长江与黄河黏土粒级沉积物地球化学特征及其物源指示意义

艾丽娜, 韩宗珠, 吴晓, 毕乃双, 王厚杰. 长江与黄河黏土粒级沉积物地球化学特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2020, 40(3): 109-118. doi: 10.16562/j.cnki.0256-1492.2019050603
引用本文: 艾丽娜, 韩宗珠, 吴晓, 毕乃双, 王厚杰. 长江与黄河黏土粒级沉积物地球化学特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2020, 40(3): 109-118. doi: 10.16562/j.cnki.0256-1492.2019050603
AI Lina, HAN Zongzhu, WU Xiao, BI Naishuang, WANG Houjie. Geochemical characteristics of clay-sized sediments of the Yangtze and Yellow Rivers and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 109-118. doi: 10.16562/j.cnki.0256-1492.2019050603
Citation: AI Lina, HAN Zongzhu, WU Xiao, BI Naishuang, WANG Houjie. Geochemical characteristics of clay-sized sediments of the Yangtze and Yellow Rivers and their implications for provenance[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 109-118. doi: 10.16562/j.cnki.0256-1492.2019050603

长江与黄河黏土粒级沉积物地球化学特征及其物源指示意义

  • 基金项目: 国家杰出青年科学基金“河口海岸学:现代黄河入海沉积物从源到汇的关键沉积动力过程”(41525021)
详细信息
    作者简介: 艾丽娜(1989—),女,博士生,海洋地质专业,E-mail:ailinaOUC@163.com
    通讯作者: 王厚杰(1972—),男,教授,主要从事近海沉积动力学研究,E-mail:hjwang@ouc.edu.cn
  • 中图分类号: P736.4

Geochemical characteristics of clay-sized sediments of the Yangtze and Yellow Rivers and their implications for provenance

More Information
  • 本文对长江与黄河口黏土粒级沉积物主微量元素的地球化学特征进行了研究。结果表明:长江相对富集Al、K、Fe、Ti等常量元素以及Cr、V、Li、Zn、Ni和Rb等微量元素,黄河以高Ca、Sr和Ba为特征;长江沉积物中稀土元素含量高于黄河沉积物,长江与黄河黏土粒级沉积物中稀土元素的分馏程度相同,均具有轻稀土元素富集、重稀土元素亏损的右倾的球粒陨石标准化配分模式,上陆壳标准化配分模式为中稀土元素富集,黄河沉积物的Ce负异常和Eu正异常程度较长江沉积物偏弱。长江沉积物中元素含量变化较大,而黄河沉积物中元素含量较为稳定。黏土粒级沉积物的稀土元素更接近其物源区,<2 μm的黏土粒级沉积物中的REE可以作为判识长江与黄河沉积物的地球化学指标。ΣREE、δCe可以作为长江、黄河入海沉积物的判别指标。长江与黄河黏土粒级沉积物的地球化学特征受源区岩石类型、化学风化、水动力分选等因素的控制。化学风化引起河流沉积物相对其源岩发生地球化学分异,水动力分选使矿物在不同粒级沉积物中富集,从而引起地球化学组成在不同粒级沉积物中的分异。

  • 加载中
  • 图 1  取样站位

    Figure 1. 

    图 2  长江与黄河黏土粒级沉积物球粒陨石标准化曲线(a)与上陆壳标准化曲线(b)

    Figure 2. 

    图 3  长江与黄河不同粒级沉积物稀土元素配分曲线

    Figure 3. 

    图 4  REE-δCe判别图

    Figure 4. 

    图 5  长江干流沉积物Sr-Nd同位素、(La/Yb)UCC、(Gd/Yb)UCC变化、上陆壳标准化曲线 (长江沉积物同位素数据来自[30-31],黄河沉积物同位素数据来自[32],长江沉积物REE数据来自[33])

    Figure 5. 

