碳酸盐晶格硫研究进展

李鑫, 曹红, 耿威, 孙治雷, 张喜林, 闫大伟, 秦双双, 徐翠玲, 张现荣, 翟滨, 王利波. 碳酸盐晶格硫研究进展[J]. 海洋地质与第四纪地质, 2020, 40(3): 119-131. doi: 10.16562/j.cnki.0256-1492.2019090801
引用本文: 李鑫, 曹红, 耿威, 孙治雷, 张喜林, 闫大伟, 秦双双, 徐翠玲, 张现荣, 翟滨, 王利波. 碳酸盐晶格硫研究进展[J]. 海洋地质与第四纪地质, 2020, 40(3): 119-131. doi: 10.16562/j.cnki.0256-1492.2019090801
LI Xin, CAO Hong, GENG Wei, SUN Zhilei, ZHANG Xilin, YAN Dawei, QIN Shuangshuang, XU Cuiling, ZHANG Xianrong, ZHAI Bin, WANG Libo. Research progress in carbonate associated sulfate[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 119-131. doi: 10.16562/j.cnki.0256-1492.2019090801
Citation: LI Xin, CAO Hong, GENG Wei, SUN Zhilei, ZHANG Xilin, YAN Dawei, QIN Shuangshuang, XU Cuiling, ZHANG Xianrong, ZHAI Bin, WANG Libo. Research progress in carbonate associated sulfate[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 119-131. doi: 10.16562/j.cnki.0256-1492.2019090801

碳酸盐晶格硫研究进展

  • 基金项目: 国家自然科学基金“冲绳海槽海底冷泉—热液系统相互作用及资源效应(91858208)”,“西南印度洋龙旂热液区硫化物风化蚀变中元素的迁移和富集”(41606086);青岛海洋科学与技术国家实验室开放基金“冲绳海槽弧后盆地热液金属硫化物的风化机理”(MMRZZ201809);国家海洋局生物遗传重点实验室开放基金“微生物诱导下的热液金属硫化物风化机理”(HY201809);中国地质调查局海洋地质调查二级项目(DD20190819)
详细信息
    作者简介: 李鑫(1996—),男,硕士研究生,地球化学专业,E-mail:lixin74@163.com
    通讯作者: 孙治雷(1975—),男,副研究员,主要从事深海矿产资源勘探与海洋地球化学研究,E-mail:zhileisun@yeah.net
  • 中图分类号: P736.4

Research progress in carbonate associated sulfate

More Information
  • 碳酸盐晶格硫(CAS)是古环境恢复的重要手段之一,它系指在碳酸盐成岩过程中微量的硫酸盐离子取代碳酸盐离子并保存在晶格中的硫酸盐。CAS对矿物沉淀发生时的海水硫酸根的氧、硫同位素组成、硫酸盐浓度和当时古环境的氧化还原状态都有很好的保存和记录作用,因此引发了对其持续关注,并开展了一系列卓有成效的研究。本文综述了CAS当前的研究进展,主要从前处理方法、影响因素、同位素组成和古环境恢复等重点问题来探讨CAS的成因和CAS对不同沉积环境的恢复应用,并展望了需要进一步研究的几点研究方向,希望借此能引起广大研究者的兴趣和重视。

  • 加载中
  • 图 1  δ34SCAS和δ18OCAS相关性分布图(数据来自文献[25])

    Figure 1. 

    图 2  CAS提取推荐流程图(CAS是碳酸盐晶格硫,CRS是铬还原性硫[2, 31]

    Figure 2. 

    图 3  CAS浓度和安提科斯提岛各物种同位素组成投点图[57]

    Figure 3. 

    图 4  墨西哥湾δ18OCAS和δ34SCAS斜率配分图(黑色十字SW代表现代海水同位素组成[48]

    Figure 4. 

    图 5  现代不同地区海底δ18OCAS和δ34SCAS斜率配分图(红色为文石,绿色为方解石[48]

    Figure 5. 

    图 6  CAS高分辨率硫同位素地层学研究[64, 74-75]

    Figure 6. 

    图 7  沃克湖1900―1995年的硫酸盐浓度[82]

    Figure 7. 

    图 8  沃克湖CAS和沃克湖硫酸盐浓度斜率配分图[82]

    Figure 8. 

