新生代气候变冷机制研究进展

靳华龙, 万世明. 新生代气候变冷机制研究进展[J]. 海洋地质与第四纪地质, 2019, 39(5): 71-86. doi: 10.16562/j.cnki.0256-1492.2019062601
引用本文: 靳华龙, 万世明. 新生代气候变冷机制研究进展[J]. 海洋地质与第四纪地质, 2019, 39(5): 71-86. doi: 10.16562/j.cnki.0256-1492.2019062601
JIN Hualong, WAN Shiming. The mechanism of Cenozoic cooling: A review of research progress[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 71-86. doi: 10.16562/j.cnki.0256-1492.2019062601
Citation: JIN Hualong, WAN Shiming. The mechanism of Cenozoic cooling: A review of research progress[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 71-86. doi: 10.16562/j.cnki.0256-1492.2019062601

新生代气候变冷机制研究进展

  • 基金项目: 国家自然科学优秀青年基金“海洋沉积与古气候学”(41622603)
详细信息
    作者简介: 靳华龙(1993—),男,博士研究生,从事海洋沉积学研究,E-mail:jinhualongiocas@163.com
    通讯作者: 万世明(1978—),男, 研究员,博导,从事海洋沉积学研究,E-mail:wanshiming@ms.qdio.ac.cn
  • 中图分类号: P736

The mechanism of Cenozoic cooling: A review of research progress

More Information
  • 深海氧同位素记录揭示新生代以来全球气候呈整体变冷趋势,南北两极先后发育冰盖,地球由温室气候变为冰室气候,但是其变冷机制仍不明确。大气CO2浓度降低和大洋环流模式改变均被认为与新生代气候变冷密切相关,但目前对两者的作用还未达成统一的认识,由此存在各种假说,如BLAG假说、高原隆升-风化假说、构造隆升-碳埋藏假说、火山铁肥效应和岛弧隆升-风化假说及海道开合假说等,用以解释新生代全球变冷。围绕新生代气候变冷机制方面的争论,评述了过去近几十年来相关研究的进展和存在的问题,讨论了不同机制对新生代气候变化的影响,并提出未来需要加强的研究重点:建立准确的新生代大气CO2浓度演变序列、建立更加准确的地球内部排气和青藏高原隆升及海道开合时刻表、建立完善的风化指标体系、加强火山作用及其大洋生物地球化学效应的研究。

  • 加载中
  • 图 1  新生代全球深海氧同位素曲线及大气CO2浓度历史记录

    Figure 1. 

    图 2  大气CO2源和汇示意图(修改自文献[19])

    Figure 2. 

    图 3  新生代活跃的高原、山脉、火山和海道

    Figure 3. 

    图 4  新生代海水87Sr/86Sr,187Os/186Os,δ7Li演化

    Figure 4. 

    图 5  新生代碳酸盐和有机碳δ13C演化

    Figure 5. 

    图 6  显生宙硅质火山喷发和缝合带长度与古气候对比[92, 101]

    Figure 6. 

    图 7  南极冰盖体积和高度变化[108]

    Figure 7. 

    图 8  北冰洋淡水补给示意图(修改自文献[111])

    Figure 8. 

  • [1]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412

    [2]

    Miao Y F, Herrmann M, Wu F L, et al. What controlled mid–late miocene long-term aridification in central Asia? — Global cooling or Tibetan Plateau uplift: a review [J]. Earth-Science Reviews, 2012, 112(3-4): 155-172. doi: 10.1016/j.earscirev.2012.02.003

    [3]

    Wan S M, Li A C, Clift P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009

    [4]

    Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions [J]. Science, 2001, 294(5544): 1086-1088. doi: 10.1126/science.1064280

    [5]

    Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids [J]. Earth and Planetary Science Letters, 2012, 357-358: 386-396. doi: 10.1016/j.jpgl.2012.08.030

    [6]

    Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater – evidence for a link between Mg-clays, seawater Mg/Ca, and climate [J]. Earth and Planetary Science Letters, 2015, 416: 73-81. doi: 10.1016/j.jpgl.2015.01.003

    [7]

    Copeland P. The when and where of the growth of the himalaya and the Tibetan Plateau[M]//Ruddiman W F. Tectonic Uplift and Climate Change. Boston, MA: Springer, 1997: 20.

