-
摘要:
华北-扬子板块碰撞是中国东部中生代最重要的地质事件之一,碰撞形成了世界最大的超高压变质带秦岭-大别-苏鲁造山带。在苏鲁造山带向海域延伸部分,一直缺乏相关地球物理资料来约束碰撞造山带的深部特征。本文总结了华北-扬子板块碰撞的经典模型,根据南黄海海域最新二维地震反射资料和前人的研究成果,认为在造山带南缘南黄海盆地中,扬子板块上、下地壳发生拆离,形成类似“鳄鱼嘴式”形态,华北板块向南楔入到扬子板块之中。在区域重磁异常图中,千里岩隆起带与苏鲁造山带具有相似的重磁异常分布,认为千里岩隆起带为华北-扬子碰撞造山带在海域上的延伸;在南黄海盆地北缘二维地震剖面中,千里岩隆起与南黄海盆地具有完全不同的地震反射特征,南黄海盆地发育完整地层层序,而千里岩隆起内部反射杂乱,变形强烈。在南黄海盆地自西向东三条南北向地震剖面中,南黄海盆地与千里岩隆起带边界反射均具有南倾特征,表明扬子板块物质置于造山带之上;南黄海盆地北部烟台坳陷发育中侏罗统,约束华北-扬子碰撞所导致的挤压活动主要发生于晚三叠世。在千里岩隆起内部反射特征整体上具有背形形态,具有向北逆冲挤压特征,千里岩隆起内反射断续自南黄海盆地基底之下延伸至造山带近地表位置,形态类似于变质核杂岩从深部拆离到地表;千里岩隆起深部,在10 s深度附近可识别一系列近水平反射,具有莫霍面反射特征,莫霍面反射延伸至南黄海盆地北缘消失,推测千里岩隆起之下为华北板块地壳,而华北-扬子板块碰撞过程导致南黄海盆地之下莫霍面反射缺失。多方面的证据支持南黄海海域内扬子板块的“鳄鱼嘴式”地壳形态,以及华北板块地壳向南楔入到扬子板块地壳中。
Abstract:As an important geological event in East China, the collision of the Yangtze plate and North China plate gave rise to the formation of the Sulu-Dabie orogen. This paper made a thorough review on the different collision models. Data from seismic profiles and seismic tomography support the detachment model to the Lower Yangtze region. It says that the upper crust of the Yangtze Block detached from the lower crust, just like a crocodile opened its mouth, and the North China plate fortunately wedged into it. In the Qianliyan belt there developed similar gravity and magnetic anomalies with Sulu orogen, as the extension of the Dabie-Sulu orogen. In seismic profiles, the South Yellow Sea Basin and Qianliyan Uplift Belt are different in reflection characteristics. There are complete stratigraphic reflections in the basin but no obvious reflections in the uplift. All the boundaries show a south-dipping reflection patterns, suggesting the obduction of the Yangtze Block. The collision and derived compression mainly happened in Triassic while the growth strata deformation formed in lower Jurassic. In the lower crust of the Qianliyan Uplift, the Moho reflection is recognized at ~10 s, and disappeared below the South Yellow Sea Basin. It is thus speculated that the lower crust under the Qianliyan Uplift belong to the North China Plate, and the collision between Yangtze and North China caused the fading out of the Moho reflection. Generally, the geophysical data from the South Yellow Sea support the hypothesis that the North China Block wedged into the crocodile mouth of the Yangtze Block.
-
图 1 华北-扬子板块碰撞区域大地构造图(a)及南黄海盆地构造单元和本研究中二维地震剖面位置图(b)(修改自文献[5])
Figure 1.
图 3 过苏鲁造山带地震层析成像剖面 (引自文献[37])
Figure 3.
图 4 南黄海海域布格重力异常图及重力异常剖面 (引自文献[42])
Figure 4.
图 6 南黄海海域磁性异常图及磁性异常剖面 (引自文献[42])
Figure 6.
