-
摘要:
深海氧同位素记录揭示新生代以来全球气候呈整体变冷趋势,南北两极先后发育冰盖,地球由温室气候变为冰室气候,但是其变冷机制仍不明确。大气CO2浓度降低和大洋环流模式改变均被认为与新生代气候变冷密切相关,但目前对两者的作用还未达成统一的认识,由此存在各种假说,如BLAG假说、高原隆升-风化假说、构造隆升-碳埋藏假说、火山铁肥效应和岛弧隆升-风化假说及海道开合假说等,用以解释新生代全球变冷。围绕新生代气候变冷机制方面的争论,评述了过去近几十年来相关研究的进展和存在的问题,讨论了不同机制对新生代气候变化的影响,并提出未来需要加强的研究重点:建立准确的新生代大气CO2浓度演变序列、建立更加准确的地球内部排气和青藏高原隆升及海道开合时刻表、建立完善的风化指标体系、加强火山作用及其大洋生物地球化学效应的研究。
Abstract:Deep-sea oxygen isotope records reveal that the earth's climate has experienced times of gradual global coolings and ice sheets expansions at Antarctic and north hemisphere one after another. The mechanism for Cenozoic climate change from greenhouse to icehouse, however, still remain unclear. Various hypotheses related to declining atmospheric CO2 concentration and models for changes in ocean circulation have been proposed to explain the Cenozoic global cooling, such as the BLAG hypothesis, plateau uplift-weathering hypothesis, uplift-organic carbon burial hypothesis, volcanic iron fertilization effect, island arc uplift-weathering hypothesis and passage opening and closing hypothesis. Base on the debates on the mechanism of Cenozoic climate cooling, this study reviewed the progress and defects of related researches in recent decades, and put forward some key points for future study, such as, establishing accurate evolution sequence of Cenozoic atmospheric CO2 concentration, establishing a more accurate timetable of earth’s outgassing, Tibet plateau uplifting and passage opening and closing, establishing a solid weathering index system, reinforcing the study of volcanism and its oceanic biogeochemical effects on carbon cycles.
-
Key words:
- Cenozoic cooling /
- carbon cycle /
- Tibetan uplift /
- silicate weathering /
- volcanic iron fertilization
-
图 2 大气CO2源和汇示意图(修改自文献[19])
Figure 2.
图 7 南极冰盖体积和高度变化[108]
Figure 7.
图 8 北冰洋淡水补给示意图(修改自文献[111])
Figure 8.
-
[1] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412
[2] Miao Y F, Herrmann M, Wu F L, et al. What controlled mid–late miocene long-term aridification in central Asia? — Global cooling or Tibetan Plateau uplift: a review [J]. Earth-Science Reviews, 2012, 112(3-4): 155-172. doi: 10.1016/j.earscirev.2012.02.003
[3] Wan S M, Li A C, Clift P D, et al. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4): 561-582. doi: 10.1016/j.palaeo.2007.07.009
[4] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions [J]. Science, 2001, 294(5544): 1086-1088. doi: 10.1126/science.1064280
[5] Higgins J A, Schrag D P. Records of Neogene seawater chemistry and diagenesis in deep-sea carbonate sediments and pore fluids [J]. Earth and Planetary Science Letters, 2012, 357-358: 386-396. doi: 10.1016/j.jpgl.2012.08.030
[6] Higgins J A, Schrag D P. The Mg isotopic composition of Cenozoic seawater – evidence for a link between Mg-clays, seawater Mg/Ca, and climate [J]. Earth and Planetary Science Letters, 2015, 416: 73-81. doi: 10.1016/j.jpgl.2015.01.003
[7] Copeland P. The when and where of the growth of the himalaya and the Tibetan Plateau[M]//Ruddiman W F. Tectonic Uplift and Climate Change. Boston, MA: Springer, 1997: 20.
[8] Keigwin L. Isotopic paleoceanography of the Caribbean and East pacific: role of panama uplift in late neogene time [J]. Science, 1982, 217(4557): 350-353. doi: 10.1126/science.217.4557.350
[9] Kennett J P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography [J]. Journal of Geophysical Research, 1977, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843
[10] Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years [J]. Nature Communications, 2017, 8: 14845. doi: 10.1038/ncomms14845
[11] Ruddiman W F, Kutzbach J E. Plateau uplift and climatic change [J]. Scientific American, 1991, 264: 66-75.