    [8]

    Keigwin L. Isotopic paleoceanography of the Caribbean and East pacific: role of panama uplift in late neogene time [J]. Science, 1982, 217(4557): 350-353. doi: 10.1126/science.217.4557.350

    [9]

    Kennett J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography [J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843

    [10]

    Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years [J]. Nature Communications, 2017, 8: 14845. doi: 10.1038/ncomms14845

    [11]

    Ruddiman W F, Kutzbach J E. Plateau uplift and climatic change [J]. Scientific American, 1991, 264: 66-75.

    [12]

    Gutjahr M, Ridgwell A, Sexton P F, et al. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum [J]. Nature, 2017, 548(7669): 573-577. doi: 10.1038/nature23646

    [13]

    Zachos J C, Breza J R, Wise S W. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean [J]. Geology, 1992, 20(6): 569-573. doi: 10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2

    [14]

    Ehrmann W U, Mackensen A. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1-2): 85-112. doi: 10.1016/0031-0182(92)90185-8

    [15]

    Francis J E. Evidence from fossil plants for Antarctic palaeoclimates over the past 100 million years [J]. Terra Antartica Reports, 1999, 3: 43-52.

    [16]

    Super J R, Thomas E, Pagani M, et al. North Atlantic temperature andpCO2 coupling in the early-middle Miocene [J]. Geology, 2018, 46(6): 519-522. doi: 10.1130/G40228.1

    [17]

    Kasbohm J, Schoene B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum [J]. Science Advances, 2018, 4(9): eaat8223. doi: 10.1126/sciadv.aat8223

    [18]

    Shackleton N J, Imbrie J, Pisias N G. The evolution of oceanic oxygen-isotope variability in the North Atlantic over the past three million years [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1988, 318(1191): 679-688. doi: 10.1098/rstb.1988.0030

    [19]

    Ruddiman W F. Earth's Climate: Past and Future[M]. 2nd ed. New York: W. H. Freeman, 2008: 40-79.

    [20]

    Beerling D J, Royer D L. Convergent cenozoic CO2 history [J]. Nature Geoscience, 2011, 4(7): 418-420. doi: 10.1038/ngeo1186

    [21]

    Berner R A. Atmospheric carbon dioxide levels over phanerozoic time [J]. Science, 1990, 249(4975): 1382-1386. doi: 10.1126/science.249.4975.1382

    [22]

    Pagani M, Huber M, Liu Z H, et al. The role of carbon dioxide during the onset of Antarctic glaciation [J]. Science, 2011, 334(6060): 1261-1264. doi: 10.1126/science.1203909

    [23]

    Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years [J]. Nature, 2000, 406(6797): 695-699. doi: 10.1038/35021000

    [24]

    Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063

    [25]

    Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 201-211. doi: 10.1016/j.jpgl.2010.01.037

    [26]

    Berner R A, Caldeira K. The need for mass balance and feedback in the geochemical carbon cycle [J]. Geology, 1997, 25(10): 955-956. doi: 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2

    [27]

    Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature [J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. doi: 10.1029/JC086iC10p09776

    [28]

    Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years [J]. American Journal of Science, 1983, 283(7): 641-683. doi: 10.2475/ajs.283.7.641

    [29]

    Edmond J M, Huh Y. Chemical weathering yields from basement and orogenic terrains in hot and cold climates[M]//Ruddiman W F. Tectonic Uplift and Climate Change. Boston, MA: Springer, 1997: 329-351.