-
[1] Dong Y P, Zhang X N, Liu X M, et al. Propagation tectonics and multiple accretionary processes of the Qinling Orogen [J]. Journal of Asian Earth Sciences, 2015, 104: 84-98. doi: 10.1016/j.jseaes.2014.10.007
[2] Li S G, Xiao Y L, Liou D L, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes [J]. Chemical Geology, 1993, 109(1-4): 89-111. doi: 10.1016/0009-2541(93)90063-O
[3] Xie Z P, Hattori K, Wang J. Origins of ultramafic rocks in the Sulu Ultrahigh-pressure Terrane, Eastern China [J]. Lithos, 2013, 178: 158-170. doi: 10.1016/j.lithos.2012.12.003
[4] 程日辉, 王璞珺, 刘万洙, 等. 下扬子区三叠纪层序地层样式对扬子板块与华北板块碰撞的响应[J]. 大地构造与成矿学, 2004, 28(2):134-141 doi: 10.3969/j.issn.1001-1552.2004.02.004
CHENG Rihui, WANG Pujun, LIU Wanzhu, et al. Response of Triassic sequence stratigraphy of Lower Yangtze to collision between Yangtze Plate and North China Plate [J]. Geotectonica et Metallogenia, 2004, 28(2): 134-141. doi: 10.3969/j.issn.1001-1552.2004.02.004
[5] Li S Z, Jahn B M, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data [J]. Earth-Science Reviews, 2017, 166: 270-285. doi: 10.1016/j.earscirev.2017.01.009
[6] 蔡乾忠. 中国东部与朝鲜大地构造单元对应划分[J]. 海洋地质与第四纪地质, 1995, 15(1):7-24
CAI Qianzhong. Corresponding division of geotectonic units of Eastern China and Korea [J]. Marine Geology & Quaternary Geology, 1995, 15(1): 7-24.
[7] 蔡乾忠. 中国海域油气地质学[M]. 北京: 海洋出版社, 2005.
CAI Qianzhong. Oil and Gas Geology in China Sea[M]. Beijing: Ocean Press, 2005.
[8] Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China [J]. Precambrian Research, 2008, 163(3-4): 351-383. doi: 10.1016/j.precamres.2008.01.004
[9] Zhao G C, Cawood P A. Precambrian geology of China [J]. Precambrian Research, 2012, 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017
[10] Goss S C, Wilde S A, Wu F Y, et al. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton [J]. Lithos, 2010, 120(3-4): 309-326. doi: 10.1016/j.lithos.2010.08.019
[11] Ling W L, Duan R C, Xie X J, et al. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton [J]. Lithos, 2009, 113(3-4): 640-658. doi: 10.1016/j.lithos.2009.07.001
[12] Liu D Y, Nutman A P, Compston W, et al. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton [J]. Geology, 1992, 20(4): 339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2
[13] Zhai M G, Santosh M. The early Precambrian odyssey of the North China Craton: A synoptic overview [J]. Gondwana Research, 2011, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005
[14] Wilde S A, Zhou X H, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton: A consequence of the dispersal of Gondwanaland and accretion of Asia [J]. Geology, 2003, 31(9): 817-820. doi: 10.1130/G19489.1
[15] Zhu R X, Xu Y G, Zhu G, et al. Destruction of the North China Craton [J]. Science China Earth Sciences, 2012, 55(10): 1565-1587. doi: 10.1007/s11430-012-4516-y
[16] Zhu G, Jiang D Z, Zhang B L, et al. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics [J]. Gondwana Research, 2012, 22(1): 86-103. doi: 10.1016/j.gr.2011.08.005
[17] Yang J S, Xu Z Q, Dobrzhinetskaya L F, et al. Discovery of metamorphic diamonds in central China: an indication of a >4000-km-long zone of deep subduction resulting from multiple continental collisions [J]. Terra Nova, 2003, 15(6): 370-379. doi: 10.1046/j.1365-3121.2003.00511.x
[18] Hacker B R, Wallis S R, Ratschbacher L, et al. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen [J]. Tectonics, 2006, 25(5): TC5006.
