俯冲带水圈-岩石圈相互作用研究进展与启示

徐敏, 狄会哲, 周志远, 李海勇, 林间. 俯冲带水圈-岩石圈相互作用研究进展与启示[J]. 海洋地质与第四纪地质, 2019, 39(5): 58-70. doi: 10.16562/j.cnki.0256-1492.2019063001
引用本文: 徐敏, 狄会哲, 周志远, 李海勇, 林间. 俯冲带水圈-岩石圈相互作用研究进展与启示[J]. 海洋地质与第四纪地质, 2019, 39(5): 58-70. doi: 10.16562/j.cnki.0256-1492.2019063001
XU Min, DI Huizhe, ZHOU Zhiyuan, LI Haiyong, LIN Jian. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 58-70. doi: 10.16562/j.cnki.0256-1492.2019063001
Citation: XU Min, DI Huizhe, ZHOU Zhiyuan, LI Haiyong, LIN Jian. Interaction between hydrosphere and lithosphere in subduction zones[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 58-70. doi: 10.16562/j.cnki.0256-1492.2019063001

俯冲带水圈-岩石圈相互作用研究进展与启示

  • 基金项目: 国家自然科学基金面上项目“超快速扩张洋中脊岩浆活动与热液系统的三维结构及相互作用研究”(41676044);西太重大研究计划重点项目“西太平洋马里亚纳海沟俯冲板片含水量探测及水岩相互作用研究”(91858207)与重大项目“东南亚环形俯冲系统超级汇聚的地球动力学过程”(41890813);中科院“百人计划”人才项目
详细信息
    作者简介: 徐敏(1982—),男,研究员,博导,主要从事海洋岩石圈结构地震成像及演化过程研究,E-mail:mxu@scsio.ac.cn
  • 中图分类号: P736.11

Interaction between hydrosphere and lithosphere in subduction zones

  • 俯冲带系统是研究地球水圈-岩石圈相互作用的天然实验室。俯冲板片所携带的水进入俯冲带系统,显著影响俯冲板片上地幔蛇纹石化程度、岛弧岩浆活动以及俯冲带地震机制等构造动力学过程。沿着环太平洋俯冲带,由主动源地震探测得到的板片含水量结果可以很好地解释区域相关地震观测,同时由被动源地震探测到的上地幔低速异常区域都与俯冲板片断层发育区相一致。多道反射地震探测与数值模拟都揭示了俯冲板块正断层广泛存在,可穿透莫霍面,深度可达海底下至少20 km。俯冲板块正断层为流体进入地壳与上地幔提供了重要通道,导致上地幔蛇纹石化程度达到1.4%,甚至更高。在洋壳俯冲过程中,随着温压增加,在不同深度脱水形成不同性质流体与地幔反应。通过俯冲带流体包裹体和交代成因矿物等的研究发现水岩相互作用广泛存在。本文旨在回顾俯冲板片含水量探测及水岩相互作用研究,简述近年来取得的重要进展以及对将来相关研究的启示。

  • 加载中
  • 图 1  俯冲带水循环简易示意图

    Figure 1. 

    图 2  “俯冲工厂”示意图(修改自文献[14])

    Figure 2. 

    图 3  俯冲带岩石圈构造和变质单元概念模型(修改自文献[8])

    Figure 3. 

    图 4  全球不同构造背景橄榄岩和辉石岩水含量柱状图(修改自文献[33])

    Figure 4. 

    图 5  环太平洋俯冲带地震探测俯冲板片含水量研究

    Figure 5. 

    图 6  地震速度到岩性组合再到含水量的转换关系示意图

    Figure 6. 

    图 7  西太平洋俯冲板片正断层模拟与地震观测对比(修改自文献[17])

    Figure 7. 

    图 8  大洋俯冲带深部水循环(a)及俯冲带条件下变质相和含水矿物稳定域(b)(修改自文献[3])

    Figure 8. 

    图 9  俯冲工厂废弃物的同位素组成(修改自文献[14])

    Figure 9. 