    [30]

    Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5

    [31]

    Millot R, Gaillardet J, Dupré B, et al. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield [J]. Earth and Planetary Science Letters, 2002, 196(1-2): 83-98. doi: 10.1016/S0012-821X(01)00599-4

    [32]

    West A J, Galy A, Bickle M. Tectonic and climatic controls on silicate weathering [J]. Earth and Planetary Science Letters, 2005, 235(1-2): 211-228. doi: 10.1016/j.jpgl.2005.03.020

    [33]

    Müller R D, Sdrolias M, Gaina C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics [J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540

    [34]

    Rowley D B. Rate of plate creation and destruction: 180 Ma to present [J]. Geological Society of America Bulletin, 2002, 114(8): 927-933. doi: 10.1130/0016-7606(2002)114<0927:ROPCAD>2.0.CO;2

    [35]

    Van Der Meer D G, Zeebe R E, van Hinsbergen D J, et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4380-4385. doi: 10.1073/pnas.1315657111

    [36]

    McCauley S E, DePaolo D J. The Marine 87Sr/86Sr and δ18O records, himalayan alkalinity fluxes, and cenozoic climate models[M]//Ruddiman W F. Tectonic Uplift and Climate Change. New York: Springer, 1997: 427-467.

    [37]

    Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697

    [38]

    Raymo M E, Ruddiman W F. Tectonic forcing of late cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0

    [39]

    Torres M A, Joshua West A, Li G J. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales [J]. Nature, 2014, 507(7492): 346-349. doi: 10.1038/nature13030

    [40]

    Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau [J]. The Journal of Geology, 1993, 101(2): 177-190. doi: 10.1086/648215

    [41]

    Ruddiman W F, Raymo M E, Prell W L, et al. The uplift-climate connection: a synthesis[M]//Ruddiman W F. Tectonic Uplift and Climate Change. Boston, MA: Springer, 1997: 487.

    [42]

    Birchfield G E, Wertman J. Topography, albedo-temperature feedback, and climate sensitivity [J]. Science, 1983, 219(4582): 284-285. doi: 10.1126/science.219.4582.284

    [43]

    Farrell J W, Clemens S C, Gromet L P. Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr [J]. Geology, 1995, 23(5): 403-406. doi: 10.1130/0091-7613(1995)023<0403:ICRCOL>2.3.CO;2

    [44]

    Martin E E, Shackleton N J, Zachos J C, et al. Orbitally-tuned Sr isotope chemostratigraphy for the late middle to late miocene [J]. Paleoceanography and Paleoclimatology, 1999, 14(1): 74-83.

    [45]

    Martin E E, Scher H D. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news [J]. Earth and Planetary Science Letters, 2004, 220(1-2): 25-39. doi: 10.1016/S0012-821X(04)00030-5

    [46]

    Hodell D A, Kamenov G D, Hathorne E C, et al. Variations in the strontium isotope composition of seawater during the Paleocene and early Eocene from ODP Leg 208(Walvis Ridge) [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): Q09001.

    [47]

    Gothmann A M, Stolarski J, Adkins J F, et al. Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic [J]. Geochimica et Cosmochimica Acta, 2015, 160: 188-208. doi: 10.1016/j.gca.2015.03.018

    [48]

    Hodel D A, Mueller P A, Garrido J R. Variations in the strontium isotopic composition of seawater during the Neogene [J]. Geology, 1991, 19(1): 24-27. doi: 10.1130/0091-7613(1991)019<0024:VITSIC>2.3.CO;2

    [49]

    Reusch D N, Ravizza G, Maasch K A, et al. Miocene seawater 187Os/188Os ratios inferred from metalliferous carbonates [J]. Earth and Planetary Science Letters, 1998, 160(1-2): 163-178. doi: 10.1016/S0012-821X(98)00082-X

    [50]

    Ravizza G, Peucker-Ehrenbrink B. The marine 187Os/188Os record of the Eocene-Oligocene transition: the interplay of weathering and glaciation [J]. Earth and Planetary Science Letters, 2003, 210(1-2): 151-165. doi: 10.1016/S0012-821X(03)00137-7