    表 1  一些典型的CAS提取方法

    Table 1.  Typical methods of extraction of CAS

    样本时代采样地点主要的实验步骤碳酸盐岩类型文献来源
    寒武纪美国伊利诺斯(Illinois)样品粉末用去离子水冲洗两次,持续24 h,偶尔搅拌一下,而后小心的倒掉上层液体;把样品用4%NaClO溶液处理,混合好后,持续反应48 h,并伴随偶尔的搅拌;样品再用去18 MΩ离子水冲洗两次[32]
    古生代和中生代直接用NaCl进行处理生物成因碳酸盐岩和微晶方解石[1]
    新元古代晚期中国宜昌市50 g样品直接放到200 mLHCl(6 mol/L),12 h,过滤;加入5 g/(NH4)2(OH)Cl(1%)和两滴甲基橙,用NH4OH和盐酸调节pH,至溶液变为红色的[30]
    震旦纪晚期纳米比亚(Namibia)将样品浸入10%NaCl溶液中,5次,持续24 h,并且不停的搅拌,每次取出后用去离子水冲洗3次含硅质碎屑的碳酸盐岩[33]
    上三叠纪阿尔卑斯山脉东部和南部把样品浸入到10%NaCl溶液中搅拌24 h,过滤[34]
    古生代去离子水浸泡24~36 h[35]
    元古代中国天津蓟县在5.25%NaClO中冲洗24 h,然后用蒸馏水冲洗[29]
    古生代比利时乌拉尔山脉、北美
    中部和内华达州
    用去离子水淋洗两次,每次持续24 h;再用4% NaClO溶液处理48 h[36]
    下载: 导出CSV
  • [1]

    Kampschulte S, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates [J]. Chemical Geology, 2004, 204(3-4): 255-286. doi: 10.1016/j.chemgeo.2003.11.013

    [2]

    Wotte T, Strauss H, Fugmann A, et al. Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana [J]. Geochimica et Cosmochimica Acta, 2012, 85: 228-253. doi: 10.1016/j.gca.2012.02.013

    [3]

    Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction [J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5740-5752. doi: 10.1016/j.gca.2006.08.005

    [4]

    Staudt W J, Schoonen M A A. Sulfate incorporation into sedimentary carbonates[M]//Vairavamurthy M A, Schoonen M A A, Eglinton T I, et al. Geochemical Transformations of Sedimentary Sulfur. Washington, DC: American Chemical Society, 1995: 332-345.

    [5]

    Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean [J]. Science, 2010, 328(5974): 80-83. doi: 10.1126/science.1182369

    [6]

    Tostevin R, He T C, Turchyn A V, et al. Constraints on the late Ediacaran sulfur cycle from carbonate associated sulfate [J]. Precambrian Research, 2017, 290: 113-125. doi: 10.1016/j.precamres.2017.01.004

    [7]

    Guo Q J, Strauss H, Kaufman A J, et al. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition [J]. Geology, 2009, 37(5): 399-402. doi: 10.1130/G25423A.1

    [8]

    Schulz H D. Quantification of early diagenesis: Dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 73-124.

    [9]

    Canfield D E. Isotope fractionation by natural populations of sulfate-reducing bacteria [J]. Geochimica et Cosmochimica Acta, 2001, 65(7): 1117-1124. doi: 10.1016/S0016-7037(00)00584-6

    [10]

    Milliman J D. Marine Carbonates[M]. Berlin: Springer-Verlag, 1974.

    [11]

    Mackenzie F T, Bischoff W D, Bishop F C, et al. Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior[M]//Reeder R J. Carbonates: Mineralogy and Chemistry of Reviews in Mineralogy. Washington, DC: Mineralogical Society of America, 1983: 97-144.

    [12]

    Takano B. Geochemical implications of sulfate in sedimentary carbonates [J]. Chemical Geology, 1985, 49(4): 393-403. doi: 10.1016/0009-2541(85)90001-4

    [13]

    Burdett J W, Arthur M A, Richardson M. A Neogene seawater sulfur isotope age curve from calcareous Pelagic microfossils [J]. Earth and Planetary Science Letters, 1989, 94(3-4): 189-198. doi: 10.1016/0012-821X(89)90138-6

    [14]

    Pingitore Jr N E, Meitzner G, Love K M. Identification of sulfate in natural carbonates by x-ray absorption spectroscopy [J]. Geochimica et Cosmochimica Acta, 1995, 59(12): 2477-2483. doi: 10.1016/0016-7037(95)00142-5

    [15]

    Kah L C, Lyons T W, Frank T D. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere [J]. Nature, 2004, 431(7010): 834-838. doi: 10.1038/nature02974

    [16]

    Halverson G P, Hurtgen M T. Ediacaran growth of the marine sulfate reservoir [J]. Earth and Planetary Science Letters, 2007, 263(1-2): 32-44. doi: 10.1016/j.jpgl.2007.08.022

    [17]

    Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation [J]. Chemical Geology, 1980, 28: 199-260. doi: 10.1016/0009-2541(80)90047-9

    [18]

    Bottrell S H, Newton R J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes [J]. Earth-Science Reviews, 2006, 75(1-4): 59-83. doi: 10.1016/j.earscirev.2005.10.004

    [19]

    Garrels R M, Lerman A. Coupling of the sedimentary sulfur and carbon cycles; an improved model [J]. American Journal of Science, 1984, 284(9): 989-1007. doi: 10.2475/ajs.284.9.989

    [20]

    Wu N P, Farquhar J, Strauss H, et al. Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial [J]. Geochimica et Cosmochimica Acta, 2010, 74(7): 2053-2071. doi: 10.1016/j.gca.2009.12.012

    [21]

    Goldberg T, Shields G A, Newton R J. Analytical constraints on the measurement of the sulfur isotopic composition and concentration of trace sulfate in Phosphorites: implications for sulfur isotope studies of carbonate and phosphate rocks [J]. Geostandards and Geoanalytical Research, 2011, 35(2): 161-174. doi: 10.1111/j.1751-908X.2010.00102.x

