Numerical simulation of subduction-induced molten plume: Destruction of overriding plate and its dynamic topographic responses
-
摘要:
洋壳俯冲过程中温度、压力升高和密度差异,可导致俯冲板片熔融柱的快速上涌,并作用在上覆板块岩石圈地幔底部,从而导致岩石圈的破坏减薄以及地表形态的剧烈变化,该过程类似于地幔柱对岩石圈的破坏作用。目前,对于俯冲板片熔融柱的形成及其对岩石圈破坏程度的研究相对较少,特别是地表动力地形变化与深部岩石圈破坏作用之间的响应关系依然不清楚。为此,本文将利用I2VIS有限差分方法,基于质量守恒方程、动量守恒方程以及能量守恒方程,通过给定材料参数和一定边界条件,计算揭示俯冲洋壳在不同时间和不同深度下发生部分熔融并形成俯冲板片熔融柱的过程,从而模拟再现该熔融柱对上覆板块岩石圈的破坏过程,并进一步分析其导致的浅部地表地形变化响应。数值模拟结果显示,在大洋板片俯冲过程中,由俯冲的陆源沉积物以及洋壳形成的混合熔融柱垂向侵蚀岩石圈底部,造成岩石圈减薄。在熔融柱的横向侵蚀过程中,岩石圈地幔熔融范围增加,可达300 km。在地形变化方面,板块俯冲造成大陆前缘受挤压变形,引起构造变形,构造变形范围可达300 km。同时,与俯冲相关形成的熔融柱对岩石圈地幔底部的侵蚀作用逐渐增强,动力地形变化幅度增大,并持续抬升,最终可垂向抬升至4 km。动力地形的变化范围局限在300 km以内,这与岩石圈地幔的破坏范围保持一致。
Abstract:In the process of oceanic crust subduction, with the increase in temperature and pressure and the difference in density, the subduction-induced molten plume will rise rapidly and act on the lithospheric mantle bottom of the overriding plate, which may lead to the decrease in the lithospheric damage and the drastic change of surface morphology. This process is similar to the destruction of the lithosphere caused by mantle plume. So far, there have been little studies on the formation of subduction-induced molten plumes and their damage to the lithosphere, especially on the responses of surface dynamic topographic changes to the deep destruction. Based on the conservation equations of matter, momentum and energy, the I2VIS finite difference method is adopted by the authors to calculate and reveal the partial melting of the subducted oceanic crust at different times and depths under given material parameters and boundary conditions. The process of forming a subduction-induced molten plume is obtained, and then the process of molten plume-lithosphere interactions is further simulated, and the response of shallow topographic changes are analyzed. The numerical simulation results show that in the process of oceanic plate subduction, the composite molten plumes formed by subducted terrigenous sediment and oceanic crust eroded the bottom of the lithosphere longitudinally, and resulted in lithospheric thinning. During the transverse erosion of the molten plumes, the melting range of the lithospheric mantle increases up to 300 km. In terms of geomorphic change, plate subduction results in compression deformation of the continental front, which may reach 300 km. At the same time, the erosion of the molten plumes associated with subduction to the bottom of the lithospheric mantle is gradually strengthened, and the dynamic topographic changes increased, while uplifting continued, and ultimately reached a figure of 4 km. The variation range of dynamic topography is limited to 300 km, which is consistent with the damage range of lithospheric mantle.
