西湖凹陷X构造凝析油与蜡质油的形成机制

杨鹏程, 李浩, 刘峰, 李倩. 西湖凹陷X构造凝析油与蜡质油的形成机制[J]. 海洋地质与第四纪地质, 2019, 39(6): 177-187. doi: 10.16562/j.cnki.0256-1492.2019070405
引用本文: 杨鹏程, 李浩, 刘峰, 李倩. 西湖凹陷X构造凝析油与蜡质油的形成机制[J]. 海洋地质与第四纪地质, 2019, 39(6): 177-187. doi: 10.16562/j.cnki.0256-1492.2019070405
YANG Pengcheng, LI Hao, LIU Feng, LI Qian. Formation mechanism of condensate oil and waxy oil in Structure X of Xihu Depression[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 177-187. doi: 10.16562/j.cnki.0256-1492.2019070405
Citation: YANG Pengcheng, LI Hao, LIU Feng, LI Qian. Formation mechanism of condensate oil and waxy oil in Structure X of Xihu Depression[J]. Marine Geology & Quaternary Geology, 2019, 39(6): 177-187. doi: 10.16562/j.cnki.0256-1492.2019070405

西湖凹陷X构造凝析油与蜡质油的形成机制

  • 基金项目: 中国石油化工股份有限公司科技项目“西湖凹陷斜坡带油气成藏条件及目标评价”(KJ-2019-11)
详细信息
    作者简介: 杨鹏程(1988—),男,硕士,工程师,主要从事石油地质综合研究,E-mail:yangpch.shhy@sinopec.com
  • 中图分类号: P744.4,P618.130.1

Formation mechanism of condensate oil and waxy oil in Structure X of Xihu Depression

  • X构造的原油按照物性的差异主要分为两类:第一类为凝析油,具有密度低、含蜡量低的特点;第二类为蜡质油,具有密度中等、含蜡量高的特点。为了明确原油物性差异的原因,对原油的地球化学特征进行了深入分析,发现这两类原油的饱和烃色谱存在明显的差异,但甾烷特征、萜烷特征以及碳同位素特征又比较相似,表现出同源的特点,推测次生作用是原油物性差异的主要原因。对这两类原油的轻烃色谱以及指纹参数进行了精细对比,发现:①凝析油和蜡质油的全烃色谱存在镜像关系;②凝析油的庚烷/甲基环己烷(石蜡度)偏高,甲苯/正庚烷(芳香度)偏低,蜡质油则相反;③凝析油和蜡质油的正构烷烃nCm+1/nCm存在协变关系,且凝析油的数值更大。认为X构造原油遭受了气侵,凝析油是蒸发分馏的产物,而蜡质油则是蒸发分馏的残留油。

  • 加载中
  • 图 1  X构造断裂分布与井位分布图

    Figure 1. 

    图 2  X构造凝析油与蜡质油的生物标志物特征

    Figure 2. 

    图 3  X构造凝析油与蜡质油的生物标志物参数

    Figure 3. 

    图 4  X构造天然气组分特征

    Figure 4. 

    图 5  X构造天然气成因判别(图版引自戴金星,1992)

    Figure 5. 

    图 6  X构造凝析油与蜡质油全烃及轻烃特征

    Figure 6. 

    图 7  X构造凝析油与蜡质油蒸发分馏效应

    Figure 7. 

    图 8  X构造D井油气藏剖面

    Figure 8. 

    表 1  X构造原油物性特征

    Table 1.  Character of oil properties in Structure X

    井号层位性质深度/m密度(20 ℃)
    /(g/cm3
    动力黏度(50 ℃)
    /(mPa·s)
    含蜡量
    /%
    凝固点
    /℃
    A平湖组蜡质油3 594~3 603.60.882.1326.8116
    B平湖组凝析油3 499.8~3 505.60.800.963.36−1
    C平湖组凝析油4 580~4 6200.790.763.364
    C平湖组凝析油4 359~4 3820.831.364.9513
    D平湖组凝析油3 4750.801.161.2−9
    D平湖组蜡质油3 5370.874.2213.218
    D平湖组蜡质油3 6140.863.2513.718
    D平湖组蜡质油3 640.50.863.8217.513
    D平湖组蜡质油3 743.50.864.7212.717
    D平湖组蜡质油3 734.2~3 746.50.855.681319
    D平湖组凝析油4 040~4 0600.771.255.511
    E平湖组蜡质油4 212.50.863.189.518
    E平湖组凝析油4 508.40.842.450.69
    E平湖组凝析油4 6340.832.260.7
    下载: 导出CSV

