夏威夷-皇帝海山链成因机制—古地磁学约束

姜兆霞, 李三忠, 刘青松, 张建利, 章钰桢. 夏威夷-皇帝海山链成因机制—古地磁学约束[J]. 海洋地质与第四纪地质, 2019, 39(5): 104-114. doi: 10.16562/j.cnki.0256-1492.2019061601
引用本文: 姜兆霞, 李三忠, 刘青松, 张建利, 章钰桢. 夏威夷-皇帝海山链成因机制—古地磁学约束[J]. 海洋地质与第四纪地质, 2019, 39(5): 104-114. doi: 10.16562/j.cnki.0256-1492.2019061601
JIANG Zhaoxia, LI Sanzhong, LIU Qingsong, ZHANG Jianli, ZHANG Yuzhen. The kinematic mechanism study of Hawaii-Emperor seamount chain: Evidence from paleomagnetic records[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 104-114. doi: 10.16562/j.cnki.0256-1492.2019061601
Citation: JIANG Zhaoxia, LI Sanzhong, LIU Qingsong, ZHANG Jianli, ZHANG Yuzhen. The kinematic mechanism study of Hawaii-Emperor seamount chain: Evidence from paleomagnetic records[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 104-114. doi: 10.16562/j.cnki.0256-1492.2019061601

夏威夷-皇帝海山链成因机制—古地磁学约束

  • 基金项目: 国家自然科学基金重大研究计划“西太平洋地球系统多圈层相互作用”培育项目“夏威夷皇帝海山链运动学过程研究”(91858108);中央高校基本科研业务经费(841941007)
详细信息
    作者简介: 姜兆霞(1987—),女,副教授,主要从事古地磁学与环境磁学研究,E-mail:jiangzhaoxia@ouc.edu.cn
  • 中图分类号: P737.2

The kinematic mechanism study of Hawaii-Emperor seamount chain: Evidence from paleomagnetic records

  • 夏威夷-皇帝海山链位于北太平洋中部,是一条自西北至东南延伸的海底火山链,并在47 Ma存在一个方向弯折。厘定这一特征的成因机制和运动学过程,是西太平洋海区软流圈与岩石圈相互作用以及跨圈层物质能量交换的关键科学问题,对于解译东亚大陆动力学演化过程亦具有重要意义。目前对于夏威夷-皇帝海山链47 Ma弯折的机制有两种争论:太平洋板块运动方向改变和热点移动。古地磁学是研究大陆漂移和板块演化的最有效手段之一,其最大优势是可以定量化研究地质历史时期中岩石圈板块的运动学过程。本文首先通过回顾与总结前人对夏威夷-皇帝海山链成因及转向机制的研究,重点探讨古地磁学在该问题上所提供的约束证据,并对存在的关键科学问题进行了梳理和展望。

  • 加载中
  • 图 1  夏威夷-皇帝海山链的地理位置图

    Figure 1. 

    图 2  热点固定论和移动论对应的太平洋板块和热点的运动模型(修改自Tarduno[41]

    Figure 2. 

    图 3  50 Ma时太平洋板块边界示意图

    Figure 3. 

    图 4  太平洋板块的视极移曲线(APWP)(蓝色粗虚线)

    Figure 4. 

    图 5  ODP197航次站位(1206,光孝海山;1205,推古海山;1204和1203,底特律海山),ODP884站位(底特律海山)以及DSDP433站位(仁德海山))的古纬度值

    Figure 5. 

    图 6  夏威夷-皇帝海山链地幔柱牵引和反弹机制

    Figure 6. 

    图 7  夏威夷热点的纬向运动

    Figure 7. 

    图 8  皇帝海山链形成过程中夏威夷热点和太平洋板块运动向量模型图

    Figure 8. 

  • [1]

    Wilson J T. A possible origin of the Hawaiian islands [J]. Canadian Journal of Physics, 1963, 41(6): 863-870. doi: 10.1139/p63-094

    [2]

    Morgan W J. Deep mantle convection plumes and plate motions [J]. AAPG Bulletin, 1972, 56(2): 203-213.

    [3]

    Clague D A, Dalrymple G B. Tectonics, geochronology and origin of the Hawaiian-Emperor volcanic chain[M]//Winterer E L, Huss D M, Decker R W. The Eastern Pacific Ocean and Hawaii. The Geology of North America. Geological Society of America, 1989: 188-217.

