金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集

黄威, 陶春辉, 廖时理, 路晶芳, 崔汝勇, 丁雪. 金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集[J]. 海洋地质与第四纪地质, 2020, 40(1): 126-135. doi: 10.16562/j.cnki.0256-1492.2019060501
引用本文: 黄威, 陶春辉, 廖时理, 路晶芳, 崔汝勇, 丁雪. 金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集[J]. 海洋地质与第四纪地质, 2020, 40(1): 126-135. doi: 10.16562/j.cnki.0256-1492.2019060501
HUANG Wei, TAO Chunhui, LIAO Shili, LU Jingfang, CUI Ruyong, DING Xue. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126-135. doi: 10.16562/j.cnki.0256-1492.2019060501
Citation: HUANG Wei, TAO Chunhui, LIAO Shili, LU Jingfang, CUI Ruyong, DING Xue. Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 126-135. doi: 10.16562/j.cnki.0256-1492.2019060501

金在洋脊超镁铁质与镁铁质热液系统中的差异性聚集

  • 基金项目: 青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室自主课题“帕劳海脊两侧海盆锰结核的铂族元素和铼锇同位素记录的海脊形成演化事件”(MMRZZ201808);国家自然科学基金项目“铂族元素和锇同位素在西南印度洋脊龙旂热液区硫化物烟囱体中的组成及物源示踪”(41506074);中国地质调查局地质调查项目(DD20190578, DD20191010);大洋“十三五”资源环境类课题“硫化物合同区热液硫化物成矿作用与成矿规律”(DY135-S1-1-02-03);国家重点研发计划课题“蛟龙号载人潜水器在热液区的科学应用”(2017YFC0306603)
详细信息
    作者简介: 黄威(1981—),男,高级工程师,研究方向为海底贵金属成矿作用,E-mail: huangw@mail.cgs.gov.cn
  • 中图分类号: P744

Differential deposition of gold in mafic-hosted and ultramafic-hosted hydrothermal systems on the mid-ocean ridge

  • 洋脊是地球上规模最大的山脉体系,主要由超镁铁质和镁铁质岩所组成,因构造和岩浆作用,这两类岩层分别孕育了超镁铁质和镁铁质含金热液系统。金首先通过水岩反应从洋脊源区岩层内迁移出来,再经历运移堆积作用汇聚到硫化物堆积体内,最后遭受后期蚀变活化迁移改造。以上过程构成了金在这两类热液系统中的完整演化历程。超镁铁质热液系统内的金在汇源端员间的比值远高于镁铁质热液系统。这种差异性聚集暗示了这两类热液系统分别演化出了独具特色的载金属性特征及富集迁移机制。相比于镁铁质热液系统,超镁铁质热液系统内围岩普遍具有的高金含量和高孔高渗特征、热液流体中溶解态非生物有机质和气态物质含量高、硫化物堆积体所处区域裂隙发育及构造稳定等因素,都是造成两者之间存在显著差异性聚集过程的主要原因。持续性地对洋脊热液系统各深部结构体进行更多更精细有关金的丰度、赋存状态及演化变迁的测试分析及模拟研究工作,是未来量化揭示金在不同类型热液系统内的物源贡献及各演化阶段中富集亏损的关键,也将为未来人工海底干预富集成矿工程累积信息。

  • 加载中
  • 图 1  洋脊硫化物堆积体内金的分布及活化迁移示意图

    Figure 1. 

    图 2  金在两类不同结构形貌的围岩洋脊热液系统中的迁移演化及影响因素

    Figure 2. 