[12] Gutjahr M, Ridgwell A, Sexton P F, et al. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum [J]. Nature, 2017, 548(7669): 573-577. doi: 10.1038/nature23646
[13] Zachos J C, Breza J R, Wise S W. Early Oligocene ice-sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean [J]. Geology, 1992, 20(6): 569-573. doi: 10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2
[14] Ehrmann W U, Mackensen A. Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1-2): 85-112. doi: 10.1016/0031-0182(92)90185-8
[15] Francis J E. Evidence from fossil plants for Antarctic palaeoclimates over the past 100 million years [J]. Terra Antartica Reports, 1999, 3: 43-52.
[16] Super J R, Thomas E, Pagani M, et al. North Atlantic temperature andpCO2 coupling in the early-middle Miocene [J]. Geology, 2018, 46(6): 519-522. doi: 10.1130/G40228.1
[17] Kasbohm J, Schoene B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum [J]. Science Advances, 2018, 4(9): eaat8223. doi: 10.1126/sciadv.aat8223
[18] Shackleton N J, Imbrie J, Pisias N G. The evolution of oceanic oxygen-isotope variability in the North Atlantic over the past three million years [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1988, 318(1191): 679-688. doi: 10.1098/rstb.1988.0030
[19] Ruddiman W F. Earth's Climate: Past and Future[M]. 2nd ed. New York: W. H. Freeman, 2008: 40-79.
[20] Beerling D J, Royer D L. Convergent cenozoic CO2 history [J]. Nature Geoscience, 2011, 4(7): 418-420. doi: 10.1038/ngeo1186
[21] Berner R A. Atmospheric carbon dioxide levels over phanerozoic time [J]. Science, 1990, 249(4975): 1382-1386. doi: 10.1126/science.249.4975.1382
[22] Pagani M, Huber M, Liu Z H, et al. The role of carbon dioxide during the onset of Antarctic glaciation [J]. Science, 2011, 334(6060): 1261-1264. doi: 10.1126/science.1203909
[23] Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years [J]. Nature, 2000, 406(6797): 695-699. doi: 10.1038/35021000
[24] Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063
[25] Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 201-211. doi: 10.1016/j.jpgl.2010.01.037
[26] Berner R A, Caldeira K. The need for mass balance and feedback in the geochemical carbon cycle [J]. Geology, 1997, 25(10): 955-956. doi: 10.1130/0091-7613(1997)025<0955:TNFMBA>2.3.CO;2
[27] Walker J C G, Hays P B, Kasting J F. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature [J]. Journal of Geophysical Research: Oceans, 1981, 86(C10): 9776-9782. doi: 10.1029/JC086iC10p09776
[28] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years [J]. American Journal of Science, 1983, 283(7): 641-683. doi: 10.2475/ajs.283.7.641
[29] Edmond J M, Huh Y. Chemical weathering yields from basement and orogenic terrains in hot and cold climates[M]//Ruddiman W F. Tectonic Uplift and Climate Change. Boston, MA: Springer, 1997: 329-351.
[30] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology, 1999, 159(1-4): 3-30. doi: 10.1016/S0009-2541(99)00031-5
[31] Millot R, Gaillardet J, Dupré B, et al. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield [J]. Earth and Planetary Science Letters, 2002, 196(1-2): 83-98. doi: 10.1016/S0012-821X(01)00599-4
[32] West A J, Galy A, Bickle M. Tectonic and climatic controls on silicate weathering [J]. Earth and Planetary Science Letters, 2005, 235(1-2): 211-228. doi: 10.1016/j.jpgl.2005.03.020
[33] Müller R D, Sdrolias M, Gaina C, et al. Long-term sea-level fluctuations driven by ocean basin dynamics [J]. Science, 2008, 319(5868): 1357-1362. doi: 10.1126/science.1151540
[34] Rowley D B. Rate of plate creation and destruction: 180 Ma to present [J]. Geological Society of America Bulletin, 2002, 114(8): 927-933. doi: 10.1130/0016-7606(2002)114<0927:ROPCAD>2.0.CO;2
[35] Van Der Meer D G, Zeebe R E, van Hinsbergen D J, et al. Plate tectonic controls on atmospheric CO2 levels since the Triassic [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(12): 4380-4385. doi: 10.1073/pnas.1315657111
[36] McCauley S E, DePaolo D J. The Marine 87Sr/86Sr and δ18O records, himalayan alkalinity fluxes, and cenozoic climate models[M]//Ruddiman W F. Tectonic Uplift and Climate Change. New York: Springer, 1997: 427-467.