    表 2  X构造原油成熟度计算

    Table 2.  Calculated values of oil maturity in Structure X

    井号层位性质深度/mMPI1Rc(Radke,1983)Rc(本次拟合)
    A平湖组蜡质油3 594~3 603.61.181.070.97
    B平湖组凝析油3 499.8~3 505.61.111.040.94
    C平湖组凝析油4 580~4 6201.001.000.91
    C平湖组凝析油4 359~4 3821.211.080.98
    D平湖组凝析油3 4750.980.990.90
    D平湖组凝析油3 5321.090.990.90
    D平湖组蜡质油3 5371.091.040.94
    D平湖组蜡质油3 6141.101.040.94
    D平湖组蜡质油3 640.50.970.990.90
    D平湖组蜡质油3 743.51.031.010.92
    下载: 导出CSV

    表 3  X构造原油碳同位素特征

    Table 3.  Carbon isotopes of crude oils in Structure X

    井号井深/m性质原油
    δ13CPDB/‰
    饱和烃
    δ13CPDB/‰
    芳烃
    δ13CPDB/‰
    非烃
    δ13CPDB/‰
    沥青质
    δ13CPDB/‰
    C4 580~4 620凝析油−26.2−27.7−24.8
    C4 359~4 382凝析油−25.9−27.3−24.5
    D3 475凝析油−27.31−27.51−27.39−28.9−28.28
    D3 532凝析油−27.25−27.41−27.97−29.67−28.12
    D3 537蜡质油−27.18−28−25.63−26.44−27.49
    D3 546蜡质油−26.96−27.07−26.38−27.65−27.5
    D3 614蜡质油−26.6−27.63−25.39−26.06−26.96
    D3 640.5蜡质油−26.77−27.34−25.22−25.97−26.93
    D3 743.5蜡质油−26.91−27.37−25.8−26.2−27.28
    D3 760蜡质油−27.24−27.19−26.75−28.98−27.98
    D3 780蜡质油−26.9−27.16−26.54−27.85−28.07
    下载: 导出CSV

    表 4  X构造天然气成熟度计算

    Table 4.  Calculated values of natural gas maturity in Structure X

    井号深度/mCH4C2H6C3H8Rc1(戴金星)Rc2(刘文汇)Rc3(胡惕麟)
    C井4 580~4 620−36.9−27.1−25.10.660.881.56
    C井4 359~4 382−32.2−24.9−24.51.431.311.83
    B井3 499.8~3 505.6−35.74−26.68−25.560.800.911.66
    B井3 705.5~3 710.6−36.13−26.52−28.180.750.911.72
    A井3 594~3 603.6−35.13−25.63−23.640.890.971.58
    A井3 801.6~3 806.4−35.88−27.19−24.80.780.921.64
    D井3 532−35.15−26.71−24.500.880.961.66
    D井3 537−35.36−26.89−24.710.850.941.66
    D井3 614−35.63−26.72−24.610.820.921.63
    D井3 640.5−36.23−25.99−23.700.740.901.51
    D井3 743.5−37.13−26.32−23.700.640.871.45
    D井3 760−36.44−25.90−23.340.720.901.48
    D井3 734.2~3 746.5−36.59−28.53−25.910.700.891.68
    D井4 040~4 060−39.92−29.51−27.290.410.761.50
      计算公式:戴金星:δ13C1 ≈14.12 ×lg Ro −34.39;刘文汇:δ13C1 ≈48.77×lg Ro −34.10,(Ro≤0.9),δ13C1 ≈22.42×lg Ro −34.80,(Ro>0.9);胡惕麟:Ro=(R2+R3)/2,其中R2=-0.089 1(δ13C2−δ13C1)+2.404 4;R3= −0.077 5×(δ13C3−δ13C1)+2.502 4。
    下载: 导出CSV
  • [1]