    [51]

    Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016

    [52]

    Burton K W. Global weathering variations inferred from marine radiogenic isotope records [J]. Journal of Geochemical Exploration, 2006, 88(1-3): 262-265. doi: 10.1016/j.gexplo.2005.08.052

    [53]

    Peucker-Ehrenbrink B, Ravizza G, Hofmann A W. The marine 187Os/186Os record of the past 80 million years [J]. Earth and Planetary Science Letters, 1995, 130(1-4): 155-167. doi: 10.1016/0012-821X(95)00003-U

    [54]

    Olgun N, Duggen S, Croot P L, et al. Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean [J]. Global Biogeochemical Cycles, 2011, 25(4): GB4001.

    [55]

    Peucker-Ehrenbrink B, Ravizza G. The marine osmium isotope record [J]. Terra Nova, 2000, 12(5): 205-219. doi: 10.1046/j.1365-3121.2000.00295.x

    [56]

    Bickle M J, Chapman H J, Bunbury J, et al. Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges [J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2221-2240. doi: 10.1016/j.gca.2004.11.019

    [57]

    Edmond J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones [J]. Science, 1992, 258(5088): 1594-1597. doi: 10.1126/science.258.5088.1594

    [58]

    Richter F M, Rowley D B, Depaolo D J. Sr isotope evolution of seawater: the role of tectonics [J]. Earth and Planetary Science Letters, 1992, 109(1-2): 11-23. doi: 10.1016/0012-821X(92)90070-C

    [59]

    Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series [J]. Geology, 1998, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2

    [60]

    Quade J, Roe L, DeCelles P G, et al. The late Neogene 87Sr/86Sr record of lowland Himalayan rivers [J]. Science, 1997, 276(5320): 1828-1831. doi: 10.1126/science.276.5320.1828

    [61]

    Pegram W J, Krishnaswami S, Ravizza G E, et al. The record of sea water 187Os/186Os variation through the Cenozoic [J]. Earth and Planetary Science Letters, 1992, 113(4): 569-576. doi: 10.1016/0012-821X(92)90132-F

    [62]

    Ravizza G. Variations of the 187Os/186Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates [J]. Earth and Planetary Science Letters, 1993, 118(1-4): 335-348. doi: 10.1016/0012-821X(93)90177-B

    [63]

    Sharma M, Papanastassiou D A, Wasserburg G J. The concentration and isotopic composition of osmium in the oceans [J]. Geochimica et Cosmochimica Acta, 1997, 146(61): 3287-3299.

    [64]

    苟龙飞, 金章东, 贺茂勇. 锂同位素示踪大陆风化: 进展与挑战[J]. 地球环境学报, 2017, 8(2):89-102 doi: 10.7515/JEE201702001

    GOU Longfei, JIN Zhangdong, HE Maoyong. Using lithium isotopes traces continental weathering: progresses and challenges [J]. Journal of Earth Environment, 2017, 8(2): 89-102. doi: 10.7515/JEE201702001

    [65]

    Lemarchand E, Chabaux F, Vigier N, et al. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France) [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4612-4628. doi: 10.1016/j.gca.2010.04.057

    [66]

    Clergue C, Dellinger M, Buss H L, et al. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles) [J]. Chemical Geology, 2015, 414: 28-41. doi: 10.1016/j.chemgeo.2015.08.015

    [67]

    Henchiri S, Clergue C, Dellinger M, et al. The Influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas [J]. Procedia Earth and Planetary Science, 2014, 10: 223-230. doi: 10.1016/j.proeps.2014.08.026

    [68]

    Kısakűrek B, James R H, Harris N B W. Li and δ7Li in Himalayan rivers: proxies for silicate weathering? [J]. Earth and Planetary Science Letters, 2005, 237(3-4): 387-401. doi: 10.1016/j.jpgl.2005.07.019

