Influence of salinity on sediment erosion-resistance: evidence from annular flume studies
-
摘要:
黄河口海域盐度变化受入海径流量、海洋动力条件及气候等影响,时空变化显著。河口区盐度场的变化不仅会影响营养盐、污染物的运输,还会改变入海泥沙的沉降及固结特性,进一步影响沉积物的抗侵蚀性。为研究不同盐度环境对沉积物抗侵蚀性的影响,选用黄河三角洲沉积物进行室内循环水槽试验,模拟不同盐度条件下沉积物发生侵蚀再悬浮的过程。研究得出在本研究区盐度0~36‰范围内,黄河口细颗粒沉积物临界切应力值存在明显差异,变化范围为0.055 6~0.080 6 Pa。固结程度相同,沉积物临界切应力随盐度的增加呈对数增长特征,在盐度小于9‰的条件下,黄河口细颗粒沉积物抗侵蚀性受盐度环境变化的影响尤为明显;固结程度不同,随着固结时间的推移,盐度环境的增加对沉积物临界切应力的促进作用减小。
Abstract:The temporal and spatial change of salinity field in the Yellow River estuary is affected by runoff, ocean dynamics and climate. It influences not only the transportation of nutrients and pollutants, but also the deposition and consolidation of sediments, and so that the erosion-resistance of the sediments. In order to study the effect of salinity on the erosion-resistance of sediments, the sediments from the Yellow River estuary were used to carry out in-door annular flume experiments to simulate the process of sediment erosion and resuspension under different salinity conditions. The results show that the critical shear stress of fine sediments in the Yellow River estuary varies significantly in the salinity range of 0~36‰, and may be up to 0.055 6~0.080 6 Pa. Under same consolidation degree, the critical shear stress is logarithmically proportional to the increase in salinity, especially the salinity is less than 9‰. Under different consolidation degree, however, the effect of salinity on the critical shear stress of sediments decreases with the consolidation time.
-
Key words:
- salinity /
- fine-grained sediments /
- erosion /
- critical shear stress
-
表 1 不同盐度环境近底切应力分布
Table 1. Near-bottom shear stress distribution under different salinity conditions
阶段 档位 流速/(m·s−1) 盐度/‰ 水体密度/(g·cm−3) 切应力/Pa Ⅰ 1 0.16 0 1.000 0.029 2 4 1.003 0.029 3 9 1.007 0.029 4 18 1.014 0.029 6 27 1.021 0.029 8 36 1.028 0.030 0 Ⅱ 2 0.21 0 1.000 0.050 3 4 1.003 0.050 3 9 1.007 0.050 6 18 1.014 0.050 9 27 1.021 0.051 3 36 1.028 0.051 6 3 0.22 0 1.000 0.055 2 4 1.003 0.055 3 9 1.007 0.055 5 18 1.014 0.055 9 27 1.021 0.056 3 36 1.028 0.056 7 Ⅲ 4 0.28 0 1.000 0.089 4 4 1.003 0.089 8 9 1.007 0.090 6 18 1.014 0.091 2 27 1.021 0.091 5 36 1.028 0.091 8 5 0.29 0 1.000 0.095 9 4 1.003 0.096 2 9 1.007 0.096 5 18 1.014 0.097 1 27 1.021 0.097 8 36 1.028 0.098 5 表 2 不同盐度条件下沉积物临界切应力 (5 h)
Table 2. Critical shear stress of sediments under different salinity conditions (5 h)
盐度/‰ 0 4 9 18 27 36 临界侵蚀切应力/Pa 0.055 6 0.065 7 0.067 0 0.068 3 0.068 9 0.069 3 表 3 不同盐度条件下沉积物临界切应力 (24 h)
Table 3. Critical shear stress of sediments under different salinity conditions (24 h)
盐度/‰ 0 4 9 18 27 36 临界侵蚀切应力/Pa 0.069 5 0.077 9 0.079 5 0.080 1 0.080 3 0.080 6 -
[1] 许丹, 孙志林, 祝丽丽, 等. 钱塘江河口盐度数值模拟[J]. 海洋与湖沼, 2013, 44(4):829-836
XU Dan, SUN Zhilin, ZHU Lili, et al. Numerical simulation of salinity in Qiantang River Estuary [J]. Oceanologia et Limnologia Sinica, 2013, 44(4): 829-836.