    陈义才, 沈忠民, 李延军, 等. 塔里木盆地轮南低隆凝析气藏特征及成藏机理分析[J]. 成都理工学院学报, 2002, 29(5):481-486 doi: 10.3969/j.issn.1671-9727.2002.05.002

    CHEN Yicai, SHEN Zhongmin, LI Yanjun, et al. Formation mechanism and formation conditions of condensate pools in Lunnan low-uplift of Tarim Basin [J]. Journal of Chengdu University of Technology, 2002, 29(5): 481-486. doi: 10.3969/j.issn.1671-9727.2002.05.002

    [2]

    武晓玲. 东濮凹陷深层凝析气藏成藏模式研究[D]. 中国地质大学(北京), 2006: 1-93.

    WU Xiaoling, Study on forming models of deep condensate gas pool in Dongpu Depression[D]. Beijing: China University of Geosciences, 2006: 1-93.

    [3]

    Tissot B P, Welte D H. Petroleum Formation and Occurrence[M]. New York: Springer Verlag, Heidelberg, 1978.

    [4]

    黄汝昌. 中国低熟油及凝析气藏形成与分布规律[M]. 北京: 石油工业出版社, 1997.

    HUANG Ruchang. Formation and Distribution of Low Maturity Oil and Condensate Gas Reservoirs in China[M]. Beijing: Petroleum Industry Press, 1997.

    [5]

    周兴熙. 塔里木盆地凝析气的相态成因[J]. 天然气工业, 1996, 16(2):5-8, 100

    ZHOU Xingxi. Phase genesis of condensate gas in Talimu Basin [J]. Natural Gas Industry, 1996, 16(2): 5-8, 100.

    [6]

    蒋有录, 常振恒, 鲁雪松, 等. 东濮凹陷古近系凝析气藏成因类型及其分布特征[J]. 中国石油大学学报: 自然科学版, 2008, 32(5):28-34

    JIANG Youlu, CHANG Zhenheng, LU Xuesong, et al. Genetic types and distribution of paleogene condensate gas pools in Dongpu Depression [J]. Journal of China University of Petroleum, 2008, 32(5): 28-34.

    [7]

    吴楠, 蔡忠贤, 杨海军, 等. 轮南低凸起气洗作用响应及定量评价[J]. 地球科学—中国地质大学学报, 2009, 34(3):486-492

    WU Nan, CAI Zhongxian, YANG Haijun, et al. Quantitative evaluation and the geochemical responses of gas washing in Lunnan Petroleum Province [J]. Earth Science—Journal of China University of Geosciences, 2009, 34(3): 486-492.

    [8]

    黄合庭, 黄保家, 黄义文, 等. 南海西部深水区大气田凝析油成因与油气成藏机制——以琼东南盆地陵水17-2气田为例[J]. 石油勘探与开发, 2017, 44(3):380-388

    HUANG Heting, HUANG Baojia, HUANG Yiwen, et al. Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in Western South China Sea: A case study of Lingshui 17-2 gas field in Qiongdongnan Basin, South China Sea [J]. Petroleum Exploration and Development, 2017, 44(3): 380-388.

    [9]

    苏洲, 张慧芳, 韩剑发, 等. 塔里木盆地库车坳陷中、新生界高蜡凝析油和轻质油形成及其控制因素[J]. 石油与天然气地质, 2018, 39(6):1255-1269 doi: 10.11743/ogg20180615

    SU Zhou, ZHANG Huifang, HAN Jianfa, et al. Origin and controlling factors of Mesozoic-Cenozoic gas condensates with high wax content and high-gravity oil in Kuqa Depression [J]. Oil & Gas Geology, 2018, 39(6): 1255-1269. doi: 10.11743/ogg20180615

    [10]

    陈大钧. 油气田应用化学[M]. 北京: 石油工业出版社, 2006: 308-310.

    CHEN Dajun. Applied Chemistry in Oil and Gas Field[M]. Beijing: Petroleum Industry Press, 2006: 308-310.