    表 1  大洋俯冲带地震探测俯冲板片含水量研究统计

    Table 1.  Water content of subduction slabs detected from seismic surveys

    %
    俯冲带位置
    (年龄/Ma)
    沉积层上地壳(2A 层)上地壳(2B 层)下地壳上地幔
    孔隙水结构水孔隙水结构水孔隙水结构水孔隙水结构水孔隙水结构水
    钻孔和全球平均值5221
    卡斯凯迪亚(8)309.24.62.61.11.80.20.8
    卡斯凯迪亚(45°50′~47°45′N)(8)3.2 ± 0.41.7 ± 0.22.4 ± 0.40.27 ± 0.050.06 ± 0.030.008 ± 0.0020.05 ± 0.030.022 ± 0.005[1]
    0.036 ± 0.009[2]
    0.33 ± 0.15[3]
    卡斯凯迪亚(44°20′~45°50′N)(9)4.1 ± 1.82.8 ± 0.41.9 ± 0.22.3 ± 0.40.28 ± 0.050.12 ± 0.030.005 ± 0.0010.08 ± 0.040.017 ± 0.006[1]
    0.03 ± 0.01[2]
    0.6 ± 0.3[3]
    中智利南部(13)1.9
    冲绳海槽西部(20)0[4]
    中美洲(哥斯达黎加)(19~22.5)<11~2
    中美洲(尼瓜拉瓜)(24)5.01.70.613.5<2.5
    中马里亚纳海沟(150)2.0
    中智利(26~30)2.2
    中智利北部(40)1.9
    智利北部(50)2.5
    阿拉斯加(舒马金)(50~55)1.8
    阿拉斯加(萨米迪)(50~55)<1.8
    汤加(80)2.7
    千叶(130)2.5
    日本北部(135)1~2
      注:[1]滑石+绿泥石+角闪石组合;[2]蛇纹石+绿泥石+角闪石组合;[3]蛇纹石+绿泥石+角闪石组合,假设无孔隙水存在于地幔中;[4]基于缺乏可分辨的地幔速度异常结果推算。
    下载: 导出CSV
  • [1]

    毕思文. 地球系统科学发展方向与趋势[J]. 地球科学进展, 2004, 19(S1):35-40

    BI Siwen. Development direction and trend of earth system science [J]. Advance in Earth Sciences, 2004, 19(S1): 35-40.

    [2]

    Demouchy S, Bolfan-Casanova N. Distribution and transport of hydrogen in the lithospheric mantle: a review [J]. Lithos, 2016, 240-243: 402-425. doi: 10.1016/j.lithos.2015.11.012

    [3]

    郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移[J]. 中国科学: 地球科学, 2016, 59(4):651-682 doi: 10.1007/s11430-015-5258-4

    ZHENG Yongfei, CHEN Renxu, XU Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 59(4): 651-682. doi: 10.1007/s11430-015-5258-4

    [4]

    Litasov K D, Ohtani E. Effect of water on the phase relations in earth’s mantle and deep water cycle[M]//Ohtani E. Advances in High-pressure Mineralogy. Boulder: Geological Society of America, 2007: 115-156.

    [5]

    Unsworth M, Rondenay S. Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods[M]//Harlov D E, Austrheim H. Metasomatism and the Chemical Transformation of Rock. Berlin, Heidelberg: Springer, 2013: 535-598.

    [6]

    倪怀玮, 张力, 郭璇. 水与地幔的部分熔融[J]. 中国科学: 地球科学, 2016, 59(4):720-730 doi: 10.1007/s11430-015-5254-8

    NI Huaiwei, ZHANG Li, GUO Xuan. Water and partial melting of Earth’s mantle [J]. Science China Earth Sciences, 2016, 59(4): 720-730. doi: 10.1007/s11430-015-5254-8

    [7]

    Ranero C R, Morgan J P, McIntosh K, et al. Bending-related faulting and mantle serpentinization at the Middle America trench [J]. Nature, 2003, 425(6956): 367-373. doi: 10.1038/nature01961

    [8]

    Ranero C R, Villaseñor A, Morgan J P, et al. Relationship between bend-faulting at trenches and intermediate-depth seismicity [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12): Q12002.

