大洋溶解铁的物质来源及其同位素示踪

陈天宇, 蔡平河, 李伟强, 杨涛, 凌洪飞, 季峻峰. 大洋溶解铁的物质来源及其同位素示踪[J]. 海洋地质与第四纪地质, 2019, 39(5): 46-57. doi: 10.16562/j.cnki.0256-1492.2019070501
引用本文: 陈天宇, 蔡平河, 李伟强, 杨涛, 凌洪飞, 季峻峰. 大洋溶解铁的物质来源及其同位素示踪[J]. 海洋地质与第四纪地质, 2019, 39(5): 46-57. doi: 10.16562/j.cnki.0256-1492.2019070501
CHEN Tianyu, CAI Pinghe, LI Weiqiang, YANG Tao, LING Hongfei, JI Junfeng. The sources of dissolved iron in the global ocean and isotopic tracing[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 46-57. doi: 10.16562/j.cnki.0256-1492.2019070501
Citation: CHEN Tianyu, CAI Pinghe, LI Weiqiang, YANG Tao, LING Hongfei, JI Junfeng. The sources of dissolved iron in the global ocean and isotopic tracing[J]. Marine Geology & Quaternary Geology, 2019, 39(5): 46-57. doi: 10.16562/j.cnki.0256-1492.2019070501

大洋溶解铁的物质来源及其同位素示踪

  • 基金项目: 西太平洋地球系统多圈层相互作用重大计划培育项目“上新世以来西太平洋沉积铁同位素演化研究”(91858105);国家海洋局海洋沉积与环境地质重点实验室开放基金资助项目“晚第四纪北太平洋深水铁同位素演化重建:对大洋铁循环的新约束”(MASEG201711);青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室创新团队资助项目“利用西太平洋铁锰结壳微量金属重建新生代火山喷气历史”(MGQNLM-TD201701)
详细信息
    作者简介: 陈天宇(1986—),男,教授,博导,主要从事深海地球化学和古海洋研究, E-mail:tianyuchen@nju.edu.cn
  • 中图分类号: P736.21

The sources of dissolved iron in the global ocean and isotopic tracing

  • 铁(Fe)作为海洋初级生产所必需的微量和限制性营养元素影响着海洋生物群落结构、生态功能以及碳循环,理解溶解Fe的物质来源及其对气候变化的响应具有重要的科学意义。早期研究多强调风尘输入是维持大洋Fe循环的主要机制。近年来,随着海水Fe分析数据的积累,尤其是痕量元素及其同位素海洋生物地球化学循环研究计划(GEOTRACES)的开展,陆架沉积物和热液活动所释放Fe的贡献开始越来越受到重视。尽管如此,不同物源对开阔大洋溶解Fe的影响依然存在相当的不确定性。以海水溶解Fe的化学组分为出发点,强调有机配体对大洋Fe循环的决定性作用,综述了不同来源Fe的通量估计和第四纪大洋Fe来源的研究争议。铁同位素为理解大洋Fe的物源演变提供了新的工具。讨论了不同物源的Fe同位素特征,并提出结合沉积物的活动性Fe同位素和组分研究可能为理解过去陆架-热液活动-风尘输出与输运Fe的机制提供全新视角。

  • 加载中
  • 图 1  海水Fe赋存分类示意图

    Figure 1. 

    图 2  全球大洋表层海水(0~50 m)溶解Fe浓度分布[6, 52]

    Figure 2. 

    图 3  北大西洋GA03剖面(左)[66]和东太平洋GP16剖面(右)[68]的溶解Fe浓度与δ56Fe分布

    Figure 3. 

    图 4  南大洋钻孔PS75/059-2(太平洋侧)[85]和ODP-1090(大西洋侧)[86]碎屑通量、生物生产率以及大气CO2浓度在最近50万年的变化[94]

    Figure 4. 

    图 5  以大西洋-南大洋剖面为例的海水Fe生物地球化学循环与物源示意图(据文献[1]修改)

    Figure 5. 

  • [1]

    Tagliabue A, Bowie A R, Boyd P W, et al. The integral role of iron in ocean biogeochemistry [J]. Nature, 2017, 543(7643): 51-59. doi: 10.1038/nature21058

    [2]

    Boyd P W, Ellwood M J. The biogeochemical cycle of iron in the ocean [J]. Nature Geoscience, 2010, 3(10): 675-682. doi: 10.1038/ngeo964

    [3]

    Raven J A, Evans M C W, Korb R E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms [J]. Photosynthesis Research, 1999, 60(2-3): 111-150.