    表 1  长江与黄河黏土粒级沉积物的常量元素含量(%)

    Table 1.  Major element contents in the clay-sized sediments of the Yangtze and Yellow Rivers(%)

    Al2O3CaOTFe2O3K2OMgOMnONa2OP2O5TiO2
    黄河平均值19.6110.038.593.383.820.170.410.290.63
    标准偏差0.520.650.240.080.090.010.020.020.02
    变异系数2.646.462.762.362.377.405.106.833.43
    长江平均值23.501.999.813.623.240.190.370.300.90
    标准偏差0.500.600.470.130.110.030.040.020.07
    变异系数2.1130.014.823.613.2817.569.547.297.77
    下载: 导出CSV

    表 2  长江与黄河黏土粒级沉积物的微量元素含量(μg/g)

    Table 2.  Trace element contents in the clay-sized sediments of the Yangtze and Yellow Rivers(μg/g)

    SrCrVZnBaLiBeScCo
    黄河平均值226.81106.33140.96149.13578.0076.913.4824.7223.48
    标准偏差8.952.425.176.5722.833.990.140.710.68
    变异系数3.942.273.674.403.955.193.892.862.91
    长江平均值105.72130.12178.84193.58542.67105.774.1826.3427.88
    标准偏差11.098.429.2939.3443.523.200.170.852.19
    变异系数10.496.475.1920.328.023.034.163.247.86
    NiCuGaRbMoCsPbThU
    黄河平均值59.1960.5527.45169.601.3215.9453.8220.512.80
    标准偏差1.634.040.754.850.120.452.810.550.11
    变异系数2.766.682.732.869.102.835.212.684.05
    长江平均值70.3565.5732.74218.730.9520.5260.4722.223.58
    标准偏差4.1413.790.952.610.290.8613.301.580.33
    变异系数5.8921.032.901.1930.314.1822.007.129.16
    下载: 导出CSV

    表 3  长江与黄河黏土粒级沉积物的稀土元素含量及参数

    Table 3.  REE contents and parameters in the clay-sized sediments of the Yangtze and Yellow Rivers

    ΣREE/(μg/g)LREE/HREEδEuδCe(La/Yb)UCC(La/Sm)UCC(Gd/Yb)UCC
    黄河平均值226.448.760.660.970.900.981.13
    标准偏差6.690.100.010.010.010.010.02
    变异系数2.951.090.880.950.571.391.62
    长江平均值243.578.750.680.930.910.991.12
    标准偏差25.780.100.010.020.030.020.03
    变异系数10.591.181.081.753.171.743.14
    下载: 导出CSV

    表 4  长江与黄河不同粒级沉积物稀土元素组成及参数

    Table 4.  REE contents and parameters in different sized sediments from the Yangtze and Yellow Rivers

    ΣREE/(μg/g)LREE/HREEδEuδCe(La/Yb)UCC(La/Sm)UCC(Gd/Yb)UCC数据来源
    长江(全样)170.958.430.660.841.170.891.44[20]
    长江(<63 μm)167.108.480.670.851.190.891.45[21]
    长江(<2 μm)243.578.750.680.930.990.911.12本文
    黄河(全样)139.118.150.650.861.040.871.32[20]
    黄河(<63 μm)137.768.120.650.861.040.871.31[21]
    黄河(<2 μm)226.448.760.660.970.980.901.13本文
    下载: 导出CSV
  • [1]

    胡邦琦, 李军, 李国刚, 等. 长江和黄河入海沉积物的物源识别研究进展[J]. 海洋地质与第四纪地质, 2011, 31(6):147-156

    HU Bangqi, LI Jun, LI Guogang, et al. Distinguishing the Changjiang and Huanghe sediments: a review [J]. Marine Geology & Quaternary Geology, 2011, 31(6): 147-156.

    [2]

    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63(1-2): 93-120. doi: 10.1016/S0012-8252(03)00033-3

    [3]

    杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展, 2006, 21(6):648-655 doi: 10.3321/j.issn:1001-8166.2006.06.013

    YANG Shouye. Advances in sedimentary geochemistry and tracing applications of Asian rivers [J]. Advances in Earth Science, 2006, 21(6): 648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013

    [4]

    杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5):902-910 doi: 10.3969/j.issn.1007-2802.2015.05.003

    YANG Shouye, WEI Gangjian, SHI Xuefa. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the East Asian continental margin [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(5): 902-910. doi: 10.3969/j.issn.1007-2802.2015.05.003

    [5]

    赵一阳, 鄢明才. 黄河、长江、中国浅海沉积物化学元素丰度比较[J]. 科学通报, 1992, 37(23):1991-1994

    ZHAO Yiyang, YAN Mingcai. Abundance of chemical elements in sediments from the Huanghe river, the Changjiang river and the continental shelf of China [J]. Chinese Science Bulletin, 1992, 37(23): 1991-1994.

    [6]

    赵一阳, 鄢明才. 中国浅海沉积物地球化学[M]. 北京: 科学出版社, 1994.