    [9]

    Lefeldt M, Ranero C R, Grevemeyer I. Seismic evidence of tectonic control on the depth of water influx into incoming oceanic plates at subduction trenches [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05013.

    [10]

    Grevemeyer I, Ranero C R, Flueh E R, et al. Passive and active seismological study of bending-related faulting and mantle serpentinization at the Middle America trench [J]. Earth and Planetary Science Letters, 2007, 258(3-4): 528-542. doi: 10.1016/j.jpgl.2007.04.013

    [11]

    Key K, Constable S, Matsuno T, et al. Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench [J]. Earth and Planetary Science Letters, 2012, 351-352: 45-53. doi: 10.1016/j.jpgl.2012.07.020

    [12]

    Faccenda M. Water in the slab: a trilogy [J]. Tectonophysics, 2014, 614: 1-30. doi: 10.1016/j.tecto.2013.12.020

    [13]

    Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3-4): 325-394. doi: 10.1016/S0009-2541(97)00150-2

    [14]

    Tatsumi Y. The subduction factory: how it operates in the evolving earth [J]. GSA Today, 2005, 15(7): 4-10. doi: 10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2

    [15]

    Comte D, Dorbath L, Pardo M, et al. A double‐layered seismic zone in Arica, northern Chile [J]. Geophysical Research Letters, 1999, 26(13): 1965-1968. doi: 10.1029/1999GL900447

    [16]

    Arredondo K M, Billen M I. Rapid weakening of subducting plates from trench-parallel estimates of flexural rigidity [J]. Physics of the Earth and Planetary Interiors, 2012, 196-197: 1-13. doi: 10.1016/j.pepi.2012.02.007

    [17]

    Zhou Z Y, Lin J. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench [J]. Tectonophysics, 2018, 734-735: 59-68. doi: 10.1016/j.tecto.2018.04.008

    [18]

    Escartín J, Hirth G, Evans B. Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere [J]. Geology, 2001, 29(11): 1023-1026. doi: 10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2

    [19]

    Billen M I, Gurnis M. A low viscosity wedge in subduction zones [J]. Earth and Planetary Science Letters, 2001, 193(1-2): 227-236. doi: 10.1016/S0012-821X(01)00482-4

    [20]

    Obara K. Nonvolcanic deep tremor associated with subduction in southwest Japan [J]. Science, 2002, 296(5573): 1679-1681. doi: 10.1126/science.1070378

    [21]

    Rogers G, Dragert H. Episodic tremor and slip on the Cascadia subduction zone: the chatter of silent slip [J]. Science, 2003, 300(5627): 1942-1943. doi: 10.1126/science.1084783

    [22]

    Hacker B R, Peacock S M, Abers G A, et al. Subduction factory 2. Are intermediate‐depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? [J]. Journal of Geophysical Research, 2003, 108(B1): 2030.

    [23]

    Tatsumi Y. Migration of fluid phases and genesis of basalt magmas in subduction zones [J]. Journal of Geophysical Research, 1989, 94(B4): 4697-4707. doi: 10.1029/JB094iB04p04697

    [24]

    Zheng Y F, Hermann J. Geochemistry of continental subduction-zone fluids [J]. Earth, Planets and Space, 2014, 66: 93. doi: 10.1186/1880-5981-66-93

    [25]

    Ni H W, Zhang L, Xiong X L, et al. Supercritical fluids at subduction zones: evidence, formation condition, and physicochemical properties [J]. Earth-Science Reviews, 2017, 167: 62-71. doi: 10.1016/j.earscirev.2017.02.006

    [26]

    Kawamoto T, Hervig R L, Holloway J R. Experimental evidence for a hydrous transition zone in the early Earth’s mantle [J]. Earth and Planetary Science Letters, 1996, 142(3-4): 587-592. doi: 10.1016/0012-821X(96)00113-6

    [27]

    Smyth J R, Kawamoto T. Wadsleyite II: a new high pressure hydrous phase in the peridotite-H2O system [J]. Earth and Planetary Science Letters, 1997, 146(1-2): E9-E16. doi: 10.1016/S0012-821X(96)00230-0

    [28]

    Koyama T, Shimizu H, Utada H, et al. Water content in the mantle transition zone beneath the North Pacific derived from the electrical conductivity anomaly[M]//Jacobsen S D, van der Lee S. Earth’s Deep Water Cycle. Washington: American Geophysical Union, 2006: 171-180.

