2008, 24(5): 56-60.
[20] 刘俊勇, 林凤标, 刘壮添, 等. 伶仃洋河口近年潮位变化分析及原因探讨[J]. 人民珠江, 2012, 33(6):14-18. doi: 10.3969/j.issn.1001-9235.2012.06.004
[21] 肖志建, 李团结, 廖世智. 伶仃洋表层沉积物特征及其泥沙运移趋势[J]. 热带海洋学报, 2011, 30(4):58-65 doi: 10.3969/j.issn.1009-5470.2011.04.009
XIAO Zhijian, LI Tuanjie, LIAO Shizhi. Surface sediment characteristics and transport trend in Lingdingyang Bay of the Pearl River estuary [J]. Journal of Tropical Oceanography, 2011, 30(4): 58-65. doi: 10.3969/j.issn.1009-5470.2011.04.009
[22] 丁芮. 珠江口及邻近海域环流潮汐高分辨率数值模拟研究[D]. 中国海洋大学硕士学位论文, 2015.
DING Rui. Three-Dimensional high-resolution numercal study of the tide and circulation in the Pearl River estuary and its adjacent wayers[D]. Master Dissertation of Ocean University of China, 2015.
[23] 韩玉梅, 包芸, 任杰. 聚类分析方法在泥沙粒径分级模拟中的应用研究[J]. 烟台大学学报: 自然科学与工程版, 2006, 19(4):288-294
HAN Yumei, BAO Yun, REN Jie. Application of clustering analysis to simulation model of different sediment grain size [J]. Journal of Yantai University: Natural Science and Engineering Edition, 2006, 19(4): 288-294.
[24] 王树功, 黎夏, 刘凯, 等. 近20年来淇澳岛红树林湿地景观格局分析[J]. 地理与地理信息科学, 2005, 21(2):53-57 doi: 10.3969/j.issn.1672-0504.2005.02.013
WANG Shugong, LI Xia, LIU Kai, et al. Landscape pattern analyses on the mangrove forest wetland of Qi'ao island in the last two decades [J]. Geography and Geo-Information Science, 2005, 21(2): 53-57. doi: 10.3969/j.issn.1672-0504.2005.02.013
[25] 张乔民, 于红兵, 陈欣树, 等. 红树林生长带与潮汐水位关系的研究[J]. 生态学报, 1997, 17(3):258-265 doi: 10.3321/j.issn:1000-0933.1997.03.006
ZHANG Qiaomin, YU Hongbing, CHEN Xinshu, et al. The relationship between mangrove zone on tidal flats and tidal levels [J]. Acta Ecologica Sinica, 1997, 17(3): 258-265. doi: 10.3321/j.issn:1000-0933.1997.03.006
[26] 王树功, 黎夏, 周永章, 等. 珠江口淇澳岛红树林湿地变化及调控对策研究[J]. 湿地科学, 2005, 3(1): 13-20.
WANG Shugong, LI Xia, ZHOU Yongzhang, et al. The change of mangrove wetland ecosystemetland Science, 2005, 3(1): 13-20.
[27] Stuiver M R P J. CALIB 7. 1[WWW program] at http://calib.org, access and controlling countermeasures in the Qi'ao island[J]. Wed 2018-10-8. 2018.
[28] Southon J, Kshgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian Ocean and Southeast Asia [J]. Radiocarbon, 2002, 44(1): 167-180. doi: 10.1017/S0033822200064778
[29] Zong Y Q, Yu F L, Huang G Q, et al. The history of water salinity in the Pearl River estuary, China, during the Late quaternary [J]. Earth Surface Processes and Landforms, 2010, 35(10): 1221-1233. doi: 10.1002/esp.2030
[30] 韩爱艳, 曾砺锋, 黄康有, 等. 罗霄山脉山地沼泽全新世以来的古气候记录[J]. 热带地理, 2016, 36(3):477-485, 520
HAN Aiyan, ZENG Lifeng, HUANG Kangyou, et al. Holocene climate records from a mountain wetland in Luoxiao ranges [J]. Tropical Geography, 2016, 36(3): 477-485, 520.
[31] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process [J]. Bayesian Analysis, 2011, 6(3): 457-474.
[32] Grimm E C. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares [J]. Computers & Geosciences, 1987, 13(1): 13-35.
[33] 李淑鸾. 珠江口底质中有孔虫埋葬群的分布规律[J]. 海洋地质与第四纪地质, 1985, 5(2):83-104
LI Shuluan. Distribution of the foraminiferal thanatocoenosis of Pearl River estuary [J]. Marine Geology & Quaternary Geology, 1985, 5(2): 83-104.
[34] 李涛, 向荣, 李团结. 珠江口表层沉积物底栖有孔虫分布及环境指示[J]. 海洋地质与第四纪地质, 2011, 31(6):91-98
LI Tao, XIANG Rong, LI Tuanjie. Benthic foraminiferal distribution in surface sediments of Zhujiang Estuary and its environmental implications [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 91-98.