    [4]

    Liu X W, Millero F J. The solubility of iron in seawater [J]. Marine Chemistry, 2002, 77(1): 43-54. doi: 10.1016/S0304-4203(01)00074-3

    [5]

    Moore J K, Braucher O. Sedimentary and mineral dust sources of dissolved iron to the world ocean [J]. Biogeosciences, 2008, 5(3): 631-656. doi: 10.5194/bg-5-631-2008

    [6]

    Tagliabue A, Mtshali T, Aumont O, et al. A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean [J]. Biogeosciences, 2012, 9(6): 2333-2349. doi: 10.5194/bg-9-2333-2012

    [7]

    Martin J H, Fitzwater S E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic [J]. Nature, 1988, 331(6154): 341-343. doi: 10.1038/331341a0

    [8]

    Martin J H, Fitzwater S E, Gordon R M. Iron deficiency limits phytoplankton growth in Antarctic waters [J]. Global Biogeochemical Cycles, 1990, 4(1): 5-12. doi: 10.1029/GB004i001p00005

    [9]

    Martin J H, Fitzwater S E, Gordon R M. We still say iron deficiency limits phytoplankton growth in the Subarctic Pacific [J]. Journal of Geophysical Research: Oceans, 1991, 96(C11): 20699-20700. doi: 10.1029/91JC01935

    [10]

    De Baar H J W, Boyd P W, Coale K H, et al. Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment [J]. Journal of Geophysical Research: Oceans, 2005, 110(C9): C09S16.

    [11]

    Boyd P W, Jickells T, Law C S, et al. Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions [J]. Science, 2007, 315(5812): 612-617. doi: 10.1126/science.1131669

    [12]

    Martin J H. Glacial-interglacial CO2 change: the iron hypothesis [J]. Paleoceanography and Paleoclimatology, 1990, 5(1): 1-13.

    [13]

    Watson A J, Bakker D C E, Ridgwell A J, et al. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2 [J]. Nature, 2000, 407(6805): 730-733. doi: 10.1038/35037561

    [14]

    Ingall E D, Bustin R M, Van Cappellen P. Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales [J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 303-316. doi: 10.1016/0016-7037(93)90433-W

    [15]

    Van Cappellen P, Ingall E D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity [J]. Science, 1996, 271(5248): 493-496. doi: 10.1126/science.271.5248.493

    [16]

    Dale A W, Nickelsen L, Scholz F, et al. A revised global estimate of dissolved iron fluxes from marine sediments [J]. Global Biogeochemical Cycles, 2015, 29(5): 691-707. doi: 10.1002/2014GB005017

    [17]

    Elrod V A, Berelson W M, Coale K H, et al. The flux of iron from continental shelf sediments: a missing source for global budgets [J]. Geophysical Research Letters, 2004, 31(12): L12307.

    [18]

    Severmann S, McManus J, Berelson W M, et al. The continental shelf benthic iron flux and its isotope composition [J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3984-4004. doi: 10.1016/j.gca.2010.04.022

    [19]

    Shi X M, Wei L, Hong Q Q, et al. Large benthic fluxes of dissolved iron in China coastal seas revealed by 224Ra/228Th disequilibria [J]. Geochimica et Cosmochimica Acta, 2019, 260: 49-61. doi: 10.1016/j.gca.2019.06.026

    [20]

    Fung I Y, Meyn S K, Tegen I, et al. Iron supply and demand in the upper ocean [J]. Global Biogeochemical Cycles, 2000, 14(1): 281-295. doi: 10.1029/1999GB900059

    [21]

    Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate [J]. Science, 2005, 308(5718): 67-71. doi: 10.1126/science.1105959

    [22]

    Sarthou G, Baker A R, Blain S, et al. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2003, 50(10-11): 1339-1352. doi: 10.1016/S0967-0637(03)00126-2

    [23]

    Mahowald N M, Baker A R, Bergametti G, et al. Atmospheric global dust cycle and iron inputs to the ocean [J]. Global Biogeochemical Cycles, 2005, 19(4): GB4025.

