Numerical simulation of Late Mesozoic accretion process along the continental margin of East China: A case study of the Nadanhada Terrane
-
摘要:
许多现存造山带中均发现了洋岛玄武岩(OIB)和地幔柱型蛇绿岩记录,因此洋底高原增生是大陆生长的重要方式,但目前对控制洋底高原增生过程的机制仍不清楚。采用热-机械-岩石学模型数值模拟研究洋底高原的陆缘增生过程,结果显示洋底高原向大陆边缘增生具有3个控制因素:(1)减薄的大陆边缘;(2)海洋岩石圈中的“薄弱”层;(3)年轻的洋底高原。模拟结果与中国东北地区那丹哈达地体的野外构造解析结果和地球化学特征结合,揭示了洋底高原和东北亚大陆边缘的强烈挤压引起俯冲带的应变集中,产生与阿尔卑斯型褶皱相关的高角度逆冲断层和背冲断层,并伴随低级变质作用的构造折返过程。
Abstract:Accretion of oceanic plateau is an important process of continental growth, and is exemplified by the presence of oceanic island basalts (OIB) and plume-type ophiolites in many modern orogens. Oceanic plateau can also subduct along convergent margins, as revealed by seismic tomography. The mechanism controlling accretion or subduction of oceanic plateau remain unclear. In this paper, we investigate the accretion of oceanic plateaus at continental margins using a thermo-mechanical-petrological model of an ocean-continent convergent zone. The results of the models show three major factors for the accretion of the oceanic plateaus onto the continental margin: (1) thinned continental margin for the overriding plate, (2) “weak” layers in oceanic lithosphere and (3) young oceanic plateau. The results of the model are further compared with the field structural analysis and geochemical characteristics of the Nadanhada Terrane in Northeast China. It is revealed that the intense compression of the seamount and the continental margin of Northeast Asia results in strain concentration in the subduction zone, forming high-angle thrust faults and back thrusts associated with the Alpine-type folds, and structural exhumation of low-metamorphic rocks through thrust faults.
-
岩石类型 ρ0
/(kg·m−3)Cp
/(J·kg−1·K−1)K
/(W·m−1·K−1)Hr
/(μW·m−3)流变性质 η0
/(Pa·s−1)E
/(kJ·mol−1)V
/(J·MPa−1·mol−1)n AD
/(MPa−n·s−1)C
/MPasin
(φeff)沉积物 2 700 1 000 2 湿石英岩 1.97E+17 154 0 2.3 3.20E-06 1 0.15 上陆壳 2 700 1 000 1 湿石英岩 1.97E+19 154 0 2.3 3.20E-06 20 0.15 下陆壳 3 000 1 000 1 斜长石 An75 4.80E+22 238 0 3.2 3.30E-04 20 0.45 洋壳/洋底高原 3 000 1 000 0.25 斜长石 An75 4.80E+22 238 0 3.3 3.30E-04 20 0.45 新生成的洋底高原 2 900 1 000 0.25 斜长石 An75 4.80E+20 238 0 3.3 3.30E-04 20 0.45 干地幔 3 300 1 000 0.022 无水橄榄岩 3.98E+16 532 8 3.5 2.50E+04 40 0.6 含水地幔 3 200 1 000 0.022 含水橄榄岩 5.01E+20 470 8 4 2.00E+03 1 0.06 蛇纹石化
地幔3 200 1 000 0.022 蛇纹石 3.21E+36 8.9 3.2 3.8 1.97E-33 1 0.06 基性岩浆底侵作用 3 200 1 000 3 单斜辉石 3.21E+36 670 0 2.7 1.56E-34 1 0.06 注:ρ0为参考密度;Cp为比热容;k为导热系数;Hr为放射性热;C为内聚力;sin(φeff)为有效摩擦系数;η0为参考黏滞参数;E为活化能;V为活化体积;n为应力指数;AD为材料常数。 表 2 模型中部分熔融岩石的流变学参数[27, 31, 33]
Table 2. Parameters of partially molten rocks in the numerical models[27, 31, 33]
部分熔融
岩石类型ρ0
/(kg·m−3)Cp
/(J· kg−1·K−1)sin
(φeff)η0
/(Pa·s−1)T固相线
/KT液相线
/KHL
/(kJ·kg−1)n AD
/(MPa−n·s−1)部分熔融沉积物/上陆壳 2 500 1 500 0.06 5.00E+14 831+0.06P 300 1 2.00E-09 部分熔融下
陆壳2 500 1 500 0.06 5.00E+14 1,423+0.105P 300 1 2.00E-09 部分熔融洋壳/洋底高原 2 900 1 500 0.06 1.00E+13 1,423+0.105P 300 1 1.00E-07 注:ρ0为熔融岩石的参考密度;Cp为熔融岩石的比热容;sin(φeff)为熔融岩石的有效摩擦系数;η0为熔融岩石的有效摩擦系数;T固相线为地壳的固相线温度;T液相线为地壳的液相线温度;HL为相变潜热;n为熔融岩石的应力指数;AD为熔融岩石的材料常数。 -
[1] Dobretsov N L, Buslov M M, Yu U. Fragments of oceanic islands in accretion-collision areas of Gorny Altai and Salair, southern Siberia, Russia: Early stages of continental crustal growth of the Siberian continent in Vendian-Early Cambrian time [J]. Journal of Asian Earth Sciences, 2004, 23(5): 673-690. doi: 10.1016/S1367-9120(03)00132-9
[2] Tetreault J L, Buiter S J H. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments [J]. Solid Earth, 2014, 5(2): 1243-1275. doi: 10.5194/se-5-1243-2014