    [69]

    von Strandmann P A E P, Jenkyns H C, Woodfine R G. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2 [J]. Nature Geoscience, 2013, 6(8): 668-672. doi: 10.1038/ngeo1875

    [70]

    Palmer M R, Edmond J M. Controls over the strontium isotope composition of river water [J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 2099-2111. doi: 10.1016/0016-7037(92)90332-D

    [71]

    Huh Y, Chan L H, Zhang L B, et al. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4

    [72]

    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean [J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224. doi: 10.1146/annurev.earth.24.1.191

    [73]

    Dellinger M, Gaillardet J, Bouchez J, et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes [J]. Geochimica et Cosmochimica Acta, 2015, 164: 71-93. doi: 10.1016/j.gca.2015.04.042

    [74]

    Vigier N, Goddéris Y. A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate [J]. Climate of the Past, 2015, 11(4): 635-645. doi: 10.5194/cp-11-635-2015

    [75]

    Willenbring J K, Von Blanckenburg F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling [J]. Nature, 2010, 465(7295): 211-214. doi: 10.1038/nature09044

    [76]

    Willenbring J K, Jerolmack D J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation [J]. Terra Nova, 2016, 28(1): 11-18. doi: 10.1111/ter.12185

    [77]

    Caves J K, Jost A B, Lau K V, et al. Cenozoic carbon cycle imbalances and a variable weathering feedback [J]. Earth and Planetary Science Letters, 2016, 450: 152-163. doi: 10.1016/j.jpgl.2016.06.035

    [78]

    Maher K, Chamberlain C. Hydrologic regulation of chemical weathering and the geologic carbon cycle [J]. Science, 2014, 343(6178): 1502-1504. doi: 10.1126/science.1250770

    [79]

    Wan S M, Kürschner W M, Clift P D, et al. Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea [J]. Geophysical Research Letters, 2009, 36(19): L19706. doi: 10.1029/2009GL040279

    [80]

    Wan S M, Clift P D, Li A C, et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma [J]. Geophysical Research Letters, 2012, 39(15): 151-155.

    [81]

    Galy V, France-Lanord C, Lartiges B. Loading and fate of particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta [J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1767-1787. doi: 10.1016/j.gca.2008.01.027

    [82]

    Shackleton N J. Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere[M]//Sundquist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union Geophysical Monograph, 1985: 412-418.

    [83]

    Falkowski P G, Katz M E, Milligan A J, et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals [J]. Science, 2005, 309(5744): 2202-2204. doi: 10.1126/science.1116047

    [84]

    Derry L A, France-Lanord C. Neogene growth of the sedimentary organic carbon reservoir [J]. Paleoceanography and Paleoclimatology, 1996, 11(3): 267-275.

    [85]

    France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion [J]. Nature, 1997, 390(6655): 65-67. doi: 10.1038/36324

    [86]

    Shackleton N. Carbon isotope data from Leg 74 sediments[M]//Moore T C, Rabinowitz P D, Shipboard Scientific Party. Initial Reports of the Deep Sea Drilling. Washington, DC: US Government Printing Office, 1984, 74: 613-619.

    [87]

    Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system [J]. Nature, 2007, 450(7168): 407-410. doi: 10.1038/nature06273

    [88]

    Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers [J]. The Journal of Geology, 1992, 100(5): 525-544. doi: 10.1086/629606

    [89]

    Galy V, France-Lanord C, Beyssac O, et al. Organic carbon cycling during himalayan erosion: processes, fluxes and consequences for the global carbon cycle[M]//Lal R, Sivakumar M, Faiz S, et al. Climate Change and Food Security in South Asia. Dordrecht: Springer, 2011: 163-181.

    [90]

    Burdige D J. Burial of terrestrial organic matter in marine sediments: a re-assessment [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4011.