    ZHAO Yiyang, YAN Mingcai. Geochemistry of sediments of the China shelf sea[M]. Beijing: Science Press, 1994.

    [7]

    蓝先洪, 王红霞, 李日辉, 等. 南黄海沉积物常量元素组成及物源分析[J]. 地学前缘, 2007, 14(4):197-203 doi: 10.3321/j.issn:1005-2321.2007.04.021

    LAN Xianhong, WANG Hongxia, LI Rihui, et al. Major elements composition and provenance analysis in the sediments of the South Yellow Sea [J]. Earth Science Frontiers, 2007, 14(4): 197-203. doi: 10.3321/j.issn:1005-2321.2007.04.021

    [8]

    蓝先洪, 梅西, 李日辉, 等. 晚更新世以来南黄海北部泥质区沉积物元素的分布及来源分析[J]. 现代地质, 2015, 29(4):777-788 doi: 10.3969/j.issn.1000-8527.2015.04.007

    LAN Xianhong, MEI Xi, LI Rihui, et al. Distribution and source analysis of elements from sediments in the Northern South Yellow Sea since the late Pleistocene [J]. Geoscience, 2015, 29(4): 777-788. doi: 10.3969/j.issn.1000-8527.2015.04.007

    [9]

    赵一阳, 王金土, 秦朝阳, 等. 中国大陆架海底沉积物中的稀土元素[J]. 沉积学报, 1990, 8(1):37-43

    ZHAN Yiyang, WANG Jintu, QIN Chaoyang, et al. Rare-earth elements in continental shelf sediments of the China seas [J]. Acta Sedimentologica Sinica, 1990, 8(1): 37-43.

    [10]

    鄢明才, 迟清华, 顾铁新, 等. 中国东部上地壳化学组成[J]. 中国科学(D辑), 1997, 40(5):530-539 doi: 10.1007/BF02877620

    YAN Mingcai, CHI Qinghua, GU Tiexin, et al. Chemical composition of upper crust in eastern China [J]. Science in China Series D: Earth Sciences, 1997, 40(5): 530-539. doi: 10.1007/BF02877620

    [11]

    杨守业, 李从先. 长江与黄河沉积物元素组成及地质背景[J]. 海洋地质与第四纪地质, 1999, 19(2):19-26

    YANG Shouye, LI Congxian. Characteristic element compositions of the Yangtze and the Yellow River sediments and their geological background [J]. Marine Geology & Quaternary Geology, 1999, 19(2): 19-26.

    [12]

    杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167 doi: 10.3321/j.issn:1001-8166.1999.02.010

    YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Advance in Earth Sciences, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010

    [13]

    McLennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222

    [14]

    Bouchez J, Gaillardet J, France C, et al. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(3): Q03008.

    [15]

    Garzanti E, Andó S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh) [J]. Earth and Planetary Science Letters, 2011, 302(1-2): 107-120. doi: 10.1016/j.jpgl.2010.11.043

    [16]

    Resentini A, Malusà M G, Garzanti E. MinSORTING: An Excel® worksheet for modelling mineral grain-size distribution in sediments, with application to detrital geochronology and provenance studies [J]. Computers & Geosciences, 2013, 59: 90-97.

    [17]

    Garzanti E, Resentini A. Provenance control on chemical indices of weathering (Taiwan river sands) [J]. Sedimentary Geology, 2015, 336: 81-95.

    [18]

    Garzanti E, Andò S, Padoan M, et al. The modern Nile sediment system: Processes and products [J]. Quaternary Science Reviews, 2015, 130: 9-56. doi: 10.1016/j.quascirev.2015.07.011

    [19]

    韩宗珠, 艾丽娜, 陈筱林, 等. 南黄海泥质区西北缘B01孔黏土粒级沉积物地球化学特征及其物质来源的识别[J]. 中国海洋大学学报: 自然科学版, 2016, 46(10):82-91

    HAN Zongzhu, AI Li’na, CHEN Xiaolin, et al. Geochemical characteristics of sediments and provenance of B01 core in northwest margin of South Yellow Sea mud area [J]. Periodical of Ocean University of China, 2016, 46(10): 82-91.