-
表 1 数值模拟采用的黏滞性流变参数(据文献[35-38])
Table 1. Parameters of viscous flow in the numerical experiments (after references[35-38])
标号 流变性质 E/(K·J·mol−1) V/(J·MPa−1·mol−1) n AD/(MPa−n·s−1) η0a/(Pa·s) A* 空气/水 0 0 1.0 1.0×10−12 1×1018 B* 湿石英(强) 154 0 2.3 3.2×10−6 1.97×1019 C* 斜长An75(强) 238 0 3.2 3.3×10−6 4.80×1024 D* 斜长石 An75 238 0 3.2 3.3×10−4 4.80×1022 E* 无水橄榄岩 532 8 3.5 2.5×104 3.98×1016 F*b 湿橄榄岩 470 8 4.0 2.0×103 5.01×1020 G*b 长英质熔体 0 0 1.0 2.0×10−9 5.00×1014 H 铁镁质熔体 0 0 1.0 1.0×10−7 1.00×1013 注::a η0表示为有效黏滞系数,计算公式为:η0=(1/AD)×106n;
b 熔融的长英质熔体表示的是熔融的沉积物和地壳。表 2 数值模型中的主要材料参数
Table 2. Parameters of the materials in the numerical models
物质 状态 ρ0
/(kg·m−3)ρe
/(kg·m−3)Cp
/(J·kg−1·K−1)Ka
/(W·m−1·K−1)/K /K Hr
/(μW·m−3)α
/K−1β
/MPa黏滞性流变参数 塑性性质
Sin (φeff)空气 — 1 — 100 20 — — 0 0 0 A* 0 水 — 1 000 — 3 330 20 — — 0 0 0 A* 0 沉积物
(6 km)固态 2 700 — 1 000 K1 TS1 TL1 2 3×10−5 1×10−5 B* 0.15 熔融 2 500 G* 0.06 上地壳
(14 km)固态 2 700 — 1 000 K1 TS1 TL1 2 3×10−5 1×10−5 B* 0.15 熔融 2 500 G* 0.06 下地壳
(15 km)固态 3 000 — 1 000 K2 TS2 TL2 0.5 3×10−5 1×10−5 C* 0.15 熔融 2 500 G* 0.06 洋壳(8 km) 固态 3 000 3 800 1 000 K2 TS2 TL2 0.25 3×10−5 1×10−5 D* 0.15 熔融 2 900 H* 0.06 岩石圈—软流圈地幔 固态 3 300 — 1 000 K3 — — 0.022 3×10−5 1×10−5 E* 0.6 熔融 2 700 0.06 水化地幔 固态 3 200 — 1 000 K3 — — 0.022 3×10−5 1×10−5 F* 0.6 熔融 2 700 0.06 注:a. K1=[0.64+807/(TK+77)]exp(0.000 04P); K2=[1.18+474/(TK+77)]exp(0.000 04P); K3=[0.73+1 293/(TK+77)]exp(0.000 04P);
b. 当P<1 200 MPa, TS1=889+17 900/(P+54)+20 200/(P+54)2; 当P>1 200 MPa, TS1=831+0.06P. TL1=1 262+0.09P; 当P<1 600 MPa, TS2=973–70 400/(P+354)+778×105/(P+354)2; 当P>1 600 MPa, TS2=935+0.003 5P+0.000 006 2P2. TL2=1 423+0.105P -
[1] Morgan W J. Convection plumes in the lower mantle [J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0
[2] Wilson J T. A possible origin of the Hawaiian islands [J]. Canadian Journal of Physics, 1963, 41(6): 863-870. doi: 10.1139/p63-094
[3] Burov E, Guillou-Frottier L, d'Acremont E, et al. Plume head-lithosphere interactions near intra-continental plate boundaries [J]. Tectonophysics, 2007, 434(1-4): 15-38. doi: 10.1016/j.tecto.2007.01.002
[4] Christensen U R, Harder H. 3-D convection with variable viscosity [J]. Geophysical Journal International, 1991, 104(1): 213-220. doi: 10.1111/j.1365-246X.1991.tb02505.x
[5] 李建康, 王登红. 地幔柱数值模拟研究进展[J]. 地质科技情报, 2005, 24(4):13-20 doi: 10.3969/j.issn.1000-7849.2005.04.003
LI Jiankang, WANG Denghong. Advances in the numerical simulation of the mantle plume [J]. Geological Science and Technology Information, 2005, 24(4): 13-20. doi: 10.3969/j.issn.1000-7849.2005.04.003
[6] 卢记仁. 峨眉地幔柱的动力学特征[J]. 地球学报, 1996, 17(4):424-438
LU Jiren. Dynamic characteristics of EMEI mantle plume [J]. Acta Geoscientia Sinica, 1996, 17(4): 424-438.