[37] Misra S, Froelich P N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering [J]. Science, 2012, 335(6070): 818-823. doi: 10.1126/science.1214697
[38] Raymo M E, Ruddiman W F. Tectonic forcing of late cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0
[39] Torres M A, Joshua West A, Li G J. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales [J]. Nature, 2014, 507(7492): 346-349. doi: 10.1038/nature13030
[40] Kutzbach J E, Prell W L, Ruddiman W F. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau [J]. The Journal of Geology, 1993, 101(2): 177-190. doi: 10.1086/648215
[41] Ruddiman W F, Raymo M E, Prell W L, et al. The uplift-climate connection: a synthesis[M]//Ruddiman W F. Tectonic Uplift and Climate Change. Boston, MA: Springer, 1997: 487.
[42] Birchfield G E, Wertman J. Topography, albedo-temperature feedback, and climate sensitivity [J]. Science, 1983, 219(4582): 284-285. doi: 10.1126/science.219.4582.284
[43] Farrell J W, Clemens S C, Gromet L P. Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr [J]. Geology, 1995, 23(5): 403-406. doi: 10.1130/0091-7613(1995)023<0403:ICRCOL>2.3.CO;2
[44] Martin E E, Shackleton N J, Zachos J C, et al. Orbitally-tuned Sr isotope chemostratigraphy for the late middle to late miocene [J]. Paleoceanography and Paleoclimatology, 1999, 14(1): 74-83.
[45] Martin E E, Scher H D. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: bad news and good news [J]. Earth and Planetary Science Letters, 2004, 220(1-2): 25-39. doi: 10.1016/S0012-821X(04)00030-5
[46] Hodell D A, Kamenov G D, Hathorne E C, et al. Variations in the strontium isotope composition of seawater during the Paleocene and early Eocene from ODP Leg 208(Walvis Ridge) [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): Q09001.
[47] Gothmann A M, Stolarski J, Adkins J F, et al. Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic [J]. Geochimica et Cosmochimica Acta, 2015, 160: 188-208. doi: 10.1016/j.gca.2015.03.018
[48] Hodel D A, Mueller P A, Garrido J R. Variations in the strontium isotopic composition of seawater during the Neogene [J]. Geology, 1991, 19(1): 24-27. doi: 10.1130/0091-7613(1991)019<0024:VITSIC>2.3.CO;2
[49] Reusch D N, Ravizza G, Maasch K A, et al. Miocene seawater 187Os/188Os ratios inferred from metalliferous carbonates [J]. Earth and Planetary Science Letters, 1998, 160(1-2): 163-178. doi: 10.1016/S0012-821X(98)00082-X
[50] Ravizza G, Peucker-Ehrenbrink B. The marine 187Os/188Os record of the Eocene-Oligocene transition: the interplay of weathering and glaciation [J]. Earth and Planetary Science Letters, 2003, 210(1-2): 151-165. doi: 10.1016/S0012-821X(03)00137-7
[51] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016
[52] Burton K W. Global weathering variations inferred from marine radiogenic isotope records [J]. Journal of Geochemical Exploration, 2006, 88(1-3): 262-265. doi: 10.1016/j.gexplo.2005.08.052
[53] Peucker-Ehrenbrink B, Ravizza G, Hofmann A W. The marine 187Os/186Os record of the past 80 million years [J]. Earth and Planetary Science Letters, 1995, 130(1-4): 155-167. doi: 10.1016/0012-821X(95)00003-U
[54] Olgun N, Duggen S, Croot P L, et al. Surface ocean iron fertilization: the role of airborne volcanic ash from subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean [J]. Global Biogeochemical Cycles, 2011, 25(4): GB4001.