[2] Lin C L, Su J L, Xu B R, et al. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem [J]. Progress in Oceanography, 2001, 49(1-4): 7-19. doi: 10.1016/S0079-6611(01)00013-1
[3] 刘敏, 侯立军, 许世远, 等. 盐度变化对崇明东部河口潮滩氮营养盐循环影响实验模拟研究[J]. 海洋环境科学, 2004, 23(4):6-9 doi: 10.3969/j.issn.1007-6336.2004.04.002
LIU Min, HOU Lijun, XU Shiyuan, et al. Experimental simulation of effect of changes of salinity on nitrogen cycling in the estuarine tidal flats of Chongming Island [J]. Marine Environmental Science, 2004, 23(4): 6-9. doi: 10.3969/j.issn.1007-6336.2004.04.002
[4] Maa J P Y, Sanford L, Halka J P. Sediment resuspension characteristics in Baltimore Harbor, Maryland [J]. Marine Geology, 1998, 146(1-4): 137-145. doi: 10.1016/S0025-3227(97)00120-5
[5] Mehta A J, Parchure T M. Surface erosion of fine-grained sediment revisited [J]. Proceedings in Marine Science, 2000, 2: 55-74. doi: 10.1016/S1568-2692(00)80006-6
[6] Parchure T M, Mehta A J. Erosion of soft cohesive sediment deposits [J]. Journal of Hydraulic Engineering, 1985, 111(10): 1308-1326. doi: 10.1061/(ASCE)0733-9429(1985)111:10(1308)
[7] Houwing E J. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea coast [J]. Estuarine, Coastal & Shelf Science, 1999, 49(4): 545-555.
[8] Aberle J, Nikora V, Walters R. Effects of bed material properties on cohesive sediment erosion [J]. Marine Geology, 2004, 207(1-4): 83-93. doi: 10.1016/j.margeo.2004.03.012
[9] Kim K, Yoon H S, Lee I C, et al. An influence of salinity on resuspension of cohesive sediment [J]. Journal of Coastal Research, 2016, 75(sp1): 68-72. doi: 10.2112/SI75-014.1
[10] Kimiaghalam N, Goharrokhi M, Clark S P, et al. A comprehensive fluvial geomorphology study of riverbank erosion on the Red River in Winnipeg, Manitoba, Canada [J]. Journal of Hydrology, 2015, 529: 1488-1498. doi: 10.1016/j.jhydrol.2015.08.033
[11] 宋敬泰. 黄河三角洲岸滩沉积物临界侵蚀剪应力研究[D]. 中国海洋大学硕士学位论文, 2009. [
SONG Jingtai. Study on sediment critical erosion stress on the tidal flat along the Yellow River Delta[D]. Master Dissertation of Ocean University of China, 2009.]
[12] 单红仙, 王伟宏, 刘晓磊, 等. 海水盐度对沉降泥沙固结过程影响研究[J]. 海洋工程, 2015, 33(2):50-57, 76
SHAN Hongxian, WANG Weihong, LIU Xiaolei, et al. Effects of sea water salinity on the consolidation process of sediments settlement [J]. The Ocean Engineering, 2015, 33(2): 50-57, 76.
[13] 熊传芳, 单红仙, 张少同, 等. 黄河三角洲沉积物含盐量与其临界剪切应力的关系研究[J]. 科学技术与工程, 2017, 17(23):250-255 doi: 10.3969/j.issn.1671-1815.2017.23.042
XIONG Chuanfang, SHAN Hongxian, ZHANG Shaotong, et al. Relationship between salt content of Undisturbed Sediment and its critical shear stress [J]. Science Technology and Engineering, 2017, 17(23): 250-255. doi: 10.3969/j.issn.1671-1815.2017.23.042
[14] 刘姣, 单红仙, 王伟宏, 等. 海洋盐度场对细粒沉积物临界剪应力影响[J]. 海洋地质与第四纪地质, 2016, 36(5):35-41
LIU Jiao, SHAN Hongxian, WANG Weihong, et al. Influence of water salinity on critical shear stress of fine-grained sediments [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 35-41.
[15] 熊传芳, 单红仙, 朱超祁. 黄河口海域沉积物含盐量特征研究[J]. 地质论评, 2017, 63(S1):343-344
XIONG Chuanfang, SHAN Hongxian, ZHU Chaoqi. Salt content of sediments in the Yellow River estuary [J]. Geological Review, 2017, 63(S1): 343-344.
[16] Maa J P Y, Wright L D, Lee C H, et al. VIMS Sea Carousel: A field instrument for studying sediment transport [J]. Marine Geology, 1993, 115(3-4): 271-287. doi: 10.1016/0025-3227(93)90056-2
[17] Pope N D, Widdows J, Brinsley M D. Estimation of bed shear stress using the turbulent kinetic energy approach-A comparison of annular flume and field data [J]. Continental Shelf Research, 2006, 26(8): 959-970. doi: 10.1016/j.csr.2006.02.010
[18] 贾永刚, 单红仙, 杨秀娟, 等. 黄河口沉积物动力学与地质灾害[M]. 北京: 科学出版社, 2011.