    [4]

    Sharp W D, Clague D A. An older, slower Hawaii-Emperor bend[Z]. United States: American Geophysical Union, 2002.

    [5]

    O'Connor J M, Steinberger B, Regelous M, et al. Constraints on past plate and mantle motion from new ages for the Hawaiian-Emperor Seamount Chain [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4564-4584. doi: 10.1002/ggge.20267

    [6]

    Depaolo D J, Manga M. Deep origin of hotspots: The mantle plume model [J]. Science, 2003, 300(5621): 920-921. doi: 10.1126/science.1083623

    [7]

    Foulger G R, Natland J H. Is "Hotspot" volcanism a consequence of plate tectonics? [J]. Science, 2003, 300(5621): 921-922. doi: 10.1126/science.1083376

    [8]

    Hilde T W C, Uyeda S, Kroenke L. Evolution of the western pacific and its margin [J]. Tectonophysics, 1977, 38(1-2): 145-165. doi: 10.1016/0040-1951(77)90205-0

    [9]

    Hill R I, Campbell I H, Davies G F, et al. Mantle plumes and continental tectonics [J]. Science, 1992, 256(5054): 186-193. doi: 10.1126/science.256.5054.186

    [10]

    Niu Y. Origin of the 43 Ma bend along the Hawaiian-Emperor seamount chain: Problem and solution[M]//Hekinian R, Cheminée J L, Stoffers P. Oceanic Hotspots. Berlin Heidelberg: Springer, 2004: 143-155.

    [11]

    Smith A D. A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean basin[C]//Foulger G R, Jurdy D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007, 430: 471-495.

    [12]

    Stock J. Hotspots come unstuck [J]. Science, 2003, 301(5636): 1059-1060. doi: 10.1126/science.1089049

    [13]

    Torsvik T H, Doubrovine P V, Steinberger B, et al. Pacific plate motion change caused the Hawaiian-Emperor Bend [J]. Nature Communications, 2017, 8: 15660. doi: 10.1038/ncomms15660

    [14]

    Morgan W J. Convection plumes in the lower mantle [J]. Nature, 1971, 230(5288): 42-43. doi: 10.1038/230042a0

    [15]

    Duncan R A, Clague D A. Pacific plate motion recorded by linear volcanic chains[M]//Nairn A E M, Stehli F G, Uyeda S. The Ocean Basins and Margins. Boston, MA: Springer, 1985: 89-121.

    [16]

    Molnar P, Atwater T. Relative motion of hot spots in the mantle [J]. Nature, 1973, 246(5431): 288-291. doi: 10.1038/246288a0

    [17]

    Molnar P, Stock J. Relative motions of hotspots in the Pacific, Atlantic and Indian Oceans since late Cretaceous time [J]. Nature, 1987, 327(6123): 587-591. doi: 10.1038/327587a0

    [18]

    Norton I O. Global hotspot reference frames and plate motion[C]//Richards M A, Gordon R G, van der Hilst R D. The History and Dynamics of Global Plate Motions. Washington, DC: AGU, 2000, 121: 339-357.

    [19]

    Norton I O. Plate motions in the North Pacific: The 43 Ma nonevent [J]. Tectonics, 1995, 14(5): 1080-1094. doi: 10.1029/95TC01256

    [20]

    Butler R F. Paleomagnetism: Magnetic Domains to Geologic Terranes[M]. Boston: Blackwell Scientific Publications, 1992.

    [21]

    Tauxe L. Essentials of Paleomagnetism[M]. Berkeley: University of California Press, 2010.

    [22]

    Tarduno J, Bunge H P, Sleep N, et al. The bent Hawaiian-Emperor hotspot track: Inheriting the mantle wind [J]. Science, 2009, 324(5923): 50-53. doi: 10.1126/science.1161256

    [23]

    Tarduno J A. On the motion of Hawaii and other mantle plumes [J]. Chemical Geology, 2007, 241(3-4): 234-247. doi: 10.1016/j.chemgeo.2007.01.021

    [24]

    Tarduno J A, Cottrell R D. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts [J]. Earth & Planetary Science Letters, 1997, 153(3-4): 171-180.