    [24]

    Yücel M, Gartman A, Chan C S, et al. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean [J]. Nature Geoscience, 2011, 4(6): 367-371. doi: 10.1038/ngeo1148

    [25]

    Fitzsimmons J N, Boyle E A, Jenkins W J. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16654-16661. doi: 10.1073/pnas.1418778111

    [26]

    Bennett S A, Rouxel O, Schmidt K, et al. Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5619-5634. doi: 10.1016/j.gca.2009.06.027

    [27]

    Wu J F, Wells M L, Rember R. Dissolved iron anomaly in the deep tropical-subtropical Pacific: evidence for long-range transport of hydrothermal iron [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 460-468. doi: 10.1016/j.gca.2010.10.024

    [28]

    Resing J A, Sedwick P N, German C R, et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean [J]. Nature, 2015, 523(7559): 200-203. doi: 10.1038/nature14577

    [29]

    Saito M A, Noble A E, Tagliabue A, et al. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source [J]. Nature Geoscience, 2013, 6(9): 775-779. doi: 10.1038/ngeo1893

    [30]

    Tagliabue A, Bopp L, Dutay J C, et al. Hydrothermal contribution to the oceanic dissolved iron inventory [J]. Nature Geoscience, 2010, 3(4): 252-256. doi: 10.1038/ngeo818

    [31]

    Luo C, Mahowald N, Bond T, et al. Combustion iron distribution and deposition [J]. Global Biogeochemical Cycles, 2008, 22(1): GB1012.

    [32]

    Conway T M, Hamilton D S, Shelley R U, et al. Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes [J]. Nature Communications, 2019, 10(1): 2628. doi: 10.1038/s41467-019-10457-w

    [33]

    Johnson K S, Chavez F P, Friederich G E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton [J]. Nature, 1999, 398(6729): 697-700. doi: 10.1038/19511

    [34]

    Gledhill M, Buck K N. The organic complexation of iron in the marine environment: a review [J]. Frontiers in Microbiology, 2012, 3: 69.

    [35]

    Von Der Heyden B P, Roychoudhury A N. A review of colloidal iron partitioning and distribution in the open ocean [J]. Marine Chemistry, 2015, 177: 9-19. doi: 10.1016/j.marchem.2015.05.010

    [36]

    Tagliabue A, Aumont O, DeAth R, et al. How well do global ocean biogeochemistry models simulate dissolved iron distributions? [J]. Global Biogeochemical Cycles, 2016, 30(2): 149-174. doi: 10.1002/2015GB005289

    [37]

    Fitzsimmons J N, Carrasco G G, Wu J F, et al. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 130-151. doi: 10.1016/j.dsr2.2014.11.014

    [38]

    Cullen J T, Bergquist B A, Moffett J W. Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean [J]. Marine Chemistry, 2006, 98(2-4): 295-303. doi: 10.1016/j.marchem.2005.10.007

    [39]

    Fitzsimmons J N, John S G, Marsay C M, et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange [J]. Nature Geoscience, 2017, 10(3): 195-201. doi: 10.1038/ngeo2900

    [40]

    Buck K N, Sedwick P N, Sohst B, et al. Organic complexation of iron in the eastern tropical South Pacific: results from US GEOTRACES Eastern Pacific Zonal Transect (GEOTRACES cruise GP16) [J]. Marine Chemistry, 2018, 201: 229-241. doi: 10.1016/j.marchem.2017.11.007

    [41]

    Rue E L, Bruland K W. The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment [J]. Limnology and Oceanography, 1997, 42(5): 901-910. doi: 10.4319/lo.1997.42.5.0901

    [42]

    Völker C, Tagliabue A. Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model [J]. Marine Chemistry, 2015, 173: 67-77. doi: 10.1016/j.marchem.2014.11.008

    [43]

    Johnson M S, Meskhidze N. Atmospheric dissolved iron deposition to the global oceans: effects of oxalate-promoted Fe dissolution, photochemical redox cycling, and dust mineralogy [J]. Geoscientific Model Development, 2013, 6(4): 1137-1155. doi: 10.5194/gmd-6-1137-2013

    [44]

    Schroth A W, Crusius J, Sholkovitz E R, et al. Iron solubility driven by speciation in dust sources to the ocean [J]. Nature Geoscience, 2009, 2(5): 337-340. doi: 10.1038/ngeo501

    [45]