    [20]

    杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4):374-380 doi: 10.3321/j.issn:0379-1726.1999.04.008

    YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments [J]. Geochimica, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008

    [21]

    杨守业, 李从先. 元素地球化学特征的多元统计方法研究——长江与黄河沉积物元素地球化学研究[J]. 矿物岩石, 1999, 19(1):63-67

    YANG Shouye, LI Congxian. Multiple statistic study of element geochemical characteristics element geochemical study on the Changjiang and Huanghe sediments [J]. Journal of Mineralogy and Petrology, 1999, 19(1): 63-67.

    [22]

    Jung H S, Lim D, Jeong D H, et al. Discrimination of sediment provenance in the Yellow Sea: Secondary grain-size effect and REE proxy [J]. Journal of Asian Earth Sciences, 2016, 123: 78-84. doi: 10.1016/j.jseaes.2016.03.020

    [23]

    Jung H S, Lim D, Choi J Y, et al. Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: Their controls and origins [J]. Continental Shelf Research, 2012, 48: 75-86. doi: 10.1016/j.csr.2012.08.008

    [24]

    Lim D, Choi J Y, Shin H H, et al. Multielement geochemistry of offshore sediments in the southeastern Yellow Sea and implications for sediment origin and dispersal [J]. Quaternary International, 2013, 298: 196-206. doi: 10.1016/j.quaint.2013.01.004

    [25]

    Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance [J]. Marine Geology, 2014, 357: 12-24. doi: 10.1016/j.margeo.2014.07.002

    [26]

    王金土. 黄海表层沉积物稀土元素地球化学[J]. 地球化学, 1990(1):44-53 doi: 10.3321/j.issn:0379-1726.1990.01.005

    WANG Jintu. Ree geochemistry of surficial sediments from the Yellow sea of China [J]. Geochimica, 1990(1): 44-53. doi: 10.3321/j.issn:0379-1726.1990.01.005

    [27]

    Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments [J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419. doi: 10.1016/S0012-821X(02)00715-X

    [28]

    茅昌平, 陈骏, 袁旭音, 等. 长江下游悬浮物Sr-Nd同位素组成的季节性变化与物源示踪[J]. 科学通报, 2011, 56(22):2371-2378 doi: 10.1007/s11434-011-4589-6

    MAO Changping, CHEN Jun, YUAN Xuyin, et al. Seasonal variations in the Sr-Nd isotopic compositions of suspended particulate matter in the lower Changjiang River: Provenance and erosion constraints [J]. Chinese Science Bulletin, 2011, 56(22): 2371-2378. doi: 10.1007/s11434-011-4589-6

    [29]

    何梦颖, 郑洪波, 黄湘通, 等. 长江流域沉积物黏土矿物组合特征及物源指示意义[J]. 沉积学报, 2011, 29(3):544-551

    HE Mengying, ZHENG Hongbo, HUANG Xiangtong, et al. Clay mineral assemblages in the Yangtze drainage and provenance implications [J]. Acta Sedimentologica Sinica, 2011, 29(3): 544-551.

    [30]

    杨守业, 蒋少涌, 凌洪飞, 等. 长江河流沉积物Sr-Nd同位素组成与物源示踪[J]. 中国科学 D辑: 地球科学, 2007, 50(10):1556-1565 doi: 10.1007/s11430-007-0052-6

    YANG Shouye, JIANG Shaoyong, LING Hongfei, et al. Sr-Nd isotopic compositions of the Changjiang sediments: Implications for tracing sediment sources [J]. Science in China Series D: Earth Sciences, 2007, 50(10): 1556-1565. doi: 10.1007/s11430-007-0052-6

    [31]

    Meng X W, Liu Y G, Shi X F, et al. Nd and Sr isotopic compositions of sediments from the Yellow and Yangtze Rivers: Implications for partitioning tectonic terranes and crust weathering of the Central and Southeast China [J]. Frontiers of Earth Science in China, 2008, 2(4): 418-426. doi: 10.1007/s11707-008-0054-5

    [32]

    郭玉龙. 地球化学方法示踪中国东部入海河流沉积物物质组成的不均一性[D]. 上海: 同济大学, 2018.

    GUO Yulong. Geochemical approaches for compositional heterogeneity of sediments from rivers in East China[D]. Shanghai: Tongji University, 2018.