    [25]

    Tarduno J A, Duncan R A, Scholl D W, et al. The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in Earth's mantle [J]. Science, 2003, 301(5636): 1064-1069. doi: 10.1126/science.1086442

    [26]

    Christensen U. Fixed hotspots gone with the wind [J]. Nature, 1998, 391(6669): 739-739. doi: 10.1038/35736

    [27]

    Doubrovine P V, Steinberger B, Torsvik T H. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans [J]. Journal of Geophysical Research, 2012, 117: B09101. doi: 10.1029/2011JB009072

    [28]

    Duncan R A, Tarduno J A. Motion of the Hawaiian hotspot: a paleomagnetic test [J]. Ocean Drilling Program Scientific Prospectus, 2001, 97: 1-83.

    [29]

    Morgan W J. Hotspot tracks and the opening of the Atlantic and Indian Oceans[M]//Emiliani C. The Oceanic Lithosphere. New York: Wiley, 1981: 443-487.

    [30]

    Müller R D, Royer J Y, Lawver L A. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks [J]. Geology, 1993, 21(3): 275-278. doi: 10.1130/0091-7613(1993)021<0275:RPMRTT>2.3.CO;2

    [31]

    Patriat P, Achache J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates [J]. Nature, 1984, 311(5987): 615-621. doi: 10.1038/311615a0

    [32]

    Lithgow-Bertelloni C, Richards M A. The dynamics of Cenozoic and Mesozoic plate motions [J]. Reviews of Geophysics, 1998, 36(1): 27-78. doi: 10.1029/97RG02282

    [33]

    Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 15-30. doi: 10.1016/S0012-821X(03)00242-5

    [34]

    Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5: Q07001. doi: 10.1029/2003GC000681

    [35]

    Sharp W D, Clague D A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion [J]. Science, 2006, 313(5791): 1281-1284. doi: 10.1126/science.1128489

    [36]

    Stock J M. The Hawaiian-Emperor bend: Older than expected [J]. Science, 2006, 313(5791): 1250-1251. doi: 10.1126/science.1131789

    [37]

    Koivisto E A, Andrews D L, Gordon R G. Tests of fixity of the Indo-Atlantic hot spots relative to Pacific hot spots [J]. Journal of Geophysical Research, 2014, 119(1): 661-675.

    [38]

    Wright N M, Müller R D, Seton M, et al. Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend [J]. Geology, 2015, 43(5): 455-458. doi: 10.1130/G36303.1

    [39]

    Li S Z, Suo Y H, Li X Y, et al. Microplate tectonics: new insights from micro-blocks in the global oceans, continental margins and deep mantle [J]. Earth-Science Reviews, 2018, 185: 1029-1064. doi: 10.1016/j.earscirev.2018.09.005

    [40]

    Steinberger B, Sutherland R, O'Connell R J. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow [J]. Nature, 2004, 430(6996): 167-173. doi: 10.1038/nature02660

    [41]

    Tarduno J A. Hot spots unplugged [J]. Scientific American, 2008, 298(1): 88-93. doi: 10.1038/scientificamerican0108-88

    [42]

    Duncan R A. Hotspots in the Southern Oceans — an absolute frame of reference for motion of the Gondwana continents [J]. Tectonophysics, 1981, 74(1-2): 29-42. doi: 10.1016/0040-1951(81)90126-8

    [43]

    Parés J M, Moore T C. New evidence for the Hawaiian hotspot plume motion since the Eocene [J]. Earth and Planetary Science Letters, 2005, 237(3-4): 951-959. doi: 10.1016/j.jpgl.2005.06.012

    [44]

    DiVenere V, Kent D V. Are the Pacific and Indo–Atlantic hotspots fixed? Testing the plate circuit through Antarctica [J]. Earth and Planetary Science Letters, 1999, 170(1-2): 105-117. doi: 10.1016/S0012-821X(99)00096-5

    [45]

    Cande S C, Raymond C A, Stock J, et al. Geophysics of the Pitman Fracture Zone and Pacific-Antarctic Plate Motions During the Cenozoic [J]. Science, 1995, 270(5238): 947-953. doi: 10.1126/science.270.5238.947

    [46]

    Doubrovine P V, Tarduno J A. A revised kinematic model for the relative motion between Pacific oceanic plates and North America since the Late Cretaceous [J]. Journal of Geophysical Research, 2008, 113(B12): B12101. doi: 10.1029/2008JB005585

    [47]

    Steinberger B. Plumes in a convecting mantle: Models and observations for individual hotspots [J]. Journal of Geophysical Research, 2000, 105(B5): 11127-11152. doi: 10.1029/1999JB900398

    [48]

    Steinberger B, Antretter M. Conduit diameter and buoyant rising speed of mantle plumes: Implications for the motion of hot spots and shape of plume conduits [J]. Geochemistry, Geophysics, Geosystems, 2006, 7: Q11018. doi: 10.1029/2006GC001409

    [49]

    Sager W W, Bleil U. Latitudinal shift of Pacific hotspots during the late Cretaceous and early Tertiary [J]. Nature, 1987, 326(6112): 488-490. doi: 10.1038/326488a0

    [50]

    徐文耀. 地磁学[M]. 北京: 地震出版社, 2003: 64-118.