[7] 徐义刚. 地幔柱构造、大火成岩省及其地质效应[J]. 地学前缘, 2002, 9(4):341-353 doi: 10.3321/j.issn:1005-2321.2002.04.014
XU Yigang. Mantle plumes, large igneous provinces and their geologic consequences [J]. Earth Science Frontiers, 2002, 9(4): 341-353. doi: 10.3321/j.issn:1005-2321.2002.04.014
[8] Gorczyk W, Hobbs B, Gessner K, et al. Intracratonic geodynamics [J]. Gondwana Research, 2013, 24(3-4): 838-848. doi: 10.1016/j.gr.2013.01.006
[9] King S D, Ritsema J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons [J]. Science, 2000, 290(5494): 1137-1140. doi: 10.1126/science.290.5494.1137
[10] Liao J, Gerya T. Influence of lithospheric mantle stratification on craton extension: Insight from two-dimensional thermo-mechanical modeling [J]. Tectonophysics, 2014, 631: 50-64. doi: 10.1016/j.tecto.2014.01.020
[11] Yang S H, Li Z H, Gerya T, et al. Dynamics of terrane accretion during seaward continental drifting and oceanic subduction: Numerical modeling and implications for the Jurassic crustal growth of the Lhasa Terrane, Tibet [J]. Tectonophysics, 2018, 746: 212-228. doi: 10.1016/j.tecto.2017.07.018
[12] van Avendonk H J A, Holbrook W S, Lizarralde D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06009.
[13] Contreras-Reyes E, Grevemeyer I, Watts A B, et al. Deep seismic structure of the Tonga subduction zone: Implications for mantle hydration, tectonic erosion, and arc magmatism [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B10): B10103. doi: 10.1029/2011JB008434
[14] Fumagalli P, Stixrude L, Poli S, et al. The 10Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere [J]. Earth & Planetary Science Letters, 2001, 186(2): 125-141.
[15] Irifune T, Kubo N, Isshiki M, et al. Phase transformations in serpentine and transportation of water into the lower mantle [J]. Geophysical Research Letters, 1998, 25(2): 203-206. doi: 10.1029/97GL03572
[16] Ranero C R, Weinrebe W, Grevemeyer I, et al. Tectonic structure of the Middle America Pacific margin and incoming Cocos Plate from Costa Rica to Guatemala[C]//American Geophysical Union, Fall Meeting 2003. AGU, 2003.
[17] Sano A, Ohtani E, Kubo T, et al. Effect of water on garnet-perovskite phase transformation in MORB system[C]//American Geophysical Union, Fall Meeting 2004. AGU, 2004.
[18] Li Z H, Xu Z Q, Gerya T V. Flat versus steep subduction: Contrasting modes for the formation and exhumation of high- to ultrahigh-pressure rocks in continental collision zones [J]. Earth & Planetary Science Letters, 2011, 301(1-2): 65-77.
[19] Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth & Planetary Science Letters, 1990, 99(1-2): 79-93.
[20] d’Acremont E, Leroy S, Burov E B. Numerical modelling of a mantle plume: the plume head-lithosphere interaction in the formation of an oceanic large igneous province [J]. Earth and Planetary Science Letters, 2003, 206(3-4): 379-396. doi: 10.1016/S0012-821X(02)01058-0
[21] Pekeris C L. Thermal convection in the interior of the earth [J]. Geophysical Journal, 1935, 3(8): 343-367.
[22] Flament N, Gurnis M, Müller R D. A review of observations and models of dynamic topography [J]. Lithosphere, 2013, 5(2): 189-210. doi: 10.1130/L245.1
[23] Duretz T, Gerya T V. Slab detachment during continental collision: Influence of crustal rheology and interaction with lithospheric delamination [J]. Tectonophysics, 2013, 602: 124-140. doi: 10.1016/j.tecto.2012.12.024
[24] Gerya T V, Yuen D A. Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones [J]. Earth & Planetary Science Letters, 2003, 212(1-2): 47-62.