    表 1  超镁铁质和镁铁质热液系统在水岩反应阶段对金在海底富集的不同影响

    Table 1.  Different effects for the gold enrichment during the seafloor fluid-rock interaction in the mafic-hosted and ultramafic-hosted hydrothermal systems

    热液系统类型围岩的金含量/10−9相容性附着上浮围岩物理属性额外热源
    镁铁质1.0~1.2(−)+致密(−)
    超镁铁质1.7(+)+多孔(+)蛇纹石化放热(+)
     注:+表示相对有利于富集,−表示相对不利于富集,数据来源见正文。
    下载: 导出CSV

    表 2  超镁铁质和镁铁质热液系统在运移堆积阶段对金在海底富集的不同影响

    Table 2.  Different effects for the gold enrichment during the seafloor migration and accumulation of the metallogenic material in the mafic-hosted and ultramafic-hosted hydrothermal systems

    热液系统类型流体中非生物有机化合物含量还原性环境丘体形态构造活动
    镁铁质低(−)低(−)高耸(−)强(−)
    超镁铁质高(+)高(+)平坦(+)弱(+)
     注:+表示相对有利于富集,−表示相对不利于富集,数据来源见正文。
    下载: 导出CSV

    表 3  超镁铁质和镁铁质热液系统在后期活化阶段对金在海底富集的不同影响

    Table 3.  Different effects for the gold enrichment during the seafloor weathering and migration of the sulfide deposits in the mafic-hosted and ultramafic-hosted hydrothermal systems

    热液系统类型趋外活化迁移丘体形态水力压裂
    镁铁质+高耸(+)弱(+)
    超镁铁质平坦(−)强(−)
     注:+表示相对有利于富集,−表示相对不利于富集,数据来源见正文。
    下载: 导出CSV
  • [1]

    Huston D L, Pehrsson S, Eglington B M, et al. The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting [J]. Economic Geology, 2010, 105(3): 571-591. doi: 10.2113/gsecongeo.105.3.571

    [2]

    Hannington M D. Volcanogenic massive sulfide deposits [J]. Treatise on Geochemistry, 2014, 13: 463-488.

    [3]

    Mercier-Langevin P, Hannington M D, Dubé B, et al. The gold content of volcanogenic massive sulfide deposits [J]. Mineralium Deposita, 2011, 46(5-6): 509-539. doi: 10.1007/s00126-010-0300-0

    [4]

    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1

    [5]

    German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? [J]. Chemical Geology, 2016, 420: 114-126. doi: 10.1016/j.chemgeo.2015.11.006

    [6]

    Patten C G C, Pitcairn I K, Teagle D A H. Hydrothermal mobilisation of Au and other metals in supra-subduction oceanic crust: insights from the Troodos ophiolite [J]. Ore Geology Reviews, 2017, 86: 487-508. doi: 10.1016/j.oregeorev.2017.02.019

    [7]

    Patten C G C, Pitcairn I K, Teagle D A H, et al. Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits [J]. Mineralium Deposita, 2016, 51(2): 179-200. doi: 10.1007/s00126-015-0598-8

    [8]

    German C R, Seyfried Jr W E. Hydrothermal processes [J]. Treatise on Geochemistry, 2014, 8: 191-233.

    [9]

    Fischer-Gödde M, Becker H, Wombacher F. Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths [J]. Chemical Geology, 2011, 280(3-4): 365-383. doi: 10.1016/j.chemgeo.2010.11.024

    [10]

    Palme H, O'Neill H S C. Cosmochemical estimates of mantle composition [J]. Treatise on Geochemistry, 2014, 3: 1-39.

    [11]

    陈骏, 王鹤年. 地球化学[M]. 北京: 科学出版社, 2004: 418.

    CHEN Jun, WANG Henian. Geochemistry[M]. Beijing: Science Press, 2004: 418.

    [12]

    Mungall J E, Brenan J M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle-crust fractionation of the chalcophile elements [J]. Geochimica et Cosmochimica Acta, 2014, 125: 265-289. doi: 10.1016/j.gca.2013.10.002

    [13]

    Saunders J E, Pearson N J, O’Reilly S Y, et al. Gold in the mantle: the role of pyroxenites [J]. Lithos, 2016, 244: 205-217. doi: 10.1016/j.lithos.2015.12.008

    [14]

    Crocket J H. Platinum-group element geochemistry of mafic and ultramafic rocks[M]//Cabri L J. Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements. Montréal: Canadian Institute of Mining, Metallurgy and Petroleum, 2002: 177-210.