[3] Liu L, Zhang J S. Differential contraction of subducted lithosphere layers generates deep earthquakes [J]. Earth and Planetary Science Letters, 2015, 421: 98-106. doi: 10.1016/j.jpgl.2015.03.053
[4] Axen G J, Van Wijk J W, Currie C A. Basal continental mantle lithosphere displaced by flat-slab subduction [J]. Nature Geoscience, 2018, 11: 961-964. doi: 10.1038/s41561-018-0263-9
[5] Wu F Y, Yang J H, Xu Y, et al. Destruction of the North China Craton in the Mesozoic [J]. Annual Review of Earth and Planetary Sciences, 2019.
[6] Niu Y L, Liu Y, Shao F L, et al. Exotic origin of the Chinese continental shelf: new insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic [J]. Science Bulletin, 2015, 60(18): 1598-1616. doi: 10.1007/s11434-015-0891-z
[7] Ding W W, Li J B, Wu Z C, et al. Late Mesozoic transition from Andean-type to Western pacific-type of the East China continental margin-Is the East China Sea basement an allochthonous terrain [J]. Geological Journal, 2017, 52(5): 1994-2002.
[8] Huang H H, Wu Y M, Song X, et al. Joint Vp and Vs tomography of Taiwan: implications for subduction-collision orogeny [J]. Earth and Planetary Science Letters, 2014, 392: 177-191. doi: 10.1016/j.jpgl.2014.02.026
[9] Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China [J]. Tectonics, 2014, 33(12): 2444-2466. doi: 10.1002/2014TC003637
[10] Cloos M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts [J]. Geological Society of America Bulletin, 1993, 105(6): 715. doi: 10.1130/0016-7606(1993)105<0715:LBACOS>2.3.CO;2
[11] Mason W G, Moresi L, Betts P G, et al. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones [J]. Tectonophysics, 2010, 483(1-2): 0-79.
[12] Tetreault J L, Buiter S J H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B8).
[13] Vogt K, Gerya T V. From oceanic plateaus to allochthonous terranes: numerical modelling [J]. Gondwana Research, 2014, 25(2): 494-508. doi: 10.1016/j.gr.2012.11.002
[14] Yang S H, Li Z H, Gerya T, et al. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet [J]. Tectonophysics, 2018, 746: 212-228. doi: 10.1016/j.tecto.2017.07.018
[15] 李三忠, 张勇, 郭玲莉, 等. 那丹哈达地体及周缘中生代变形与增生造山过程[J]. 地学前缘, 2017, 24(4):200-212
LI Sanzhong, ZHANG Yong, GUO Lingli, et al. Mesozoic deformation and accretionary orogenic processes around the Nadanhada Terrane [J]. Earth Science Frontiers, 2017, 24(4): 200-212.
[16] Liu Y J, Li W, Feng Z, et al. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt [J]. Gondwana Research, 2017, 43: 123-148. doi: 10.1016/j.gr.2016.03.013
[17] 刘永江, 张兴洲, 金巍, 等. 东北地区晚古生代区域构造演化[J]. 中国地质, 2010, 37(04):943-951 doi: 10.3969/j.issn.1000-3657.2010.04.010
LIU Yongjiang, ZHANG Xingzhou, JIN Wei, et al. Paleozoic tectonic evolution in Northeast China [J]. Geology in China, 2010, 37(04): 943-951. doi: 10.3969/j.issn.1000-3657.2010.04.010
[18] Ouyang H G, Mao J W, Santosh M, et al. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits [J]. Journal of Asian Earth Sciences, 2013, 78(12): 222-236.
[19] Li S Z, Jahn B, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data [J]. Earth-Science Reviews, 2017, 166: 270-285. doi: 10.1016/j.earscirev.2017.01.009
[20] Wu F Y, Yang J H, Lo C H, et al. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China [J]. Island Arc, 2007, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x
[21] Li J Y. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate [J]. Journal of Asian Earth Sciences, 2006, 26(3): 207-224.