[55] Peucker-Ehrenbrink B, Ravizza G. The marine osmium isotope record [J]. Terra Nova, 2000, 12(5): 205-219. doi: 10.1046/j.1365-3121.2000.00295.x
[56] Bickle M J, Chapman H J, Bunbury J, et al. Relative contributions of silicate and carbonate rocks to riverine Sr fluxes in the headwaters of the Ganges [J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2221-2240. doi: 10.1016/j.gca.2004.11.019
[57] Edmond J M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones [J]. Science, 1992, 258(5088): 1594-1597. doi: 10.1126/science.258.5088.1594
[58] Richter F M, Rowley D B, Depaolo D J. Sr isotope evolution of seawater: the role of tectonics [J]. Earth and Planetary Science Letters, 1992, 109(1-2): 11-23. doi: 10.1016/0012-821X(92)90070-C
[59] Blum J D, Gazis C A, Jacobson A D, et al. Carbonate versus silicate weathering in the Raikhot watershed within the High Himalayan Crystalline Series [J]. Geology, 1998, 26(5): 411-414. doi: 10.1130/0091-7613(1998)026<0411:CVSWIT>2.3.CO;2
[60] Quade J, Roe L, DeCelles P G, et al. The late Neogene 87Sr/86Sr record of lowland Himalayan rivers [J]. Science, 1997, 276(5320): 1828-1831. doi: 10.1126/science.276.5320.1828
[61] Pegram W J, Krishnaswami S, Ravizza G E, et al. The record of sea water 187Os/186Os variation through the Cenozoic [J]. Earth and Planetary Science Letters, 1992, 113(4): 569-576. doi: 10.1016/0012-821X(92)90132-F
[62] Ravizza G. Variations of the 187Os/186Os ratio of seawater over the past 28 million years as inferred from metalliferous carbonates [J]. Earth and Planetary Science Letters, 1993, 118(1-4): 335-348. doi: 10.1016/0012-821X(93)90177-B
[63] Sharma M, Papanastassiou D A, Wasserburg G J. The concentration and isotopic composition of osmium in the oceans [J]. Geochimica et Cosmochimica Acta, 1997, 146(61): 3287-3299.
[64] 苟龙飞, 金章东, 贺茂勇. 锂同位素示踪大陆风化: 进展与挑战[J]. 地球环境学报, 2017, 8(2):89-102 doi: 10.7515/JEE201702001
GOU Longfei, JIN Zhangdong, HE Maoyong. Using lithium isotopes traces continental weathering: progresses and challenges [J]. Journal of Earth Environment, 2017, 8(2): 89-102. doi: 10.7515/JEE201702001
[65] Lemarchand E, Chabaux F, Vigier N, et al. Lithium isotope systematics in a forested granitic catchment (Strengbach, Vosges Mountains, France) [J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4612-4628. doi: 10.1016/j.gca.2010.04.057
[66] Clergue C, Dellinger M, Buss H L, et al. Influence of atmospheric deposits and secondary minerals on Li isotopes budget in a highly weathered catchment, Guadeloupe (Lesser Antilles) [J]. Chemical Geology, 2015, 414: 28-41. doi: 10.1016/j.chemgeo.2015.08.015
[67] Henchiri S, Clergue C, Dellinger M, et al. The Influence of hydrothermal activity on the Li isotopic signature of rivers draining volcanic areas [J]. Procedia Earth and Planetary Science, 2014, 10: 223-230. doi: 10.1016/j.proeps.2014.08.026
[68] Kısakűrek B, James R H, Harris N B W. Li and δ7Li in Himalayan rivers: proxies for silicate weathering? [J]. Earth and Planetary Science Letters, 2005, 237(3-4): 387-401. doi: 10.1016/j.jpgl.2005.07.019
[69] von Strandmann P A E P, Jenkyns H C, Woodfine R G. Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2 [J]. Nature Geoscience, 2013, 6(8): 668-672. doi: 10.1038/ngeo1875
[70] Palmer M R, Edmond J M. Controls over the strontium isotope composition of river water [J]. Geochimica et Cosmochimica Acta, 1992, 56(5): 2099-2111. doi: 10.1016/0016-7037(92)90332-D
[71] Huh Y, Chan L H, Zhang L B, et al. Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2039-2051. doi: 10.1016/S0016-7037(98)00126-4