    [15]

    Arevalo Jr R, McDonough W F. Chemical variations and regional diversity observed in MORB [J]. Chemical Geology, 2010, 271(1-2): 70-85. doi: 10.1016/j.chemgeo.2009.12.013

    [16]

    Webber A P, Roberts S, Taylor R N, et al. Golden plumes: substantial gold enrichment of oceanic crust during ridge-plume interaction [J]. Geology, 2013, 41(1): 87-90. doi: 10.1130/G33301.1

    [17]

    McDonough W F, Sun S S. The composition of the Earth [J]. Chemical Geology, 1995, 120(3-4): 223-253. doi: 10.1016/0009-2541(94)00140-4

    [18]

    Pitcairn I K. Background concentrations of gold in different rock types [J]. Applied Earth Science, 2011, 120(1): 31-38. doi: 10.1179/1743275811Y.0000000021

    [19]

    Peach C L, Mathez E A, Keays R R. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting [J]. Geochimica et Cosmochimica Acta, 1990, 54(12): 3379-3389. doi: 10.1016/0016-7037(90)90292-S

    [20]

    Fleet M E, Crocket J H, Stone W E. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt [J]. Geochimica et Cosmochimica Acta, 1996, 60(13): 2397-2412. doi: 10.1016/0016-7037(96)00100-7

    [21]

    Crocket J H, Fleet M E, Stone W E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content [J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4139-4149. doi: 10.1016/S0016-7037(97)00234-2

    [22]

    Mungall J E, Brenan J M, Godel B, et al. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles [J]. Nature Geoscience, 2015, 8(3): 216-219. doi: 10.1038/ngeo2373

    [23]

    黄威, 陶春辉, 孙治雷, 等. 金在现代海底热液系统中的分布及演化[J]. 地质论评, 2017, 63(3):758-769

    HUANG Wei, TAO Chunhui, SUN Zhilei, et al. The occurrence and evolution of gold in modern seafloor hydrothermal systems [J]. Geological Review, 2017, 63(3): 758-769.

    [24]

    Alt J C, Laverne C, Coggon R M, et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256 [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(10): Q10010.

    [25]

    Jowitt S M, Jenkin G R T, Coogan L A, et al. Quantifying the release of base metals from source rocks for volcanogenic massive sulfide deposits: effects of protolith composition and alteration mineralogy [J]. Journal of Geochemical Exploration, 2012, 118: 47-59. doi: 10.1016/j.gexplo.2012.04.005

    [26]

    Kenison Falkner K, Edmond J M. Gold in seawater [J]. Earth and Planetary Science Letters, 1990, 98(2): 208-221. doi: 10.1016/0012-821X(90)90060-B

    [27]

    Mottl M J, Seewald J S, Wheat C G, et al. Chemistry of hot springs along the Eastern Lau Spreading Center [J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1013-1038. doi: 10.1016/j.gca.2010.12.008

    [28]

    曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

    [29]

    James R H, Green D R H, Stock M J, et al. Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre [J]. Geochimica et Cosmochimica Acta, 2014, 139: 47-71. doi: 10.1016/j.gca.2014.04.024

    [30]

    Mottl M J. Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature[M]//Halbach P E, Tunnicliffe V, Hein J R. Energy and Mass Transfer in Marine Hydrothermal Systems. Berlin: Dahlem University Press, 2003: 271-286.

    [31]

    Pokrovski G S, Akinfiev N N, Borisova A Y, et al. Gold speciation and transport in geological fluids: insights from experiments and physical-chemical modelling [J]. Geological Society, London, Special Publications, 2014, 402(1): 9-70. doi: 10.1144/SP402.4

    [32]

    Pearson R G. Hard and soft acids and bases [J]. Journal of the American Chemical Society, 1963, 85(22): 3533-3539. doi: 10.1021/ja00905a001

    [33]

    Akinfiev N N, Zotov A V. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0-600℃ and pressures of 1-3000 bar [J]. Geochemistry International, 2010, 48(7): 714-720. doi: 10.1134/S0016702910070074

    [34]

    Liu W H, Etschmann B, Testemale D, et al. Gold transport in hydrothermal fluids: Competition among the Cl?, Br?, HS? and NH3(aq) ligands [J]. Chemical Geology, 2014, 376: 11-19. doi: 10.1016/j.chemgeo.2014.03.012

    [35]

    Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littelton, Colorado, USA: Society of Economic Geologists, 2005: 111-141.