[35] Wu J, Liu C L, Fürsich F T, et al. Foraminifera as environmental indicators and quantitative salinity reconstructions in the Pearl River Estuary, Southern China [J]. The Journal of Foraminiferal Research, 2015, 45(3): 205-219. doi: 10.2113/gsjfr.45.3.205
[36] 孙息春. 广东深圳湾和海南新村港底质中的有孔虫[J]. 微体古生物学报, 1991, 8(3):325-337
SUN Xichun. Foraminifera from sediments of the Shenzhen Bay, Guangdong, and the Xincun Harbour, Hainan Island [J]. Acta Micropalaeontologica Sinica, 1991, 8(3): 325-337.
[37] Berkeley A, Perry C T, Smithers S G, et al. The spatial and vertical distribution of living (stained) benthic foraminifera from a tropical, intertidal environment, north Queensland, Australia [J]. Marine Micropaleontology, 2008, 69(2): 240-261. doi: 10.1016/j.marmicro.2008.08.002
[38] Edwards R J, Wright A J, Van De Plassche O. Surface distributions of salt-marsh foraminifera from Connecticut, USA: modern analogues for high-resolution sea level studies [J]. Marine Micropaleontology, 2004, 51(1-2): 1-21. doi: 10.1016/j.marmicro.2003.08.002
[39] De Rijk S, Troelstra S R. Salt marsh foraminifera from the Great Marshes, Massachusetts: environmental controls [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130(1-4): 81-112. doi: 10.1016/S0031-0182(96)00131-9
[40] Patterson R T, Gehrels W R, Belknap D F, et al. The distribution of salt marsh foraminifera at Little Dipper Harbour New Brunswick, Canada: implications for development of widely applicable transfer functions in sea-level research [J]. Quaternary International, 2004, 120(1): 185-194. doi: 10.1016/j.quaint.2004.01.017
[41] Kemp A C, Horton B P, Vann D R, et al. Quantitative vertical zonation of salt-marsh foraminifera for reconstructing former sea level; an example from New Jersey, USA [J]. Quaternary Science Reviews, 2012, 54: 26-39. doi: 10.1016/j.quascirev.2011.09.014
[42] Gehrels W R. Determining relative sea-level change from salt-marsh foraminifera and plant zones on the coast of Maine, U.S.A. [J]. Journal of Coastal Research, 1994, 10(4): 990-1009.
[43] Patterson R T, Dalby A P, Roe H M, et al. Relative utility of foraminifera, diatoms and macrophytes as high resolution indicators of paleo-sea level in coastal British Columbia, Canada [J]. Quaternary Science Reviews, 2005, 24(18-19): 2002-2014. doi: 10.1016/j.quascirev.2004.11.013
[44] Scott D B, Medioli F S. Quantitative Studies of Marsh Foraminiferal Distributions in Nova Scotia: Implications for Sea Level Studies[M]. Washington, D.C.: Cushman Foundation for Foraminiferal Research, 1980.
[45] Sen A, Ghosh M, Khanderao P, et al. Modern benthic foraminiferal assemblages from the world’s largest deltaic mangrove ecosystem, the Sundarbans [J]. Marine Biodiversity, 2015, 46(2): 421-431.
[46] 许艳, 王拓夫. 湛江红树林保护区现代沉积物粒度特征及其对风暴事件的响应[J]. 应用海洋学学报, 2011, 30(2):269-274 doi: 10.3969/J.ISSN.1000-8160.2011.02.018
XU Yan, WANG Tuofu. Characteristics of sediment particle size and their response to storm surge in the Zhanjiang Mangrove Nature Reserve [J]. Journal of Oceanography in Taiwan Strait, 2011, 30(2): 269-274. doi: 10.3969/J.ISSN.1000-8160.2011.02.018
[47] 刘金铃, 李柳强, 林慧娜, 等. 中国主要红树林区沉积物粒度分布特征[J]. 厦门大学学报: 自然科学版, 2008, 47(6):891-893
LIU Jingling, LI Liuqiang, LIN Huina, et al. Characters of Gain Size of Sediments from Mangrove Wetlands of China [J]. Journal of Xiamen University: Natural Science, 2008, 47(6): 891-893.
[48] Berkeley A, Perry C T, Smithers S G, et al. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments [J]. Earth-Science Reviews, 2007, 83(3-4): 205-230. doi: 10.1016/j.earscirev.2007.04.003
[49] Zong Y. SEA-LEVELS, LATE QUATERNARY | Late quaternary relative sea-level changes in the Tropics[]//Elias S A, Elias C J. Encyclopedia of Quaternary Science. 2nd ed. Oxford, UK: Elsevier, 2013, 4: 495-502.