    Winckler G, Anderson R F, Jaccard S L, et al. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500 000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(22): 6119-6124. doi: 10.1073/pnas.1600616113

    [46]

    Tagliabue A, Sallee J B, Bowie A R, et al. Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing [J]. Nature Geoscience, 2014, 7(4): 314-320. doi: 10.1038/ngeo2101

    [47]

    Buck K N, Bruland K W. The physicochemical speciation of dissolved iron in the Bering Sea, Alaska [J]. Limnology and Oceanography, 2007, 52(5): 1800-1808. doi: 10.4319/lo.2007.52.5.1800

    [48]

    Shaw T J, Gieskes J M, Jahnke R A. Early diagenesis in differing depositional environments: the response of transition metals in pore water [J]. Geochimica et Cosmochimica Acta, 1990, 54(5): 1233-1246. doi: 10.1016/0016-7037(90)90149-F

    [49]

    Noffke A, Hensen C, Sommer S, et al. Benthic iron and phosphorus fluxes across the Peruvian oxygen minimum zone [J]. Limnology and Oceanography, 2012, 57(3): 851-867. doi: 10.4319/lo.2012.57.3.0851

    [50]

    Cai P H, Shi X M, Moore W S, et al. 224Ra: 228Th disequilibrium in coastal sediments: implications for solute transfer across the sediment-water interface [J]. Geochimica et Cosmochimica Acta, 2014, 125: 68-84. doi: 10.1016/j.gca.2013.09.029

    [51]

    Cai P H, Shi X M, Hong Q Q, et al. Using 224Ra: 228Th disequilibrium to quantify benthic fluxes of dissolved inorganic carbon and nutrients into the Pearl River Estuary [J]. Geochimica et Cosmochimica Acta, 2015, 170: 188-203. doi: 10.1016/j.gca.2015.08.015

    [52]

    Schlitzer R, Anderson R F, Dodas E M, et al. The GEOTRACES intermediate data product 2017 [J]. Chemical Geology, 2018, 493: 210-223. doi: 10.1016/j.chemgeo.2018.05.040

    [53]

    Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: implications for iron delivery to the oceans [J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2765-2780. doi: 10.1016/j.gca.2005.12.027

    [54]

    Smith Jr K L, Robison B H, Helly J J, et al. Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea [J]. Science, 2007, 317(5837): 478-482. doi: 10.1126/science.1142834

    [55]

    Zhang R F, John S G, Zhang J, et al. Transport and reaction of iron and iron stable isotopes in glacial meltwaters on Svalbard near Kongsfjorden: from rivers to estuary to ocean [J]. Earth and Planetary Science Letters, 2015, 424: 201-211. doi: 10.1016/j.jpgl.2015.05.031

    [56]

    Von Damm K L, Edmond J M, Grant B, et al. Chemistry of submarine hydrothermal solutions at 21 °N, East Pacific Rise [J]. Geochimica et Cosmochimica Acta, 1985, 49(11): 2197-2220. doi: 10.1016/0016-7037(85)90222-4

    [57]

    Douville E, Charlou J L, Oelkers E H, et al. The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids [J]. Chemical Geology, 2002, 184(1-2): 37-48. doi: 10.1016/S0009-2541(01)00351-5

    [58]

    Statham P J, German C R, Connelly D P. Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean [J]. Earth and Planetary Science Letters, 2005, 236(3-4): 588-596. doi: 10.1016/j.jpgl.2005.03.008

    [59]

    Rudnicki M D, Elderfield H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 2939-2957. doi: 10.1016/0016-7037(93)90285-5

    [60]

    Li M, Toner B M, Baker B J, et al. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents [J]. Nature Communications, 2014, 5: 3192. doi: 10.1038/ncomms4192

    [61]

    Toner B M, Fakra S C, Manganini S J, et al. Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume [J]. Nature Geoscience, 2009, 2(3): 197-201. doi: 10.1038/ngeo433

    [62]

    王建强, 李小虎, 毕冬伟, 等. 全球海水剖面Fe同位素组成的不均一性及其影响因素[J]. 地球科学, 2017, 42(9):1519-1530

    WANG Jianqiang, LI Xiaohu, BI Dongwei, et al. Fe isotopic composition heterogeneity of seawater profiles and its influence factors [J]. Earth Science, 2017, 42(9): 1519-1530.