    [29]

    Utada H, Koyama T, Obayashi M, et al. A joint interpretation of electromagnetic and seismic tomography models suggests the mantle transition zone below Europe is dry [J]. Earth and Planetary Science Letters, 2009, 281(3-4): 249-257. doi: 10.1016/j.jpgl.2009.02.027

    [30]

    Ohtani E, Yuan L, Ohira I, et al. Fate of water transported into the deep mantle by slab subduction [J]. Journal of Asian Earth Sciences, 2018, 167: 2-10. doi: 10.1016/j.jseaes.2018.04.024

    [31]

    Peslier A H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon [J]. Journal of Volcanology and Geothermal Research, 2010, 197(1-4): 239-258. doi: 10.1016/j.jvolgeores.2009.10.006

    [32]

    Wada I, Behn M D, Shaw A M. Effects of heterogeneous hydration in the incoming plate, slab rehydration, and mantle wedge hydration on slab-derived H2O flux in subduction zones [J]. Earth and Planetary Science Letters, 2012, 353-354: 60-71. doi: 10.1016/j.jpgl.2012.07.025

    [33]

    Li H Y, Chen R X, Zheng Y F, et al. Water in garnet pyroxenite from the Sulu orogen: implications for crust-mantle interaction in continental subduction zone [J]. Chemical Geology, 2018, 478: 18-38. doi: 10.1016/j.chemgeo.2017.09.025

    [34]

    Rüpke L H, Morgan J P, Hort M, et al. Serpentine and the subduction zone water cycle [J]. Earth and Planetary Science Letters, 2004, 223(1-2): 17-34. doi: 10.1016/j.jpgl.2004.04.018

    [35]

    Hacker B R. H2O subduction beyond arcs [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(3): Q03001.

    [36]

    Canales J P, Carbotte S M, Nedimović M R, et al. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone [J]. Nature Geoscience, 2017, 10(11): 864-870. doi: 10.1038/ngeo3050

    [37]

    Carlson R L, Miller D J. Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites [J]. Geophysical Research Letters, 2003, 30(5): 1250.

    [38]

    McCollom T M, Shock E L. Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration [J]. Journal of Geophysical Research, 1998, 103(B1): 547-575. doi: 10.1029/97JB02603

    [39]

    Contreras-Reyes E, Grevemeyer I, Flueh E R, et al. Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7): Q07003.

    [40]

    Ivandic M, Grevemeyer I, Berhorst A, et al. Impact of bending related faulting on the seismic properties of the incoming oceanic plate offshore of Nicaragua [J]. Journal of Geophysical Research, 2008, 113(B5): B05410.

    [41]

    van Avendonk H J A, Holbrook W S, Lizarralde D, et al. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6): Q06009.

    [42]

    Gou F J, Kodaira S, Kaiho Y, et al. Controlling factor of incoming plate hydration at the north-western Pacific margin [J]. Nature Communications, 2018, 9(1): 3844. doi: 10.1038/s41467-018-06320-z

    [43]

    Cai C, Wiens D A, Shen W S, et al. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data [J]. Nature, 2018, 563(7731): 389-392. doi: 10.1038/s41586-018-0655-4

    [44]

    Wan K Y, Lin J, Xia S H, et al. Deep seismic structure across the southernmost Mariana Trench: implications for arc rifting and plate hydration [J]. Journal of Geophysical Research, 2019, 124(5): 4710-4727.

    [45]

    Contreras-Reyes E, Grevemeyer I, Flueh E R, et al. Upper lithospheric structure of the subduction zone offshore of southern Arauco peninsula, Chile, at ~38°S [J]. Journal of Geophysical Research, 2008, 113(B7): B07303.