[50] Xiong H X, Zong Y Q, Qian P, et al. Holocene sea-level history of the northern coast of South China Sea [J]. Quaternary Science Reviews, 2018, 194: 12-26. doi: 10.1016/j.quascirev.2018.06.022
[51] Zong Y Q, Huang K Y, Yu F L, et al. The role of sea-level rise, monsoonal discharge and the palaeo-landscape in the early Holocene evolution of the Pearl River delta, southern China [J]. Quaternary Science Reviews, 2012, 54: 77-88. doi: 10.1016/j.quascirev.2012.01.002
[52] Zong Y Q, Zheng Z, Huang K Y, et al. Changes in sea level, water salinity and wetland habitat linked to the late agricultural development in the Pearl River delta plain of China [J]. Quaternary Science Reviews, 2013, 70: 145-157. doi: 10.1016/j.quascirev.2013.03.020
[53] Zong Y, Yu F, Huang G, et al. Sedimentary evidence of Late Holocene human activity in the Pearl River delta, China [J]. Earth Surface Processes and Landforms, 2010, 35(9): 1095-1102. doi: 10.1002/esp.1970
[54] 王建华, 王晓静, 曹玲珑, 等. 珠江三角洲GZ-2孔全新统孢粉特征及古环境意义[J]. 古地理学报, 2009, 11(6):661-669 doi: 10.7605/gdlxb.2009.06.006
WANG Jianhua, WANG Xiaojing, CAO Linglong, et al. The Holocene sporopollen characteristics and their paleoenvironmental significance of Core GZ-2 in Pearl River delta [J]. Journal of Palaeogeography, 2009, 11(6): 661-669. doi: 10.7605/gdlxb.2009.06.006
[55] 黄康有, 何嘉卉, 宗永强, 等. 珠江三角洲三水盆地早全新世以来孢粉分析与古环境重建[J]. 热带地理, 2016, 36(3):364-373
HUANG Kangyou, HE Jiahui, ZONG Yongqiang, et al. Holocene paleoenvironment reconstruction based on pollen data in the Sanshui Basin, Northern Pearl River delta [J]. Tropical Geography, 2016, 36(3): 364-373.
[56] Berkeley A, Perry C T, Smithers S G, et al. Foraminiferal biofacies across mangrove-mudflat environments at Cocoa Creek, north Queensland, Australia [J]. Marine Geology, 2009, 263(1-4): 64-86. doi: 10.1016/j.margeo.2009.03.019
[57] 余克服, 陈特固. 南海北部晚全新世高海平面及其波动的海滩沉积证据[J]. 地学前缘, 2009, 16(6):138-145 doi: 10.3321/j.issn:1005-2321.2009.06.015
YU Kefu, CHEN Tegu. Beach sediments from northern South China Sea suggest high and oscillating sea level during the late Holocene [J]. Earth Science Frontiers, 2009, 16(6): 138-145. doi: 10.3321/j.issn:1005-2321.2009.06.015
[58] 李平日. 珠江三角洲一万年来环境演变[M]. 北京: 海洋出版社, 1991: 130-139.
LI Pingri. The Environment Evolution of The Zhujiang Delta in The Last 10000 Years[M]. Beijing: China Ocean Press, 1991: 130-139.
[59] 王建华. 华南沿海全新世海滩岩的特征及其意义[J]. 中山大学学报论丛, 1992(1):111-122
WANG Jianhua. Characteristics and significancos of the Holocene Beachrocks along the coast of South China [J]. Sun Yatsen University Forum, 1992(1): 111-122.
[60] 于学峰, 周卫建, 史江峰. 度量泥炭腐殖化度的一种简便方法: 泥炭灰度[J]. 海洋地质与第四纪地质, 2005, 25(1):133-136
YU Xuefeng, ZHOU Weijian, SHI Jiangfeng. A convenient method for peat humification determination: Grayscale [J]. Marine Geology & Quaternary Geology, 2005, 25(1): 133-136.
[61] 马巧红, 钟巍, 薛积彬, 等. 晚更新世晚期以来雷州半岛北部泥炭腐殖化度的古气候意义[J]. 热带地理, 2008, 28(6):498-503 doi: 10.3969/j.issn.1001-5221.2008.06.002
MA Qiaohong, ZHONG Wei, XIE Jishan, et al. Paleoclimatic significance of the peat humification degree in Northern Leizhou Peninsula since Late-pleistocene [J]. Tropical Geography, 2008, 28(6): 498-503. doi: 10.3969/j.issn.1001-5221.2008.06.002
[62] 王晓静, 王建华, 曹玲珑, 等. 广州地区晚第四纪孢粉气候研究[J]. 中山大学学报: 自然科学版, 2010, 49(3):113-121
WANG Xiaojing, WANG Jianhua, CAO Linglong, et al. Late Quaternary pollen records and climate significance in Guangzhou [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(3): 113-121.
[63] 王爱军, 高抒, 陈坚, 等. 福建泉州湾盐沼对台风“格美”的沉积动力响应[J]. 科学通报, 2009, 54(1):120-130 doi: 10.1007/s11434-008-0365-7
WANG Aijun, GAO Shu, CHEN Jian, et al. Sediment dynamic responses of coastal salt marsh to typhoon “KAEMI” in Quanzhou Bay, Fujian Province, China [J]. Chinese Science Bulletin, 2009, 54(1): 120-130. doi: 10.1007/s11434-008-0365-7