[25] Gerya T V, Yuen D A. Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems [J]. Physics of the Earth and Planetary Interiors, 2007, 163(1-4): 83-105. doi: 10.1016/j.pepi.2007.04.015
[26] Vogt K, Gerya T V, Castro A. Crustal growth at active continental margins: Numerical modeling [J]. Physics of the Earth and Planetary Interiors, 2012, 192-193: 1-20. doi: 10.1016/j.pepi.2011.12.003
[27] Gerya T. Future directions in subduction modeling [J]. Journal of Geodynamics, 2011, 52(5): 344-378. doi: 10.1016/j.jog.2011.06.005
[28] Toussaint G, Burov E, Jolivet L. Continental plate collision: Unstable vs. stable slab dynamics [J]. Geology, 2004, 32(1): 33-36. doi: 10.1130/G19883.1
[29] Gorczyk W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacific-type convergent margins: Numerical modelling [J]. Physics of the Earth and Planetary Interiors, 2007, 163(1-4): 209-232. doi: 10.1016/j.pepi.2007.05.010
[30] Gerya T V, Meilick F I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts [J]. Journal of Metamorphic Geology, 2011, 29(1): 7-31. doi: 10.1111/j.1525-1314.2010.00904.x
[31] Li Z H, Gerya TV. Polyphase formation and exhumation of high- to ultrahigh-pressure rocks in continental subduction zone: Numerical modeling and application to the Sulu ultrahigh-pressure terrane in eastern China [J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B9): B09406.
[32] Liao J, Wang Q, Gerya T, et al. Modeling craton destruction by hydration-induced weakening of the upper mantle [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(9): 7449-7466. doi: 10.1002/2017JB014157
[33] Manglik A, Singh R N. Rheological stratification of the Indian continental lithosphere: Role of diffusion creep [J]. Proceedings of the Indian Academy of Sciences - Earth and Planetary Sciences, 1999, 108(1): 15-21.
[34] Gerya T V, Stöckhert B, Perchuk A L. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation [J]. Tectonics, 2002, 21(6): 6-1-6-19.
[35] Kirby S H, Kronenberg A K. Rheology of the lithosphere: selected topics [J]. Reviews of Geophysics, 1987, 25(6): 1219-1244. doi: 10.1029/RG025i006p01219
[36] Kirby S H. Rheology of the lithosphere [J]. Reviews of Geophysics, 1983, 21(6): 1458-1487. doi: 10.1029/RG021i006p01458
[37] Ranalli G, Murphy D C. Rheological stratification of the lithosphere [J]. Tectonophysics, 1987, 132(4): 281-295. doi: 10.1016/0040-1951(87)90348-9
[38] Ranalli G. Rheology of the Earth[M]. 2nd ed. Netherlands: Springer, 1995.
[39] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps [J]. Journal of Metamorphic Geology, 2005, 23(2): 75-95. doi: 10.1111/j.1525-1314.2005.00563.x
[40] Li Z H, Gerya T V, Burg J P. Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modelling [J]. Journal of Metamorphic Geology, 2010, 28(3): 227-247. doi: 10.1111/j.1525-1314.2009.00864.x
[41] Li Z H, Xu Z Q, Gerya T, et al. Collision of continental corner from 3-D numerical modeling [J]. Earth and Planetary Science Letters, 2013, 380: 98-111. doi: 10.1016/j.jpgl.2013.08.034
[42] Turcotte B, Schubert J. Geodynamics [J]. Geological curtain: English version, 2002, 450(2): 136-136.