    [63]

    Brantley S L, Liermann L J, Guynn R L, et al. Fe isotopic fractionation during mineral dissolution with and without bacteria [J]. Geochimica et Cosmochimica Acta, 2004, 68(15): 3189-3204. doi: 10.1016/j.gca.2004.01.023

    [64]

    Wiederhold J G, Kraemer S M, Teutsch N, et al. Iron isotope fractionation during proton-promoted, ligand-controlled, and reductive dissolution of goethite [J]. Environmental Science & Technology, 2006, 40(12): 3787-3793.

    [65]

    Dideriksen K, Baker J A, Stipp S L S. Equilibrium Fe isotope fractionation between inorganic aqueous Fe(III) and the siderophore complex, Fe(III)-desferrioxamine B [J]. Earth and Planetary Science Letters, 2008, 269(1-2): 280-290. doi: 10.1016/j.jpgl.2008.02.022

    [66]

    Conway T M, John S G. Quantification of dissolved iron sources to the North Atlantic Ocean [J]. Nature, 2014, 511(7508): 212-215. doi: 10.1038/nature13482

    [67]

    Fantle M S, DePaolo D J. Iron isotopic fractionation during continental weathering [J]. Earth and Planetary Science Letters, 2004, 228(3-4): 547-562. doi: 10.1016/j.jpgl.2004.10.013

    [68]

    John S G, Helgoe J, Townsend E, et al. Biogeochemical cycling of Fe and Fe stable isotopes in the Eastern Tropical South Pacific [J]. Marine Chemistry, 2018, 201: 66-76. doi: 10.1016/j.marchem.2017.06.003

    [69]

    Henkel S, Kasten S, Hartmann J F, et al. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island [J]. Geochimica et Cosmochimica Acta, 2018, 237: 320-338. doi: 10.1016/j.gca.2018.06.042

    [70]

    Staubwasser M, Von Blanckenburg F, Schoenberg R. Iron isotopes in the early marine diagenetic iron cycle [J]. Geology, 2006, 34(8): 629-632. doi: 10.1130/G22647.1

    [71]

    Homoky W B, John S G, Conway T M, et al. Distinct iron isotopic signatures and supply from marine sediment dissolution [J]. Nature Communications, 2013, 4: 2143. doi: 10.1038/ncomms3143

    [72]

    Radic A, Lacan F, Murray J W. Iron isotopes in the seawater of the equatorial Pacific Ocean: new constraints for the oceanic iron cycle [J]. Earth and Planetary Science Letters, 2011, 306(1-2): 1-10. doi: 10.1016/j.jpgl.2011.03.015

    [73]

    Lough A J M, Klar J K, Homoky W B, et al. Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes [J]. Geochimica et Cosmochimica Acta, 2017, 202: 1-20. doi: 10.1016/j.gca.2016.12.022

    [74]

    Nasemann P, Gault-Ringold M, Stirling C H, et al. Processes affecting the isotopic composition of dissolved iron in hydrothermal plumes: a case study from the Vanuatu back-arc [J]. Chemical Geology, 2018, 476: 70-84. doi: 10.1016/j.chemgeo.2017.11.005

    [75]

    Rouxel O, Toner B M, Manganini S J, et al. Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N [J]. Chemical Geology, 2016, 441: 212-234. doi: 10.1016/j.chemgeo.2016.08.027

    [76]

    Abadie C, Lacan F, Radic A, et al. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 858-863. doi: 10.1073/pnas.1603107114

    [77]

    John S G, Mendez J, Moffett J, et al. The flux of iron and iron isotopes from San Pedro Basin sediments [J]. Geochimica et Cosmochimica Acta, 2012, 93: 14-29. doi: 10.1016/j.gca.2012.06.003

    [78]

    Wu J F, Boyle E, Sunda W, et al. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific [J]. Science, 2001, 293(5531): 847-849. doi: 10.1126/science.1059251

    [79]

    Marsay C M, Lam P J, Heller M I, et al. Distribution and isotopic signature of ligand-leachable particulate iron along the GEOTRACES GP16 East Pacific Zonal Transect [J]. Marine Chemistry, 2018, 201: 198-211. doi: 10.1016/j.marchem.2017.07.003

    [80]

    Horner T J, Williams H M, Hein J R, et al. Persistence of deeply sourced iron in the Pacific Ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(5): 1292-1297. doi: 10.1073/pnas.1420188112

    [81]