    [11]

    Hedberg H D. Significance of high-wax oils with respect to genesis of petroleum [J]. AAPG Bulletin, 1968, 52(5): 736-750.

    [12]

    王飞宇, 郝石生, 何萍, 等. 泌阳凹陷湖相藻类体中藻质素作为高蜡油母质[J]. 科学通报, 1997, 42(11):1193-1197 doi: 10.3321/j.issn:0023-074X.1997.11.022

    WANG Feiyu, HAO Shisheng, HE Ping, et al. Alginin as parent material of high wax oil in lacustrine algae of Biyang Depression [J]. Chinese Science Bulletin, 1997, 42(11): 1193-1197. doi: 10.3321/j.issn:0023-074X.1997.11.022

    [13]

    李素梅, 庞雄奇, 邱桂强, 等. 东营凹陷南斜坡特高蜡油的成因[J]. 石油与天然气地质, 2005, 26(4):480-486 doi: 10.3321/j.issn:0253-9985.2005.04.014

    LI Sumei, PANG Xiongqi, QIU Guiqiang, et al. Origin of superhigh wax content oils in southern slope zone of Dongying Depression [J]. Oil & Gas Geology, 2005, 26(4): 480-486. doi: 10.3321/j.issn:0253-9985.2005.04.014

    [14]

    陈建平, 邓春萍, 王绪龙, 等. 准噶尔盆地南缘凝析油、蜡质油与稠油的形成机理[J]. 中国科学: 地球科学, 2017, 60(5):972-991

    CHEN Jianping, DENG Chunping, WANG Xulong, et al. Formation mechanism of condensates, waxy and heavy oils in the southern margin of Junggar Basin, NW China [J]. Science China Earth Sciences, 2017, 60(5): 972-991.

    [15]

    傅宁, 李友川, 陈桂华, 等. 东海西湖凹陷油气“蒸发分馏”成藏机制[J]. 石油勘探与开发, 2003, 30(2):39-42 doi: 10.3321/j.issn:1000-0747.2003.02.010

    FU Ning, LI Youchuan, CHEN Guihua, et al. Pooling mechanisms of “Evaporating Fractionation” of oil and gas in the Xihu Depression, East China Sea [J]. Petroleum Exploration and Development, 2003, 30(2): 39-42. doi: 10.3321/j.issn:1000-0747.2003.02.010

    [16]

    单超, 叶加仁, 曹强, 等. 西湖凹陷孔雀亭气田成藏主控因素[J]. 海洋地质与第四纪地质, 2015, 35(1):135-144

    SHAN Chao, YE Jiaren, CAO Qiang, et al. Controlling factors for gas accumulation in Kongqueting gas field of Xihu Sag [J]. Marine Geology & Quaternary Geology, 2015, 35(1): 135-144.

    [17]

    苏奥, 陈红汉. 东海盆地西湖凹陷宝云亭气田油气成藏史——来自流体包裹体的证据[J]. 石油学报, 2015, 36(3):300-309 doi: 10.7623/syxb201503005

    SU Ao, CHEN Honghan. Accumulation history of Baoyunting gas field in the Xihu Sag, East China Sea Basin: from evidence of fluid inclusions [J]. Acta Petrolei Sinica, 2015, 36(3): 300-309. doi: 10.7623/syxb201503005

    [18]

    李水福, 何生, 张冬梅. 南阳凹陷高蜡原油的地球化学特征[J]. 新疆石油地质, 2006, 27(4):414-418 doi: 10.3969/j.issn.1001-3873.2006.04.007

    LI Shuifu, HE Sheng, ZHANG Dongmei. Organic geochemical characteristics of high wax oils in Nanyang Sag [J]. Xinjiang Petroleum Geology, 2006, 27(4): 414-418. doi: 10.3969/j.issn.1001-3873.2006.04.007

    [19]

    傅宁. 东海盆地西湖凹陷煤系烃源岩及凝析油中的二萜化合物[J]. 中国海上油气(地质), 1994, 8(1):21-28

    FU Ning. Diterpenoid compounds in coal measures and condensates in Xihu Sag of East China Sea Basin [J]. China Offshore Oil and Gas (Geology), 1994, 8(1): 21-28.