    XU Wenyao. Geomagnetism[M]. Beijing: Seismic Press, 2003: 64-118.

    [51]

    朱岗崑. 古地磁学: 基础、原理、方法、成果与应用[M]. 北京: 科学出版社, 2005: 101-112.

    ZHU Gangkun. Paleomagnetism: Essential, Principle, Methods, and Application[M]. Beijing: Science Press, 2005: 101-112.

    [52]

    黄宝春. 地球古板块位置的古地磁定位方法[M]//丁仲礼. 固体地球科学研究方法. 北京: 科学出版社, 2013: 805-817.

    HUANG Baochun. Paleomagnetic location method for paleoplate in the Earth[M]//DING Zhongli. Geophysical Methods. Beijing: Science Press, 2013: 805-817.

    [53]

    Creer K M, Irving E, Runcorn S K. The direction of the Geomagnetic field in remote epochs in Great Britain [J]. Journal of Geomagnetism and Geoelectricity, 1954, 6(4): 163-168. doi: 10.5636/jgg.6.163

    [54]

    Piper J D A. Palaeomagnetism and the Continental Crust[M]. New York: John Wiley & Sons, 1987.

    [55]

    Torsvik T H, Van der Voo R, Redfield T F. Relative hotspot motions versus True Polar Wander [J]. Earth and Planetary Science Letters, 2002, 202(2): 185-200. doi: 10.1016/S0012-821X(02)00807-5

    [56]

    Sager W W. Divergence between paleomagnetic and hotspot-model–predicted polar wander for the Pacific plate with implications for hotspot fixity[C]//Foulger G R, Jurdy D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007, 430: 335-357.

    [57]

    Acton G D, Gordon R G. A 65 Ma palaeomagnetic pole for the Pacific plate from the skewness of magnetic anomalies 27r-31 [J]. Geophysical Journal International, 1991, 106(2): 407-420. doi: 10.1111/j.1365-246X.1991.tb03904.x

    [58]

    Acton G D, Gordon R G. Paleomagnetic tests of Pacific plate reconstructions and implications for motion between hotspots [J]. Science, 1994, 263(5151): 1246-1254. doi: 10.1126/science.263.5151.1246

    [59]

    Sager W W, Koppers P A A. Late Cretaceous polar wander of the Pacific plate: Evidence of a rapid true polar wander event [J]. Science, 2000, 287(5452): 455-459. doi: 10.1126/science.287.5452.455

    [60]

    Sager W W. Cretaceous paleomagnetic apparent polar wander path for the Pacific plate calculated from Deep Sea Drilling Project and Ocean Drilling Program basalt cores [J]. Physics of the Earth & Planetary Interiors, 2006, 156(3-4): 329-349.

    [61]

    Beaman M, Sager W W, Acton G D, et al. Improved Late Cretaceous and early Cenozoic Paleomagnetic apparent polar wander path for the Pacific plate [J]. Earth & Planetary Science Letters, 2007, 262(1-2): 1-20.

    [62]

    Wessel P, Harada Y, Kroenke L W. Toward a self-consistent, high-resolution absolute plate motion model for the Pacific [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(3): Q03L12. doi: 10.1029/2005gc001000

    [63]

    Kono M. Paleomagnetism of DSDP Leg 55 Basalts and implications for the tectonics of the Pacific Plate [J]. Initial Reports of the Deep Sea Drilling Project, 1980, 55: 737-752.

    [64]

    Cox A, Gordon R G. Paleolatitudes determined from paleomagnetic data from vertical cores [J]. Reviews of Geophysics, 1984, 22(1): 47-72. doi: 10.1029/RG022i001p00047

    [65]

    Sager W W. Basalt core paleomagnetic data from Ocean Drilling Program Site 883 on Detroit Seamount, northern Emperor Seamount chain, and implications for the paleolatitude of the Hawaiian hotspot [J]. Earth & Planetary Science Letters, 2002, 199(3-4): 347-358.