    [46]

    Gou F J, Kodaira S, Yamashita M, et al. Systematic changes in the incoming plate structure at the Kuril trench [J]. Geophysical Research Letters, 2013, 40(1): 88-93. doi: 10.1029/2012GL054340

    [47]

    Gou F J, Kodaira S, Sato T, et al. Along-trench variations in the seismic structure of the incoming Pacific plate at the outer rise of the northern Japan Trench [J]. Geophysical Research Letters, 2016, 43(2): 666-673. doi: 10.1002/2015GL067363

    [48]

    Masson D G. Fault patterns at outer trench walls [J]. Marine Geophysical Researches, 1991, 13(3): 209-225. doi: 10.1007/BF00369150

    [49]

    Ranero C R, Sallarés V. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench [J]. Geology, 2004, 32(7): 549-552. doi: 10.1130/G20379.1

    [50]

    Han S S, Carbotte S M, Canales J P, et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench: new constraints on the distribution of faulting and evolution of the crust prior to subduction [J]. Journal of Geophysical Research, 2016, 121(3): 1849-1872.

    [51]

    Supak S, Bohnenstiehl D R, Buck W R. Flexing is not stretching: an analogue study of flexure-induced fault populations [J]. Earth and Planetary Science Letters, 2006, 246(1-2): 125-137. doi: 10.1016/j.jpgl.2006.03.028

    [52]

    Naliboff J B, Billen M I, Gerya T, et al. Dynamics of outer-rise faulting in oceanic‐continental subduction systems [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2310-2327. doi: 10.1002/ggge.20155

    [53]

    Zhou Z Y, Lin J, Behn M D, et al. Mechanism for normal faulting in the subducting plate at the Mariana Trench [J]. Geophysical Research Letters, 2015, 42(11): 4309-4317. doi: 10.1002/2015GL063917

    [54]

    van Keken P E, Hacker B R, Syracuse E M, et al. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide [J]. Journal of Geophysical Research, 2011, 116(B1): B01401.

    [55]

    Magni V, Faccenna C, van Hunen J, et al. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-D numerical models [J]. Geology, 2014, 42(6): 511-514. doi: 10.1130/G35446.1

    [56]

    Tatsumi Y, Eggins S. Subduction Zone Magmatism[M]. Oxford: Blackwell, 1995: 211.

    [57]

    Anderson D L. Speculations on the nature and cause of mantle heterogeneity [J]. Tectonophysics, 2006, 416(1-5): 7-22.

    [58]

    Zindler A, Hart S. Chemical geodynamics [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    [59]

    Hofmann A W. Mantle geochemistry: the message from oceanic volcanism [J]. Nature, 1997, 385(6613): 219-229. doi: 10.1038/385219a0

    [60]

    Chauvel C, Hofmann A W, Vidal P. HIMU-EM: the French Polynesian connection [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 99-119. doi: 10.1016/0012-821X(92)90042-T

    [61]

    Brenan J M, Shaw H F, Ryerson F J, et al. Mineral-aqueous fluid partitioning of trace elements at 900 ℃ and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids [J]. Geochimica et Cosmochimica Acta, 1995, 59(16): 3331-3350. doi: 10.1016/0016-7037(95)00215-L

    [62]

    Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7

    [63]

    Aizawa Y, Tatsumi Y, Yamada H. Element transport by dehydration of subducted sediments: implication for arc and ocean island magmatism [J]. Island Arc, 1999, 8(1): 38-46. doi: 10.1046/j.1440-1738.1999.00217.x

    [64]

    Tatsumi Y, Kogiso T. The subduction factory: its role in the evolution of the Earth's crust and mantle[M]//Larter R D, Leat P T. Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes. London: Geological Society of America, 2003: 55-80.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  4420
  • PDF下载数:  149
  • 施引文献:  0
出版历程
收稿日期:  2019-06-30
修回日期:  2019-07-15
刊出日期:  2019-10-25

目录