    [33]

    杨守业, 王中波. 长江主要支流与干流沉积物的REE组成[J]. 矿物岩石地球化学通报, 2011, 30(1):31-39 doi: 10.3969/j.issn.1007-2802.2011.01.005

    YANG Shouye, WANG Zhongbo. Rare Earth Element compositions of the sediments from the major tributaries and the main stream of the Changjiang River [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 31-39. doi: 10.3969/j.issn.1007-2802.2011.01.005

    [34]

    罗超, 郑洪波, 吴卫华, 等. 长江河水87Sr/86Sr值的季节性变化及其指示意义: 以长江大通站为例[J]. 地球科学进展, 2014, 29(7):835-843

    LUO Chao, ZHEGN Hongbo, WU Weihua, et al. Temporal variation in Sr and 87Sr/86Sr of Yangtze river: an example from datong hydrological station [J]. Advances in Earth Science, 2014, 29(7): 835-843.

    [35]

    张玉泉, 谢应雯, 李献华, 等. 青藏高原东部钾玄岩系岩浆岩同位素特征: 岩石成因及其构造意义[J]. 中国科学(D辑), 2000, 30(5):493-498 doi: 10.3321/j.issn:1006-9267.2000.05.007

    ZHAGN Yuquan, XIE Yingwen, LI Xianhua, et al. Isotopic characteristics of magmatic rocks of the potassium basaltic series in the eastern Qinghai-Tibet Plateau: petrogenesis and tectonic significance [J]. Science in China: Geoscience, 2000, 30(5): 493-498. doi: 10.3321/j.issn:1006-9267.2000.05.007

    [36]

    张招崇, 王福生. 峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨[J]. 地球科学—中国地质大学学报, 2003, 28(4):431-439

    ZHANG Zhaochong, WANG Fusheng. Sr, Nd and Pb isotopic characteristics of Emeishan basalt province and discussion on their source region [J]. Earth Science——Journal of China University of Geosciences, 2003, 28(4): 431-439.

    [37]

    孟宪伟, 杜德文, 陈志华, 等. 长江、黄河流域泛滥平原细粒沉积物87Sr/86Sr空间变异的制约因素及其物源示踪意义[J]. 地球化学, 2000, 29(6):562-570 doi: 10.3321/j.issn:0379-1726.2000.06.008

    MENG Xianwei, DU Dewen, CHEN Zhihua, et al. Factors controlling spatial variation of 87Sr/86Sr in the fine-grained sediments from the overbanks of the Yellow River and Yangtze River and its implication for provenance of marine sediments [J]. Geochimica, 2000, 29(6): 562-570. doi: 10.3321/j.issn:0379-1726.2000.06.008

    [38]

    Nesbitt H W, Markovics G, Price R C. Chemical processes affecting alkalis and alkaline earths during continental weathering [J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1659-1666. doi: 10.1016/0016-7037(80)90218-5

    [39]

    Bi L, Yang S Y, Zhao Y, et al. Provenance study of the holocene sediments in the Changjiang (Yangtze River) Estuary and inner shelf of the East China Sea [J]. Quaternary International, 2016, 441: 147-161.

    [40]

    Bentley S J Jr, Blum M D, Maloney J, et al. The Mississippi river source-to-sink system: perspectives on tectonic, climatic, and anthropogenic influences, Miocene to anthropocene [J]. Earth-Science Reviews, 2016, 153: 139-174. doi: 10.1016/j.earscirev.2015.11.001

    [41]

    Hoffmann T, Thorndycraft V R, Brown A G, et al. Human impact on fluvial regimes and sediment flux during the Holocene: Review and future research agenda [J]. Global and Planetary Change, 2010, 72(3): 87-98. doi: 10.1016/j.gloplacha.2010.04.008

    [42]

    Walling D E, Fang D. Recent trends in the suspended sediment loads of the world's rivers [J]. Global and Planetary Change, 2003, 39(1-2): 111-126. doi: 10.1016/S0921-8181(03)00020-1

    [43]

    赵一阳, 鄢明才, 李安春, 等. 中国近海沿岸泥的地球化学特征及其指示意义[J]. 中国地质, 2002, 29(2):181-185 doi: 10.3969/j.issn.1000-3657.2002.02.014

    ZHAO Yiyang, YAN Mingcai, LI Anchun, et al. Geochemistry of muds along the coast of China and their significance [J]. Geology in China, 2002, 29(2): 181-185. doi: 10.3969/j.issn.1000-3657.2002.02.014

  • 加载中

(5)

(4)

计量
  • 文章访问数:  3117
  • PDF下载数:  158
  • 施引文献:  0
出版历程
收稿日期:  2019-05-06
修回日期:  2019-05-21
刊出日期:  2020-06-25

目录