[22] Tang J, Xu W, Niu Y, et al. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate [J]. Lithos, 2016, 266: 202-212.
[23] Kojima S. Mesozoic terrane accretion in Northeast China, Sikhote-Alin and Japan regions [J]. Palaeogeography Palaeoclimatology Palaeoecology, 1989, 69(3-4): 213-232.
[24] Mizutani S, Kojima S, Shao J A, et al. Mesozoic radiolarians from the Nadanhada area, northeast China [J]. Proceedings of the Japan Academy Ser B Physical and Biological Sciences, 1986, 62(9): 337-340. doi: 10.2183/pjab.62.337
[25] Gerya T V, Yuen D A. Charaterictics-based marker method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
[26] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps [J]. Journal of Metamorphic Geology, 2005, 23(2): 21.
[27] Gerya T V, 2010. Introduction to Numerical Geodynamic Modelling[M]. Cambridge University Press, New York.
[28] Ranalli G. Rheology of the Earth: Deformation and Flow Processes in Geophysics and Geodynamics, 2nd ed[M]. Springer Science and Business Media, 1995.
[29] Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones [J]. Earth and Planetary Science Letters, 2003, 212(1): 47-62.
[30] Gerya T V, Meilick F I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts [J]. Journal of Metamorphic Geology, 2011, 29(1): 7-31. doi: 10.1111/j.1525-1314.2010.00904.x
[31] Bittner D, Schmeling H. Numerical Modelling of Melting Processes and Induced Diapirism In the Lower Crust [J]. Geophysical Journal International, 1995, 123(1): 59-70. doi: 10.1111/j.1365-246X.1995.tb06661.x
[32] Clauser C, Huenges E. Thermal conductivity of rocks and Minerals[M]. Rock Physics and Phase Relations: A Handbook of Physical Constants. American Geophysical Union, 1995: 105-126.
[33] Turcotte D, Schubert G. Geodynamics[M]. Cambridge university press, 2002: 1-456.
[34] Hilairet N, Reynard B, Wang Y, et al. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction [J]. Science, 2007, 318(5858).
[35] Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
[36] 刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63:3070-3088
LIU Jing, ZHANG Jinyu, GE Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes [J]. Chin Sci Bull, 2018, 63: 3070-3088.
[37] Mann P, Taira A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone [J]. Tectonophysics, 2004, 389(3-4): 0-190.
[38] Shulgin A, Kopp H, Mueller C, et al. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards [J]. Geophysical Journal International, 2011, 184(1): 12-28. doi: 10.1111/j.1365-246X.2010.04834.x
[39] Dai L M, Li S Z, Li Z H, et al. Dynamic processes and mechanisms for collision to post﹐rogenic extension in the Western Dabie Orogen: Insights from numerical modeling [J]. Geological Journal, 2017, 52: 44-58. doi: 10.1002/gj.2993
[40] Dai L M, Li S Z, Li Z H, et al. Dynamics of exhumation and deformation of HP-UHP orogens in double subduction-collision systems: Numerical modeling and implications for the Western Dabie Orogen [J]. Earth-Science Reviews, 2018, 182: 68-84. doi: 10.1016/j.earscirev.2018.05.005
[41] Liu Z, Dai L M, Li S, et al. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: Thermo-mechanical modelling [J]. Geological Journal, 2018, 53: 240-251. doi: 10.1002/gj.3021
[42] Liao J, Wang Q, Gerya T, et al. Modeling craton destruction by hydration‐induced weakening of the upper mantle [J]. Journal of Geophysical Research Solid Earth, 2017, 122(9): 7449-7466. doi: 10.1002/2017JB014157
[43] Gerya T V, Perchuk L L, Burg J P, 20 08. Transient hot channels: perpetrating and regurgitating ultrahigh-pressure, high-temperature crust-mantle associations in collision belts [J]. Lithos, 2008, 103(1-2): 236-256. doi: 10.1016/j.lithos.2007.09.017
[44] Li Z H, Liu M, Gerya T. Lithosphere delamination in continental collisional orogens: A systematic numerical study [J]. Journal of Geophysical Research Solid Earth, 2016, 121: 5186-5211. doi: 10.1002/2016JB013106
[45] Clerc C, Jolivet L, Ringenbach J C. Ductile extensional shear zones in the lower crust of a passive margin [J]. Earth and Planetary Science Letters, 2015, 431: 1-7. doi: 10.1016/j.jpgl.2015.08.038
[46] Ramos A, Fernández O, Torne M, et al. Crustal structure of the SW Iberian passive margin: The westernmost remnant of the Ligurian Tethys [J]. Tectonophysics, 2017, 705: 42-62. doi: 10.1016/j.tecto.2017.03.012
[47] Ruiz M, Díaz J, Pedreira D, et al. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles [J]. Tectonophysics, 2017, 717: 65-82. doi: 10.1016/j.tecto.2017.07.008
[48] Nair N, Pandey D K. Cenozoic sedimentation in the Mumbai Offshore Basin: Implications for tectonic evolution of the western continental margin of India [J]. Journal of Asian Earth Sciences, 2018, 152: 132-144. doi: 10.1016/j.jseaes.2017.11.037
[49] Schubert G, Sandwell D. Crustal volumes of the continents and of oceanic and continental submarine plateaus [J]. Earth and Planetary Science Letters, 1989, 92(2): 234-246. doi: 10.1016/0012-821X(89)90049-6
[50] Zagorevski A, Lissenberg C J, Van Staal C R. Dynamics of accretion of arc and backarc crust to continental margins: Inferences from the Annieopsquotch accretionary tract, Newfoundland Appalachians [J]. Tectonophysics, 2009, 479(1-2): 150-164. doi: 10.1016/j.tecto.2008.12.002
[51] Johnson H P, Pruis M J. Fluxes of fluid and heat from the oceanic crustal reservoir [J]. Earth and Planetary Science Letters, 2003, 216(4): 0-574.