    Lund D C, Asimow P D, Farley K A, et al. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations [J]. Science, 2016, 351(6272): 478-482. doi: 10.1126/science.aad4296

    [82]

    Costa K M, McManus J F, Middleton J L, et al. Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial-interglacial cycles [J]. Earth and Planetary Science Letters, 2017, 479: 120-132. doi: 10.1016/j.jpgl.2017.09.006

    [83]

    Hasenclever J, Knorr G, Rupke L H, et al. Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing [J]. Nature Communications, 2017, 8: 15867. doi: 10.1038/ncomms15867

    [84]

    Crowley J W, Katz R F, Huybers P, et al. Glacial cycles drive variations in the production of oceanic crust [J]. Science, 2015, 347(6227): 1237-1240. doi: 10.1126/science.1261508

    [85]

    Lamy F, Gersonde R, Winckler G, et al. Increased dust deposition in the Pacific southern ocean during glacial periods [J]. Science, 2014, 343(6169): 403-407. doi: 10.1126/science.1245424

    [86]

    Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years [J]. Nature, 2011, 476(7360): 312-315. doi: 10.1038/nature10310

    [87]

    Murray R W, Leinen M, Knowlton C W. Links between iron input and opal deposition in the Pleistocene equatorial Pacific Ocean [J]. Nature Geoscience, 2012, 5(4): 270-274. doi: 10.1038/ngeo1422

    [88]

    Loveley M R, Marcantonio F, Wisler M M, et al. Millennial-scale iron fertilization of the eastern equatorial Pacific over the past 100 000 years [J]. Nature Geoscience, 2017, 10(10): 760-764. doi: 10.1038/ngeo3024

    [89]

    Costa K M, McManus J F, Anderson R F, et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age [J]. Nature, 2016, 529(7587): 519-522. doi: 10.1038/nature16453

    [90]

    Ardyna M, Lacour L, Sergi S, et al. Hydrothermal vents trigger massive phytoplankton blooms in the Southern Ocean [J]. Nature Communications, 2019, 10(1): 2451. doi: 10.1038/s41467-019-09973-6

    [91]

    Scholz F, Severmann S, McManus J, et al. Beyond the Black Sea paradigm: the sedimentary fingerprint of an open-marine iron shuttle [J]. Geochimica et Cosmochimica Acta, 2014, 127: 368-380. doi: 10.1016/j.gca.2013.11.041

    [92]

    Zhu X K, O'Nions R K, Guo Y L, et al. Secular variation of iron isotopes in North Atlantic Deep Water [J]. Science, 2000, 287(5460): 2000-2002. doi: 10.1126/science.287.5460.2000

    [93]

    Chu N C, Johnson C M, Beard B L, et al. Evidence for hydrothermal venting in Fe isotope compositions of the deep Pacific Ocean through time [J]. Earth and Planetary Science Letters, 2006, 245(1-2): 202-217. doi: 10.1016/j.jpgl.2006.02.043

    [94]

    Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present [J]. Geophysical Research Letters, 2015, 42(2): 542-549. doi: 10.1002/2014GL061957

    [95]

    Lam P J, Bishop J K B. The continental margin is a key source of iron to the HNLC North Pacific Ocean [J]. Geophysical Research Letters, 2008, 35(7): L07608.

    [96]

    Slemons L O, Murray J W, Resing J, et al. Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent [J]. Global Biogeochemical Cycles, 2010, 24(3): GB3024.

    [97]

    Rose A L, Waite T D. Kinetics of hydrolysis and precipitation of ferric iron in seawater [J]. Environmental Science & Technology, 2003, 37(17): 3897-3903.

    [98]

    Henkel S, Kasten S, Poulton S W, et al. Determination of the stable iron isotopic composition of sequentially leached iron phases in marine sediments [J]. Chemical Geology, 2016, 421: 93-102. doi: 10.1016/j.chemgeo.2015.12.003

    [99]

    Revels B N, Zhang R F, Adkins J F, et al. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes [J]. Geochimica et Cosmochimica Acta, 2015, 166: 92-104. doi: 10.1016/j.gca.2015.05.034

  • 加载中

(5)

计量
  • 文章访问数:  6886
  • PDF下载数:  196
  • 施引文献:  0
出版历程
收稿日期:  2019-07-05
修回日期:  2019-08-11
刊出日期:  2019-10-25

目录