[72] Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean [J]. Annual Review of Earth and Planetary Sciences, 1996, 24: 191-224. doi: 10.1146/annurev.earth.24.1.191
[73] Dellinger M, Gaillardet J, Bouchez J, et al. Riverine Li isotope fractionation in the Amazon River basin controlled by the weathering regimes [J]. Geochimica et Cosmochimica Acta, 2015, 164: 71-93. doi: 10.1016/j.gca.2015.04.042
[74] Vigier N, Goddéris Y. A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate [J]. Climate of the Past, 2015, 11(4): 635-645. doi: 10.5194/cp-11-635-2015
[75] Willenbring J K, Von Blanckenburg F. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling [J]. Nature, 2010, 465(7295): 211-214. doi: 10.1038/nature09044
[76] Willenbring J K, Jerolmack D J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation [J]. Terra Nova, 2016, 28(1): 11-18. doi: 10.1111/ter.12185
[77] Caves J K, Jost A B, Lau K V, et al. Cenozoic carbon cycle imbalances and a variable weathering feedback [J]. Earth and Planetary Science Letters, 2016, 450: 152-163. doi: 10.1016/j.jpgl.2016.06.035
[78] Maher K, Chamberlain C. Hydrologic regulation of chemical weathering and the geologic carbon cycle [J]. Science, 2014, 343(6178): 1502-1504. doi: 10.1126/science.1250770
[79] Wan S M, Kürschner W M, Clift P D, et al. Extreme weathering/erosion during the Miocene Climatic Optimum: evidence from sediment record in the South China Sea [J]. Geophysical Research Letters, 2009, 36(19): L19706. doi: 10.1029/2009GL040279
[80] Wan S M, Clift P D, Li A C, et al. Tectonic and climatic controls on long-term silicate weathering in Asia since 5 Ma [J]. Geophysical Research Letters, 2012, 39(15): 151-155.
[81] Galy V, France-Lanord C, Lartiges B. Loading and fate of particulate organic carbon from the Himalaya to the Ganga-Brahmaputra delta [J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1767-1787. doi: 10.1016/j.gca.2008.01.027
[82] Shackleton N J. Oceanic carbon isotope constraints on oxygen and carbon dioxide in the Cenozoic atmosphere[M]//Sundquist E T, Broecker W S. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Washington DC: American Geophysical Union Geophysical Monograph, 1985: 412-418.
[83] Falkowski P G, Katz M E, Milligan A J, et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals [J]. Science, 2005, 309(5744): 2202-2204. doi: 10.1126/science.1116047
[84] Derry L A, France-Lanord C. Neogene growth of the sedimentary organic carbon reservoir [J]. Paleoceanography and Paleoclimatology, 1996, 11(3): 267-275.
[85] France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from Himalayan erosion [J]. Nature, 1997, 390(6655): 65-67. doi: 10.1038/36324
[86] Shackleton N. Carbon isotope data from Leg 74 sediments[M]//Moore T C, Rabinowitz P D, Shipboard Scientific Party. Initial Reports of the Deep Sea Drilling. Washington, DC: US Government Printing Office, 1984, 74: 613-619.
[87] Galy V, France-Lanord C, Beyssac O, et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system [J]. Nature, 2007, 450(7168): 407-410. doi: 10.1038/nature06273
[88] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers [J]. The Journal of Geology, 1992, 100(5): 525-544. doi: 10.1086/629606
[89] Galy V, France-Lanord C, Beyssac O, et al. Organic carbon cycling during himalayan erosion: processes, fluxes and consequences for the global carbon cycle[M]//Lal R, Sivakumar M, Faiz S, et al. Climate Change and Food Security in South Asia. Dordrecht: Springer, 2011: 163-181.