[19] Zhao T, Zhu G, Lin S Z, et al. Indentation-induced tearing of a subducting continent: Evidence from the Tan-Lu Fault Zone, East China [J]. Earth-Science Reviews, 2016, 152: 14-36. doi: 10.1016/j.earscirev.2015.11.003
[20] Okay A I, Celal Şengor A M. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China [J]. Geology, 1992, 20(5): 411-414. doi: 10.1130/0091-7613(1992)020<0411:EFITRE>2.3.CO;2
[21] Yuan X C, Klemperer S L, Teng W B, et al. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling [J]. Geology, 2003, 31(5): 435-438. doi: 10.1130/0091-7613(2003)031<0435:CSAEOT>2.0.CO;2
[22] Yin A, Nie S Y. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam Fault Systems, eastern Asia [J]. Tectonics, 1993, 12(4): 801-813. doi: 10.1029/93TC00313
[23] Lin S F, Li Z X. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault: Comment and Reply [J]. Geology, 1995, 23(6): 574-576. doi: 10.1130/0091-7613(1995)023<0574:CBTNAS>2.3.CO;2
[24] Li Z X. Collision between the North and South China blocks: A crustal-detachment model for suturing in the region east of the Tanlu fault [J]. Geology, 1994, 22(8): 739-742. doi: 10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
[25] Gilder S A, Leloup P H, Courtillot V, et al. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data [J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B7): 15365-15390. doi: 10.1029/1999JB900123
[26] Zhao X X, Coe R S. Palaeomagnetic constraints on the collision and rotation of North and South China [J]. Nature, 1987, 327(6118): 141-144. doi: 10.1038/327141a0
[27] 李曙光, Hart S R, 郑双根, 等. 中国华北、华南陆块碰撞时代的钐-钕同位素年龄证据[J]. 中国科学(B辑), 1989, 19(3):312-319
LI Shuguang, Hart S R, ZHENG Shuanggen, et al. Sm-Nd isotope age evidence of collision between North China and South China Blocks [J]. Science in China (Series B), 1989, 19(3): 312-319.
[28] Rowley D B, Xue F, Tucker R D, et al. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan: U/Pb zircon geochronology [J]. Earth & Planetary Science Letters, 1997, 151(3-4): 191-203.
[29] Zhang R Y, Liou J G, Ernst W G. The Dabie-Sulu continental collision zone: A comprehensive review [J]. Gondwana Research, 2009, 16(1): 1-26. doi: 10.1016/j.gr.2009.03.008
[30] Wu Y B, Zheng Y F. Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China [J]. Gondwana Research, 2013, 23(4): 1402-1428. doi: 10.1016/j.gr.2012.09.007
[31] Liu L, Liao X Y, Wang Y W, et al. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation [J]. Earth-Science Reviews, 2016, 159: 58-81. doi: 10.1016/j.earscirev.2016.05.005
[32] Ames L, Tilton G R, Zhou G Z. Timing of collision of the Sino-Korean and Yangtse cratons: U-Pb zircon dating of coesite-bearing eclogites [J]. Geology, 1993, 21(4): 339-342. doi: 10.1130/0091-7613(1993)021<0339:TOCOTS>2.3.CO;2
[33] 岳保静, 廖晶, 刘鸿, 等. 中朝-扬子板块碰撞结合带东部边界及海域延伸[J]. 海洋地质与第四纪地质, 2014, 34(1):75-85
YUE Baojing, LIAO Jing, LIU Hong, et al. East boundary of the collision belt between Sino-Korean and Yangtze Plates in Eastern China and their extension in the sea [J]. Marine Geology & Quaternary Geology, 2014, 34(1): 75-85.