    [91]

    Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time [J]. American Journal of Science, 1989, 289(4): 333-361. doi: 10.2475/ajs.289.4.333

    [92]

    Cather S M, Dunbar N W, McDowell F W, et al. Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis [J]. Geosphere, 2009, 5(3): 315-324. doi: 10.1130/GES00188.1

    [93]

    Robock A. Volcanic eruptions and climate [J]. Reviews of Geophysics, 2000, 38(2): 191-219. doi: 10.1029/1998RG000054

    [94]

    Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean [J]. Nature Geoscience, 2012, 5(4): 270-274. doi: 10.1038/ngeo1422

    [95]

    Zhai L N, Wan S M, Tada R, et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago [J]. Geological Magazine, 2019: 1-11. doi: 10.1017/S0016756819000554

    [96]

    Shen X Y, Wan S M, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling? [J]. Earth and Planetary Science Letters, 2017, 474: 296-308. doi: 10.1016/j.jpgl.2017.06.053

    [97]

    万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219

    WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.

    [98]

    沈兴艳, 万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):139-151

    SHEN Xingyan, WAN Shiming. Research progress of Quaternary depositional records of the Japan sea and its implications for the linkages to the asian continent [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139-151.

    [99]

    Kennett J P, Thunell R C. Global increase in Quaternary explosive volcanism [J]. Science, 1975, 187(4176): 497-502. doi: 10.1126/science.187.4176.497

    [100]

    Jicha B R, Scholl D W, Rea D K. Circum-Pacific arc flare-ups and global cooling near the Eocene-Oligocene boundary [J]. Geology, 2009, 37(4): 303-306. doi: 10.1130/G25392A.1

    [101]

    Macdonald F A, Swanson-Hysell N L, Park Y, et al. Arc-continent collisions in the tropics set Earth’s climate state [J]. Science, 2019, 364(6436): 181-184.

    [102]

    Jagoutz O, Macdonald F A, Royden L. Low-latitude arc–continent collision as a driver for global cooling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 4935-4940. doi: 10.1073/pnas.1523667113

    [103]

    Dessert C, Dupré B, François L M, et al. Erosion of deccan traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater [J]. Earth and Planetary Science Letters, 2001, 188(3-4): 459-474. doi: 10.1016/S0012-821X(01)00317-X

    [104]

    Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature, 2008, 451(7176): 279-283. doi: 10.1038/nature06588

    [105]

    Lyle M, Barron J, Bralower T J, et al. Pacific Ocean and Cenozoic evolution of climate [J]. Reviews of Geophysics, 2008, 46(2): RG2002.

    [106]

    Hu A X, Meehl G A, Han W Q. Role of the Bering Strait in the thermohaline circulation and abrupt climate change [J]. Geophysical Research Letters, 2007, 34(5): L05704.

    [107]

    Scher H. Palaeoclimate: carbon–ocean gateway links [J]. Nature Geoscience, 2017, 10(3): 164-165. doi: 10.1038/ngeo2895

    [108]

    DeConto R M, Pollard D. Rapid cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. Nature, 2003, 421(6920): 245-249. doi: 10.1038/nature01290

    [109]

    Woodgate R A, Aagaard K. Revising the Bering Strait freshwater flux into the Arctic Ocean [J]. Geophysical Research Letters, 2005, 32(2): L02602.

    [110]

    Martinson D G, Pitman III W C. The Arctic as a trigger for glacial terminations [J]. Climatic Change, 2007, 80(3-4): 253. doi: 10.1007/s10584-006-9118-2

    [111]

    Driscoll N W, Haug G H. A short circuit in thermohaline circulation: a cause for northern hemisphere glaciation? [J]. Science, 1998, 282(5388): 436-438. doi: 10.1126/science.282.5388.436

    [112]

    Hu A X, Meehl G A, Han W Q, et al. Effects of the Bering Strait closure on AMOC and global climate under different background climates [J]. Progress in Oceanography, 2015, 132: 174-196. doi: 10.1016/j.pocean.2014.02.004

    [113]