[43] Gerya T V, Yuen D A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties [J]. Physics of the Earth and Planetary Interiors, 2003, 140(4): 293-318. doi: 10.1016/j.pepi.2003.09.006
[44] Huangfu P P, Wang Y J, Cawood P A, et al. Thermo-mechanical controls of flat subduction: insights from numerical modeling [J]. Gondwana Research, 2016, 40: 170-183. doi: 10.1016/j.gr.2016.08.012
[45] Schmeling H, Babeyko A Y, Ennsa A, et al. A benchmark comparison of spontaneous subduction models-Towards a free surface [J]. Physics of the Earth and Planetary Interiors, 2008, 171(1-4): 198-223. doi: 10.1016/j.pepi.2008.06.028
[46] Larsen T B, Yeun D A. Fast plumeheads: Temperature-dependent versus non-Newtonian rheology [J]. Geophysical Research Letters, 1997, 24(16): 1995-1998. doi: 10.1029/97GL01886
[47] Manga M, Stone H A, O'Connell R J. The interaction of plume heads with compositional discontinuities in the Earth's mantle [J]. Journal of Geophysical Research, 1993, 98(B11): 19979-19990. doi: 10.1029/93JB00441
[48] Van Keken P. Evolution of starting mantle plumes: A comparison between numerical and laboratory models [J]. Earth & Planetary Science Letters, 1997, 148(1-2): 1-11.
[49] Burov E, Guillou-Frottier L. The plume head-continental lithosphere interaction using a tectonically realistic formulation for the lithosphere [J]. Geophysical Journal International, 2005, 161(2): 469-490. doi: 10.1111/j.1365-246X.2005.02588.x
[50] 郭慧丽, 徐佩芬, 张福勤. 华北克拉通及东邻西太平洋活动大陆边缘地区的P波速度结构: 对岩石圈减薄动力学过程的探讨[J]. 地球物理学报, 2014, 57(7):2352-2361 doi: 10.6038/cjg20140729
GUO Huili, XU Peifen, ZHANG Fuqin. P wave velocity structure of the North China Craton and West Pacific active continental margin: exploration for dynamic processes of lithospheric thinning [J]. Chinese Journal of Geophysics, 2014, 57(7): 2352-2361. doi: 10.6038/cjg20140729
[51] 李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造-岩浆响应[J]. 科学通报, 2018, 63(16):1550-1593
LI Sanzhong, SUO Yanhui, LI Xiyao, et al. Mesozoic Plate Subduction in West Pacific and Tectono-magmatic Response in the East Asian Ocean-Continent Connection Zone [J]. Chinese Science Bulletin, 2018, 63(16): 1550-1593.
[52] Yu S Y, Li S Z, Zhang J X, et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China [J]. Earth-Science Reviews, 2019, 191: 190-211. doi: 10.1016/j.earscirev.2019.02.016
[53] Yu S Y, Zhang J X, Li S Z, et al. TTG-Adakitic-like (Tonalitic-Trondhjemitic) magmas resulting from partial melting of Metagabbro under high-pressure condition during continental collision in the North Qaidam UHP Terrane, Western China [J]. Tectonics, 2019, 38(3): 791-822. doi: 10.1029/2018TC005259
[54] 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682
ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682.
[55] Liu S F, Nummedal D, Gurnis M. Dynamic versus flexural controls of Late Cretaceous Western Interior Basin, USA [J]. Earth & Planetary Science Letters, 2014, 389: 221-229.
[56] Liu L J, Spasojević S, Gurnis M. Reconstructing Farallon plate subduction Beneath North America back to the Late Cretaceous [J]. Science, 2008, 322(5903): 934-938. doi: 10.1126/science.1162921
[57] 刘少峰, 王成善. 构造古地理重建与动力地形[J]. 地学前缘, 2016, 23(6):61-79
LIU Shaofeng, WANG Chengshan. Reconstruction of tectono-paleogeography and dynamic topography [J]. Earth Science Frontiers, 2016, 23(6): 61-79.
[58] Burov E, Gerya T. Asymmetric three-dimensional topography over mantle plumes [J]. Nature, 2014, 513(7516): 85-89. doi: 10.1038/nature13703