[34] Zhang M H, Xu D S, Chen J W. Geological structure of the yellow sea area from regional gravity and magnetic interpretation [J]. Applied Geophysics, 2007, 4(2): 75-83. doi: 10.1007/s11770-007-0011-1
[35] 王志才, 晁洪太, 杜宪宋, 等. 南黄海北部千里岩断裂活动性初探[J]. 地震地质, 2008, 30(1):176-186 doi: 10.3969/j.issn.0253-4967.2008.01.012
WANG Zhicai, CHAO Hongtai, DU Xiansong, et al. Preliminary survey on the Quaternary activities of the Qianliyan Fault in the northern part of the South Yellow Sea [J]. Seismology and Geology, 2008, 30(1): 176-186. doi: 10.3969/j.issn.0253-4967.2008.01.012
[36] 胥颐, 李志伟, Kwanghee K, 等. 黄海的地壳速度结构与中朝-扬子块体拼合边界[J]. 地球物理学报, 2009, 52(3):646-652
XU Yi, LI Zhiwei, Kwanghee K, et al. Crustal velocity structure and collision boundary between the Sino-Korea and Yangtze blocks in the Yellow Sea [J]. Chinese Journal of Geophysics, 2009, 52(3): 646-652.
[37] Xu P F, Liu F T, Ye K, et al. Flake tectonics in the Sulu orogen in eastern China as revealed by seismic tomography [J]. Geophysical Research Letters, 2002, 29(10): 23-1-23-4. doi: 10.1029/2001GL014185
[38] 吴志强, 郝天珧, 张训华, 等. 扬子块体与华北块体在海区的接触关系——来自上下源、长排列多道地震剖面的新认识[J]. 地球物理学报, 2015, 58(5):1692-1705 doi: 10.6038/cjg20150520
WU Zhiqiang, HAO Tianyao, ZHANG Xunhua, et al. Contact relationships between the North China block and the Yangtze block: New constraints from upper/lower-source and long spread multi-channel seismic profiles [J]. Chinese Journal of Geophysics, 2015, 58(5): 1692-1705. doi: 10.6038/cjg20150520
[39] Lü Q T, Shi D N, Liu Z D, et al. Crustal structure and geodynamics of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas: Insights from deep seismic reflection profiling [J]. Journal of Asian Earth Sciences, 2015, 114: 704-716. doi: 10.1016/j.jseaes.2015.03.022
[40] 刘东鹰. 苏北-南黄海盆地的构造演化分析[J]. 石油天然气学报, 2010, 32(6):27-31 doi: 10.3969/j.issn.1000-9752.2010.06.006
LIU Dongying. Analysis on structural evolution of Northern Jiangsu-South Yellow Sea Basin [J]. Journal of Oil and Gas Technology, 2010, 32(6): 27-31. doi: 10.3969/j.issn.1000-9752.2010.06.006
[41] 庞玉茂, 张训华, 肖国林, 等. 下扬子南黄海沉积盆地构造地质特征[J]. 地质论评, 2016, 62(3):604-616
PANG Yumao, ZHANG Xunhua, XIAO Guolin, et al. Structural and Geological Characteristics of the South Yellow Sea Basin in Lower Yangtze Block [J]. Geological Review, 2016, 62(3): 604-616.
[42] 姚长利. 黄海及周边地区重磁震综合反演技术研究及重磁资料处理解释[R]. 青岛: 青岛海洋地质研究所, 2005.
YAO Changli. Inversion technique research and Gravity magnetic data processing interpretation in the Yellow Sea and around[R]. Qingdao: Qingdao Institute of Marine Geology, 2005.
[43] 李敏, 韩宗珠, 许红, 等. 南黄海千里岩岛榴辉岩的地球化学特征及成因分析[J]. 中国海洋大学学报, 2014, 44(11):59-66
LI Min, HAN Zongzhu, XU Hong, et al. Geochemistry and genesis of the eclogites form Qianliyan Island, South Yellow Sea [J]. Periodical of Ocean University of China, 2014, 44(11): 59-66.
[44] Zhang K, Lü Q T, Yan J Y, et al. The three-dimensional electrical structure and metallogenic prospect of the Ning (Nanjing)-Wu (Wuhu) basin and the southern adjacent area in eastern China [J]. Journal of Asian Earth Sciences, 2019, 173: 304-313. doi: 10.1016/j.jseaes.2019.01.032