    [66]

    Sager W W. Paleomagnetism of abbott seamount and implications for the latitudinal drift of the Hawaiian Hot Spot [J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 6271-6284. doi: 10.1029/JB089iB07p06271

    [67]

    Kodama K, Uyeda S, Isezaki N. Paleomagnetism of Suiko Seamount, Emperor Seamount Chain [J]. Geophysical Research Letters, 1978, 5(3): 165-168. doi: 10.1029/GL005i003p00165

    [68]

    Tarduno J A. Absolute inclination values from deep sea sediments: A reexamination of the Cretaceous Pacific record [J]. Geophysical Research Letters, 1990, 17(1): 101-104. doi: 10.1029/GL017i001p00101

    [69]

    Duncan R A, Tarduno J A, Scholl D W. 1. Leg 197 Synthesis: Southward motion and geochemical variability of the Hawaiian hotspot[C]//Proceedings of the Ocean Drilling Program, Scientific Results. 2006, 197: 1-39.

    [70]

    Sager W W, Lamarche A J, Kopp C. Paleomagnetic modeling of seamounts near the Hawaiian–Emperor bend [J]. Tectonophysics, 2005, 405(1-4): 121-140. doi: 10.1016/j.tecto.2005.05.018

    [71]

    Koppers A A P, Yamazaki T, Geldmacher J, et al. Limited latitudinal mantle plume motion for the Louisville hotspot [J]. Nature Geoscience, 2012, 5: 911-917. doi: 10.1038/ngeo1638

    [72]

    Cottrell R D, Tarduno J A. A Late Cretaceous pole for the Pacific plate: implications for apparent and true polar wander and the drift of hotspots [J]. Tectonophysics, 2003, 362(1-4): 321-333. doi: 10.1016/S0040-1951(02)00643-1

    [73]

    Keller R A, Fisk M R, White W M. Isotopic evidence for Late Cretaceous plume–ridge interaction at the Hawaiian hotspot [J]. Nature, 2000, 405(6787): 673-676. doi: 10.1038/35015057

    [74]

    Norton I O. Speculations on Cretaceous tectonic history of the Northwest Pacific and a tectonic origin for the Hawaii hotspot[C]//Foulger G R, Jurdy D M. Plates, Plumes and Planetary Processes. Geological Society of America, 2007, 430: 451-470.

    [75]

    Butterworth N P, Müller R D, Quevedo L, et al. Pacific Plate slab pull and intraplate deformation in the early Cenozoic [J]. Solid Earth, 2014, 5: 757-777. doi: 10.5194/se-5-757-2014

    [76]

    Tarduno J A, Gee J. Large-scale motion between Pacific and Atlantic hotspots [J]. Nature, 1995, 378(6556): 477-480. doi: 10.1038/378477a0

    [77]

    Gordon R G, Cape C D. Cenozoic latitudinal shift of the Hawaiian hotspot and its implications for true polar wander [J]. Earth and Planetary Science Letters, 1981, 55(1): 37-47. doi: 10.1016/0012-821X(81)90084-4

    [78]

    Doubrovine P V, Tarduno J A. Late Cretaceous paleolatitude of the Hawaiian Hot Spot: New paleomagnetic data from Detroit Seamount(ODP Site 883) [J]. Geochemistry, Geophysics, Geosystems, 2004, 5: Q11L04. doi: 10.1029/2004GC000745

    [79]

    Cromwell G, Tauxe L, Staudigel H, et al. Paleointensity estimates from historic and modern Hawaiian lava flows using glassy basalt as a primary source material [J]. Physics of the Earth and Planetary Interiors, 2015, 241: 44-56. doi: 10.1016/j.pepi.2014.12.007

    [80]

    Wilson D S. Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend: comment [J]. Geology, 2016, 44(4): e384. doi: 10.1130/G37388C.1

    [81]

    Van der Voo R. The reliability of paleomagnetic data [J]. Tectonophysics, 1990, 184(1): 1-9. doi: 10.1016/0040-1951(90)90116-P

  • 加载中

(8)

计量
  • 文章访问数:  3634
  • PDF下载数:  88
  • 施引文献:  0
出版历程
收稿日期:  2019-06-16
修回日期:  2019-08-25
刊出日期:  2019-10-25

目录