    Gutjahr M, Hoogakker B A A, Frank M, et al. Changes in north atlantic deep water strength and bottom water masses during Marine Isotope Stage 3(45-35 ka BP) [J]. Quaternary Science Reviews, 2010, 29(19-20): 2451-2461. doi: 10.1016/j.quascirev.2010.02.024

    [114]

    Hu A X, Meehl G A, Han W Q, et al. Influence of continental ice retreat on future global climate [J]. Journal of Climate, 2013, 26(10): 3087-3111. doi: 10.1175/JCLI-D-12-00102.1

    [115]

    郑新源, 凌洪飞. 巴拿马海道关闭及其古海洋和古气候影响[J]. 海洋地质与第四纪地质, 2008, 28(6):125-134

    ZHENG Xinyuan, LING Hongfei. Closure of the Panama seaway and its paleoceanographic and paleoclimatic effects [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 125-134.

    [116]

    Burton K W, Ling H F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic [J]. Nature, 1997, 386(6623): 382-385. doi: 10.1038/386382a0

    [117]

    Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation [J]. Nature, 1998, 393(6686): 673-676. doi: 10.1038/31447

    [118]

    Li Q Y, Li B H, Zhong G F, et al. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 465-482. doi: 10.1016/j.palaeo.2005.12.019

    [119]

    Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago [J]. Nature, 2001, 411(6834): 157-162. doi: 10.1038/35075500

    [120]

    Haug G H, Tiedemann R, Keigwin L D. How the Isthmus of Panama put ice in the Arctic. Drifting continents open and close gateways between oceans and shift Earth’s climate [J]. Oceanus Magazine, 2004, 42(2): 1-4.

    [121]

    Tripati A K, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years [J]. Science, 2009, 326(5958): 1394-1397. doi: 10.1126/science.1178296

    [122]

    Royer D L, Berner R A, Beerling D J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches [J]. Earth-Science Reviews, 2001, 54(4): 349-392. doi: 10.1016/S0012-8252(00)00042-8

    [123]

    Henderiks J, Pagani M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 [J]. Earth and Planetary Science Letters, 2008, 269(3-4): 576-584. doi: 10.1016/j.jpgl.2008.03.016

    [124]

    Zheng H B, McAulay Powell C, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau [J]. Geology, 2000, 28(8): 715-718. doi: 10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2

    [125]

    Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet [J]. Nature, 2006, 439(7077): 677-681. doi: 10.1038/nature04506

    [126]

    Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the latest Oligocene−early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 21-30. doi: 10.1016/j.palaeo.2014.02.004

    [127]

    Maldonado A, Bohoyo F, Galindo-Zaldívar J, et al. A model of oceanic development by ridge jumping: opening of the scotia sea [J]. Global and Planetary Change, 2014, 123: 152-173. doi: 10.1016/j.gloplacha.2014.06.010

    [128]

    Siegert M J, Barrett P, DeConto R, et al. Recent advances in understanding Antarctic climate evolution [J]. Antarctic Science, 2008, 20(4): 313-325. doi: 10.1017/S0954102008000941

    [129]

    Gladenkov A Y, Oleinik A E, Marincovich L Jr, et al. A refined age for the earliest opening of Bering Strait [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3-4): 321-328. doi: 10.1016/S0031-0182(02)00249-3

    [130]

    Montes C, Cardona A, Jaramillo C, et al. Middle miocene closure of the central american seaway [J]. Science, 2015, 348(6231): 226-229. doi: 10.1126/science.aaa2815

    [131]

    Waltham D, Gröcke D R. Non-uniqueness and interpretation of the seawater 87Sr/86Sr curve [J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 384-394. doi: 10.1016/j.gca.2005.09.014

  • 加载中

(8)

计量
  • 文章访问数:  5056
  • PDF下载数:  155
  • 施引文献:  0
出版历程
收稿日期:  2019-06-26
修回日期:  2019-08-20
刊出日期:  2019-10-25

目录