    [36]

    Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges [J]. Comptes Rendus Geoscience, 2003, 335(10-11): 825-852. doi: 10.1016/j.crte.2003.08.006

    [37]

    Von Damm K L, Bray A M, Buttermore L G, et al. The geochemical controls on vent fluids from the Lucky Strike vent field, Mid-Atlantic Ridge [J]. Earth and Planetary Science Letters, 1998, 160(3-4): 521-536. doi: 10.1016/S0012-821X(98)00108-3

    [38]

    Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR) [J]. Chemical Geology, 2002, 191(4): 345-359. doi: 10.1016/S0009-2541(02)00134-1

    [39]

    German C R, Lin J. The thermal structure of the oceanic crust, ridge‐spreading and hydrothermal circulation: how well do we understand their inter‐connections?[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 2004: 148, 1-18.

    [40]

    Fouquet Y, Cambon P, Etoubleau J, et al. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, DC: American Geophysical Union, 2010: 321-367.

    [41]

    Schmidt K, Garbe-Schönberg D, Koschinsky A, et al. Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): constraints on fluid–rock interaction in heterogeneous lithosphere [J]. Chemical Geology, 2011, 280(1-2): 1-18. doi: 10.1016/j.chemgeo.2010.07.008

    [42]

    Seyfried Jr W E, Pester N J, Ding K, et al. Vent fluid chemistry of the Rainbow hydrothermal system (36°N, MAR): Phase equilibria and in situ pH controls on subseafloor alteration processes [J]. Geochimica et Cosmochimica Acta, 2011, 75(6): 1574-1593. doi: 10.1016/j.gca.2011.01.001

    [43]

    Baumberger T, Früh-Green G L, Thorseth I H, et al. Fluid composition of the sediment-influenced Loki’s Castle vent field at the ultra-slow spreading Arctic Mid-Ocean Ridge [J]. Geochimica et Cosmochimica Acta, 2016, 187: 156-178. doi: 10.1016/j.gca.2016.05.017

    [44]

    Ji F W, Zhou H Y, Yang Q H, et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 122: 41-47. doi: 10.1016/j.dsr.2017.02.001

    [45]

    Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids [J]. Chemical Geology, 2002, 184(1-2): 37-48. doi: 10.1016/S0009-2541(01)00351-5

    [46]

    Schmidt K, Koschinsky A, Garbe-Schonberg D, et al. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation [J]. Chemical Geology, 2007, 242(1-2): 1-21. doi: 10.1016/j.chemgeo.2007.01.023

    [47]

    Knight R D, Roberts S, Webber A P. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges [J]. Mineralium Deposita, 2018, 53(1): 143-152. doi: 10.1007/s00126-017-0762-4

    [48]

    Simon A C, Frank M R, Pettke T, et al. Gold partitioning in melt-vapor-brine systems [J]. Geochimica et Cosmochimica Acta, 2005, 69(13): 3321-3335. doi: 10.1016/j.gca.2005.01.028

    [49]

    Pokrovski G S, Borisova A Y, Harrichoury J C. The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 345-362. doi: 10.1016/j.jpgl.2007.11.023

    [50]

    Frank M R, Simon A C, Pettke T, et al. Gold and copper partitioning in magmatic-hydrothermal systems at 800 ℃ and 100 MPa [J]. Geochimica et Cosmochimica Acta, 2011, 75(9): 2470-2482. doi: 10.1016/j.gca.2011.02.012

    [51]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules [J]. Treatise on Geochemistry, 2014, 13: 273-291.

    [52]

    Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans? [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1997, 355(1723): 427-441. doi: 10.1098/rsta.1997.0015

    [53]

    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012

    [54]

    Hannington M, Jamieson J, Monecke T, et al. Modern sea-floor massive sulfides and base metal resources: Toward an estimate of global sea-floor massive sulfide potential[M]//Goldfarb R J, Marsh E E, Monecke T. The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries. Littleton, Colorado: Society of Economic Geologists, 2010: 317-338.