    [20]

    钱门辉, 西湖凹陷煤系烃源岩生烃特征研究[D]. 中国地质大学(北京), 2010.

    QIAN Menhui. Model research of generation of hydrocarbon coal source rock in Xihu Depression[D]. Beijing: China University of Geosciences, 2010.

    [21]

    戴金星, 宋岩. 煤成油的若干有机地球化学特征[J]. 石油勘探与开发, 1987, 14(5):38-45

    DAI Jinxing, SONG Yan. Some geochemical characteristics of the coaliferous oil [J]. Petroleum Exploration and Development, 1987, 14(5): 38-45.

    [22]

    戴金星. 各类烷烃气的鉴别[J]. 中国科学B辑, 1992, 22(2):185-193 doi: 10.3321/j.issn:1006-9240.1992.02.003

    DAI Jinxing. Identification of alkane gases [J]. Science in China Series B: Chemistry, 1992, 22(2): 185-193. doi: 10.3321/j.issn:1006-9240.1992.02.003

    [23]

    戴金星, 李剑, 罗霞, 等. 鄂尔多斯盆地大气田的烷烃气碳同位素组成特征及其气源对比[J]. 石油学报, 2005, 26(1):18-26 doi: 10.3321/j.issn:0253-2697.2005.01.004

    DAI Jinxing, LI Jian, LUO Xia, et al. Alkane carbon isotopic composition and gas source in giant gas fields of Ordos Basin [J]. Acta Petrolei Sinica, 2005, 26(1): 18-26. doi: 10.3321/j.issn:0253-2697.2005.01.004

    [24]

    戴金星. 煤成气及鉴别理论研究进展[J]. 科学通报, 2018, 63(14):1291-1305

    DAI Jinxing. Coal-derived gas theory and its discrimination [J]. Chinese Science Bulletin, 2018, 63(14): 1291-1305.

    [25]

    叶军, 郭迪孝. 东海西湖凹陷天然气地化特征[J]. 石油实验地质, 1996, 18(2):174-181, 145 doi: 10.11781/sysydz199602174

    YE Jun, GUO Dixiao. Geochemical characters of the natural gas in West Lake Depression, the East China Sea [J]. Experimental Petroleum Geology, 1996, 18(2): 174-181, 145. doi: 10.11781/sysydz199602174

    [26]

    Meulbroek P, Cathles III L, Whelan J. Phase fractionation at South Eugene Island Block 330 [J]. Organic Geochemistry, 1998, 29(1-3): 223-239. doi: 10.1016/S0146-6380(98)00180-6

    [27]

    黄海平, 张水昌, 苏爱国. 油气运移聚集过程中的地球化学作用[J]. 石油实验地质, 2001, 23(3):278-284 doi: 10.3969/j.issn.1001-6112.2001.03.006

    HUANG Haiping, ZHANG Shuichang, SU Aiguo. Geochemical processes in petroleum migration and accumulation [J]. Petroleum Geology & Experiment, 2001, 23(3): 278-284. doi: 10.3969/j.issn.1001-6112.2001.03.006

    [28]

    Thompson K F M. Fractionated aromatic petroleums and the generation of gas-condensates [J]. Organic Geochemistry, 1987, 11(6): 573-590. doi: 10.1016/0146-6380(87)90011-8

    [29]

    Kissin Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2445-2457. doi: 10.1016/0016-7037(87)90296-1

    [30]

    申家年, 卢双舫. 气洗作用对油气组分影响的理论探讨[J]. 地球化学, 2005, 34(2):161-172 doi: 10.3321/j.issn:0379-1726.2005.02.009

    SHEN Jianian, LU Shuangfang. Influence of gas washing on oil-gas composition [J]. Geochimica, 2005, 34(2): 161-172. doi: 10.3321/j.issn:0379-1726.2005.02.009

  • 加载中

(8)

(4)

计量
  • 文章访问数:  2013
  • PDF下载数:  120
  • 施引文献:  0
出版历程
收稿日期:  2019-07-04
修回日期:  2019-08-12
刊出日期:  2019-12-25

目录