[90] Burdige D J. Burial of terrestrial organic matter in marine sediments: a re-assessment [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4011.
[91] Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time [J]. American Journal of Science, 1989, 289(4): 333-361. doi: 10.2475/ajs.289.4.333
[92] Cather S M, Dunbar N W, McDowell F W, et al. Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis [J]. Geosphere, 2009, 5(3): 315-324. doi: 10.1130/GES00188.1
[93] Robock A. Volcanic eruptions and climate [J]. Reviews of Geophysics, 2000, 38(2): 191-219. doi: 10.1029/1998RG000054
[94] Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean [J]. Nature Geoscience, 2012, 5(4): 270-274. doi: 10.1038/ngeo1422
[95] Zhai L N, Wan S M, Tada R, et al. Links between iron supply from Asian dust and marine productivity in the Japan Sea since four million years ago [J]. Geological Magazine, 2019: 1-11. doi: 10.1017/S0016756819000554
[96] Shen X Y, Wan S M, France-Lanord C, et al. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling? [J]. Earth and Planetary Science Letters, 2017, 474: 296-308. doi: 10.1016/j.jpgl.2017.06.053
[97] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219
WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.
[98] 沈兴艳, 万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6):139-151
SHEN Xingyan, WAN Shiming. Research progress of Quaternary depositional records of the Japan sea and its implications for the linkages to the asian continent [J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139-151.
[99] Kennett J P, Thunell R C. Global increase in Quaternary explosive volcanism [J]. Science, 1975, 187(4176): 497-502. doi: 10.1126/science.187.4176.497
[100] Jicha B R, Scholl D W, Rea D K. Circum-Pacific arc flare-ups and global cooling near the Eocene-Oligocene boundary [J]. Geology, 2009, 37(4): 303-306. doi: 10.1130/G25392A.1
[101] Macdonald F A, Swanson-Hysell N L, Park Y, et al. Arc-continent collisions in the tropics set Earth’s climate state [J]. Science, 2019, 364(6436): 181-184.
[102] Jagoutz O, Macdonald F A, Royden L. Low-latitude arc–continent collision as a driver for global cooling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 4935-4940. doi: 10.1073/pnas.1523667113
[103] Dessert C, Dupré B, François L M, et al. Erosion of deccan traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater [J]. Earth and Planetary Science Letters, 2001, 188(3-4): 459-474. doi: 10.1016/S0012-821X(01)00317-X
[104] Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics [J]. Nature, 2008, 451(7176): 279-283. doi: 10.1038/nature06588
[105] Lyle M, Barron J, Bralower T J, et al. Pacific Ocean and Cenozoic evolution of climate [J]. Reviews of Geophysics, 2008, 46(2): RG2002.
[106] Hu A X, Meehl G A, Han W Q. Role of the Bering Strait in the thermohaline circulation and abrupt climate change [J]. Geophysical Research Letters, 2007, 34(5): L05704.
[107] Scher H. Palaeoclimate: carbon–ocean gateway links [J]. Nature Geoscience, 2017, 10(3): 164-165. doi: 10.1038/ngeo2895
[108] DeConto R M, Pollard D. Rapid cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J]. Nature, 2003, 421(6920): 245-249. doi: 10.1038/nature01290
[109] Woodgate R A, Aagaard K. Revising the Bering Strait freshwater flux into the Arctic Ocean [J]. Geophysical Research Letters, 2005, 32(2): L02602.