    [55]

    Wagner T, Klemd R, Wenzel T, et al. Gold upgrading in metamorphosed massive sulfide ore deposits: Direct evidence from laser-ablation–inductively coupled plasma–mass spectrometry analysis of invisible gold [J]. Geology, 2007, 35(9): 775-778. doi: 10.1130/G23739A.1

    [56]

    Wohlgemuth-Ueberwasser C C, Viljoen F, Petersen S, et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study [J]. Geochimica et Cosmochimica Acta, 2015, 159: 16-41. doi: 10.1016/j.gca.2015.03.020

    [57]

    王琰, 孙晓明, 吴仲玮, 等. 西南印度洋超慢速扩张脊海底热液硫化物中金银矿物的富集特征及富集机制研究[J]. 光谱学与光谱分析, 2014, 34(12):3327-3332 doi: 10.3964/j.issn.1000-0593(2014)12-3327-06

    WANG Yan, SUN Xiaoming, WU Zhongwei, et al. The enrichment characteristic and mechanism of gold-silver minerals in submarine hydrothermal sulfides from the ultra-slow-spreading SWIR [J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3327-3332. doi: 10.3964/j.issn.1000-0593(2014)12-3327-06

    [58]

    吴仲玮, 孙晓明, 戴瑛知, 等. 中印度洋海岭Edmond热液区块状硫化物中自然金的发现及其意义[J]. 岩石学报, 2012, 27(12):3749-3762

    WU Zhongwei, SUN Xiaoming, DAI Yingzhi, et al. The discovery of native gold in massive sulfides from the Edmond hydrothermal field, Central Indian Ridge and its significance [J]. Acta Petrologica Sinica, 2012, 27(12): 3749-3762.

    [59]

    Wu Z W, Sun X M, Xu H F, et al. Occurrences and distribution of “invisible” precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge [J]. Ore Geology Reviews, 2016, 79: 105-132. doi: 10.1016/j.oregeorev.2016.05.006

    [60]

    Doyle M G, Allen R L. Subsea-floor replacement in volcanic-hosted massive sulfide deposits [J]. Ore Geology Reviews, 2003, 23(3-4): 183-222. doi: 10.1016/S0169-1368(03)00035-0

    [61]

    Fallon E K, Petersen S, Brooker R A, et al. Oxidative dissolution of hydrothermal mixed-sulphide ore: an assessment of current knowledge in relation to seafloor massive sulphide mining [J]. Ore Geology Reviews, 2017, 86: 309-337. doi: 10.1016/j.oregeorev.2017.02.028

    [62]

    Wu Y F, Evans K, Li J W, et al. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit [J]. Geochimica et Cosmochimica Acta, 2019, 245: 98-117. doi: 10.1016/j.gca.2018.10.031

    [63]

    Fougerouse D, Micklethwaite S, Tomkins A G, et al. Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite [J]. Geochimica et Cosmochimica Acta, 2016, 178: 143-159. doi: 10.1016/j.gca.2016.01.040

    [64]

    Melekestseva I Y, Maslennikov V V, Tret’yakov G A, et al. Gold-and silver-rich massive sulfides from the semenov-2 hydrothermal field, 13°31.13′N, Mid-Atlantic Ridge: a case of magmatic contribution? [J]. Economic Geology, 2017, 112(4): 741-773. doi: 10.2113/econgeo.112.4.741

    [65]

    Webber A P, Roberts S, Murton B J, et al. The formation of gold-rich seafloor sulfide deposits: evidence from the Beebe hydrothermal vent field, Cayman Trough [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2011-2027. doi: 10.1002/2017GC006922

    [66]

    Webber A P, Roberts S, Murton B J, et al. Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2661-2678. doi: 10.1002/2015GC005879

  • 加载中

(2)

(3)

计量
  • 文章访问数:  1277
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2019-06-05
修回日期:  2019-10-22
刊出日期:  2020-02-25

目录