[52] Vogt K, Gerya T. Deep plate serpentinization triggers skinning of subducting slabs [J]. Geology, 2014, 42(8): 723-726. doi: 10.1130/G35565.1
[53] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1): 79-93.
[54] Davies G F. Topography: a robust constraint on mantle fluxes [J]. Chemical Geology, 1998, 145(3-4): 479-489. doi: 10.1016/S0009-2541(97)00156-3
[55] Hill R I, Campbell I H, Davies G F, et al. Mantle Plumes and Continental Tectonics [J]. Science, 1992, 256(5054): 186-193. doi: 10.1126/science.256.5054.186
[56] Niu Y, O'Hara M J, Pearce J A. Initiation of Subduction Zones as a Consequence of Lateral Compositional Buoyancy Contrast within the Lithosphere: a Petrological Perspective [J]. Journal of Petrology, 2003, 44(11): 764-778.
[57] Burke K, Fox P J, Şengör A M C. Buoyant ocean floor and the evolution of the Caribbean [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B8).
[58] Alsaad N, Van A R, Pranger A D, et al. Continental accretion: from oceanic plateaus to allochthonous terranes [J]. Science, 1981, 213: 47-54. doi: 10.1126/science.213.4503.47
[59] Abbott D H, Drury R, Mooney W D. Continents as lithological icebergs: the importance of buoyant lithospheric roots [J]. Earth and Planetary Science Letters, 1997, 149(1-4): 0-27.
[60] Mueller R F, Saxena S K. Metamorphic mineral facies[M]//Chemical Petrology. Springer, New York, NY, 1977: 181-198.
[61] Gulick S P S, Bangs N L B, Shipley T H, et al. Three-dimensional architecture of the Nankai accretionary prism's imbricate thrust zone off Cape Muroto, Japan: prism reconstruction via en echelon thrust propagation [J]. Journal of Geophysical Research Solid Earth, 2004: 109.
[62] Gutscher M A, Kukowski N, Malavieille J, et al. Episodic imbricatethrusting and underthrusting: analog experiments and mechanical analysis applied to the Alaskan accretionary wedge [J]. Journal of Geophysical Research Solid Earth, 1998, 103: 10161-10176. doi: 10.1029/97JB03541
[63] 万阔. 完达山地体构造特征、结构及增生过程[D]. 吉林大学, 2017
WAN Kuo. Tectonic features, structures and accretionary processes of the Wandashan Terrane, NE China[D]. Jilin University, 2017
[64] 兰浩圆. 华北东部及东北早中生代变形特征与构造演化[D]. 中国海洋大学, 2018
LAN Haoyuan. Early Mesozoic structural features and tectonic evolution in the eastern North China and Northeast China[D]. Ocean University of China, 2018
[65] 张魁武, 邵济安, 唐克东, 等. 黑龙江省东部跃进山群中绿片岩的地球化学特征及地质意义[J]. 岩石学报, 1997(02):43-47
ZHANG Kuiwu, SHAO Jian, TANG Kedong, et al. The Geochemical Characteristics and the Geological Significance of Green-schists in Yuejinshan Group, East Heilongjiang Province, China [J]. Acta Petrologica Sinica, 1997(02): 43-47.
[66] Sun M D, Xu Y G, Wilde S A, et al. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo‐Pacific [J]. Tectonics, 2015, 34(6): 1269-1289. doi: 10.1002/2015TC003870