[110] Martinson D G, Pitman III W C. The Arctic as a trigger for glacial terminations [J]. Climatic Change, 2007, 80(3-4): 253. doi: 10.1007/s10584-006-9118-2
[111] Driscoll N W, Haug G H. A short circuit in thermohaline circulation: a cause for northern hemisphere glaciation? [J]. Science, 1998, 282(5388): 436-438. doi: 10.1126/science.282.5388.436
[112] Hu A X, Meehl G A, Han W Q, et al. Effects of the Bering Strait closure on AMOC and global climate under different background climates [J]. Progress in Oceanography, 2015, 132: 174-196. doi: 10.1016/j.pocean.2014.02.004
[113] Gutjahr M, Hoogakker B A A, Frank M, et al. Changes in north atlantic deep water strength and bottom water masses during Marine Isotope Stage 3(45-35 ka BP) [J]. Quaternary Science Reviews, 2010, 29(19-20): 2451-2461. doi: 10.1016/j.quascirev.2010.02.024
[114] Hu A X, Meehl G A, Han W Q, et al. Influence of continental ice retreat on future global climate [J]. Journal of Climate, 2013, 26(10): 3087-3111. doi: 10.1175/JCLI-D-12-00102.1
[115] 郑新源, 凌洪飞. 巴拿马海道关闭及其古海洋和古气候影响[J]. 海洋地质与第四纪地质, 2008, 28(6):125-134
ZHENG Xinyuan, LING Hongfei. Closure of the Panama seaway and its paleoceanographic and paleoclimatic effects [J]. Marine Geology & Quaternary Geology, 2008, 28(6): 125-134.
[116] Burton K W, Ling H F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic [J]. Nature, 1997, 386(6623): 382-385. doi: 10.1038/386382a0
[117] Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation [J]. Nature, 1998, 393(6686): 673-676. doi: 10.1038/31447
[118] Li Q Y, Li B H, Zhong G F, et al. Late Miocene development of the western Pacific warm pool: planktonic foraminifer and oxygen isotopic evidence [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237(2-4): 465-482. doi: 10.1016/j.palaeo.2005.12.019
[119] Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to east African aridification around 3-4 million years ago [J]. Nature, 2001, 411(6834): 157-162. doi: 10.1038/35075500
[120] Haug G H, Tiedemann R, Keigwin L D. How the Isthmus of Panama put ice in the Arctic. Drifting continents open and close gateways between oceans and shift Earth’s climate [J]. Oceanus Magazine, 2004, 42(2): 1-4.
[121] Tripati A K, Roberts C D, Eagle R A. Coupling of CO2 and ice sheet stability over major climate transitions of the last 20 million years [J]. Science, 2009, 326(5958): 1394-1397. doi: 10.1126/science.1178296
[122] Royer D L, Berner R A, Beerling D J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches [J]. Earth-Science Reviews, 2001, 54(4): 349-392. doi: 10.1016/S0012-8252(00)00042-8
[123] Henderiks J, Pagani M. Coccolithophore cell size and the Paleogene decline in atmospheric CO2 [J]. Earth and Planetary Science Letters, 2008, 269(3-4): 576-584. doi: 10.1016/j.jpgl.2008.03.016
[124] Zheng H B, McAulay Powell C, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau [J]. Geology, 2000, 28(8): 715-718. doi: 10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2
[125] Rowley D B, Currie B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet [J]. Nature, 2006, 439(7077): 677-681. doi: 10.1038/nature04506
[126] Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the latest Oligocene−early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 21-30. doi: 10.1016/j.palaeo.2014.02.004
[127] Maldonado A, Bohoyo F, Galindo-Zaldívar J, et al. A model of oceanic development by ridge jumping: opening of the scotia sea [J]. Global and Planetary Change, 2014, 123: 152-173. doi: 10.1016/j.gloplacha.2014.06.010
[128] Siegert M J, Barrett P, DeConto R, et al. Recent advances in understanding Antarctic climate evolution [J]. Antarctic Science, 2008, 20(4): 313-325. doi: 10.1017/S0954102008000941
[129] Gladenkov A Y, Oleinik A E, Marincovich L Jr, et al. A refined age for the earliest opening of Bering Strait [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 183(3-4): 321-328. doi: 10.1016/S0031-0182(02)00249-3
[130] Montes C, Cardona A, Jaramillo C, et al. Middle miocene closure of the central american seaway [J]. Science, 2015, 348(6231): 226-229. doi: 10.1126/science.aaa2815
[131] Waltham D, Gröcke D R. Non-uniqueness and interpretation of the seawater 87Sr/86Sr curve [J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 384-394. doi: 10.1016/j.gca.2005.09.014