JIA Yonggang, SHAN Hongxian, YANG Xiujuan, et al. Sediment dynamics and geologic hazards in the Estuary of Yellow River, China[M]. Beijing: Science Press, 2011.
[19] 孟祥梅, 贾永刚, 杨忠年, 等. 现代黄河三角洲潮滩沉积物抗侵蚀性原位试验[J]. 海洋地质与第四纪地质, 2010, 30(3):39-45
MENG Xiangmei, JIA Yonggang, YANG Zhongnian, et al. Field testing of the erodibility of tidal flat sediment in the modern Yellow River Delta [J]. Marine Geology & Quaternary Geology, 2010, 30(3): 39-45.
[20] 毕乃双, 杨作升, 王厚杰, 等. 黄河调水调沙期间黄河入海水沙的扩散与通量[J]. 海洋地质与第四纪地质, 2010, 30(2):27-34
BI Naishuang, YANG Zuosheng, WANG Houjie, et al. Characteristics of dispersal of the Yellow River water and sediment to the sea during water-sediment regulation period of the Yellow River and its dynamic mechanism [J]. Marine Geology & Quaternary Geology, 2010, 30(2): 27-34.
[21] 杨秀娟, 贾永刚, 单红仙, 等. 水动力作用对黄河口沉积物强度影响的现场试验研究[J]. 岩土工程学报, 2010, 32(4):630-637
YANG Xiujuan, JIA Yonggang, SHAN Hongxian, et al. Experimental study on impact of marine hydrodynamics on strength of seabed sediments in the Yellow River estuary [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 630-637.
[22] 崔承琦, 孙晓霞, 施建堂, 等. 近代黄河三角洲海岸发育体系——黄河三角洲潮滩海岸时空谱系研究Ⅱ[J]. 海洋通报, 2001, 20(5):31-39 doi: 10.3969/j.issn.1001-6392.2001.05.005
CUI Chengqi, SUN Xiaoxia, SHI Jiantang, et al. Coastal development system of the modern Huanghe River Delta—Research II on the space-time lineage of the coastal tidal-flat of the Huanghe River Delta [J]. Marine Science Bulletin, 2001, 20(5): 31-39. doi: 10.3969/j.issn.1001-6392.2001.05.005
[23] van Raaphorst W, Malschaert H, Van Haren H. Tidal resuspension and deposition of particulate matter in the Oyster Grounds, North Sea [J]. Journal of Marine Research, 1998, 56(1): 257-291. doi: 10.1357/002224098321836181
[24] Zhang S T, Jia Y G, Zhang Y Q, et al. Influence of seepage flows on the erodibility of fluidized silty sediments: parameterization and mechanisms [J]. Journal of Geophysical Research: Oceans, 2018, 123(5): 3307-3321. doi: 10.1002/2018JC013805
[25] Bale A J, Widdows J, Harris C B, et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume [J]. Continental Shelf Research, 2006, 26(10): 1206-1216. doi: 10.1016/j.csr.2006.04.003
[26] Schaaff E, Grenz C, Pinazo C, et al. Field and laboratory measurements of sediment erodibility: A comparison [J]. Journal of Sea Research, 2006, 55(1): 30-42. doi: 10.1016/j.seares.2005.09.004
[27] 郑杰文, 贾永刚, 刘晓磊, 等. 现代黄河三角洲沉积物临界剪切应力研究[J]. 海洋学报, 2015, 37(3):86-98
ZHENG Jiewen, JIA Yonggang, LIU Xiaolei, et al. Field measurement of sediment critical shear stress in the modern Yellow River Delta [J]. Acta Oceanologica Sinica, 2015, 37(3): 86-98.
[28] Sutarto T E. A combined flume-imaging technique for measuring fluvial erosion of cohesive stream bank soils [J]. Procedia Engineering, 2015, 125: 368-375. doi: 10.1016/j.proeng.2015.11.087
[29] Qiao S Q, Shi X F, Zhu A M, et al. Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea [J]. Estuarine, Coastal and Shelf Science, 2010, 86(3): 337-344. doi: 10.1016/j.ecss.2009.07.019
[30] Zhang F Y, Wang G H, Kamai T, et al. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution [J]. Engineering Geology, 2013, 155: 69-79. doi: 10.1016/j.enggeo.2012.12.018
[31] Tan G M, Wang J, Shu C W, et al. Effects of consolidation time and particle size on scour rates of cohesive sediment [J]. Journal of Hydrodynamics, 2007, 19(2): 160-164. doi: 10.1016/S1001-6058(07)60043-2