    [22]

    Llyod R M. Oxygen-18 composition of oceanic sulfate [J]. Science, 1967, 156(3779): 1228-1231. doi: 10.1126/science.156.3779.1228

    [23]

    Turchyn A V, Schrag D P, Coccioni R, et al. Stable isotope analysis of the Cretaceous sulfur cycle [J]. Earth and Planetary Science Letters, 2009, 285(1-2): 115-123. doi: 10.1016/j.jpgl.2009.06.002

    [24]

    Maharjan D, Jiang G Q, Peng Y B, et al. Sulfur isotope change across the Early Mississippian K-O (Kinderhookian-Osagean) δ13C excursion [J]. Earth and Planetary Science Letters, 2018, 494: 202-215. doi: 10.1016/j.jpgl.2018.04.043

    [25]

    Gischler E, Heindel K, Birgel D, et al. Cryptic biostalactites in a submerged karst cave of the Belize Barrier Reef revisited: pendant bioconstructions cemented by microbial micrite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468: 34-51. doi: 10.1016/j.palaeo.2016.11.042

    [26]

    Peng Y B, Bao H M, Pratt L M, et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes [J]. Geology, 2014, 42(9): 815-818. doi: 10.1130/G35852.1

    [27]

    Shields G, Veizer J. Precambrian marine carbonate isotope database: version 1.1 [J]. Geochemistry, Geophysics, Geosystems, 2002, 3(6): 1 of 12-12 of 12. doi: 10.1029/2001GC000266

    [28]

    Shen B, Xiao S H, Bao H M, et al. Carbon, sulfur, and oxygen isotope evidence for a strong depth gradient and oceanic oxidation after the Ediacaran Hankalchough glaciation [J]. Geochimica et Cosmochimica Acta, 2011, 75(5): 1357-1373. doi: 10.1016/j.gca.2010.12.015

    [29]

    Chu X L, Zhang T, Strauss H, et al. Dynamic ocean chemistry around the Marinoan glaciation - isotopic evidence from cap carbonates [J]. Geochmica et Cosmochimica Acta, 2005.

    [30]

    Zhang T G, Chu X L, Zhang Q R, et al. Variations of sulfur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic [J]. Chinese Science Bulletin, 2003, 48(13): 1375-1380. doi: 10.1007/BF03184182

    [31]

    Wotte T, Shields-Zhou G A, Strauss H. Carbonate-associated sulfate: experimental comparisons of common extraction methods and recommendations toward a standard analytical protocol [J]. Chemical Geology, 2012, 326-327: 132-144. doi: 10.1016/j.chemgeo.2012.07.020

    [32]

    Labotka D M, Panno S V, Locke R A. A sulfate conundrum: dissolved sulfates of deep-saline brines and carbonate-associated sulfates [J]. Geochimica et Cosmochimica Acta, 2016, 190: 53-71. doi: 10.1016/j.gca.2016.06.033

    [33]

    Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings [J]. Chemical Geology, 2016, 438: 146-162. doi: 10.1016/j.chemgeo.2016.06.027

    [34]

    Prantl L, Schreml S, Fichtner-Feigl S, et al. Clinical and morphological conditions in capsular contracture formed around silicone breast implants [J]. Plastic and Reconstructive Surgery, 2007, 120(1): 275-284. doi: 10.1097/01.prs.0000264398.85652.9a

    [35]

    Wu N P, Farquhar J, Strauss H. δ34S and Δ33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate [J]. Earth and Planetary Science Letters, 2014, 399: 44-51. doi: 10.1016/j.jpgl.2014.05.004

    [36]

    Gill B C, Lyons T W, Jenkyns H C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 484-496. doi: 10.1016/j.jpgl.2011.10.030

    [37]

    Paris G, Fehrenbacher J S, Sessions A L, et al. Experimental determination of carbonate-associated sulfate δ34S in planktonic foraminifera shells [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1452-1461. doi: 10.1002/2014GC005295

    [38]

    Theiling B P, Coleman M. Refining the extraction methodology of carbonate associated sulfate: evidence from synthetic and natural carbonate samples [J]. Chemical Geology, 2015, 411: 36-48. doi: 10.1016/j.chemgeo.2015.06.018

    [39]

    Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle [J]. Geology, 2001, 29(9): 815-818. doi: 10.1130/0091-7613(2001)029<0815:EPCBAB>2.0.CO;2

    [40]

    Marenco P J, Corsetti F A, Hammond D E, et al. Oxidation of pyrite during extraction of carbonate associated sulfate [J]. Chemical Geology, 2008, 247(1-2): 124-132. doi: 10.1016/j.chemgeo.2007.10.006

    [41]

    Fichtner V, Strauss H, Mavromatis V, et al. Incorporation and subsequent diagenetic alteration of sulfur in Arctica islandica [J]. Chemical Geology, 2018, 482: 72-90. doi: 10.1016/j.chemgeo.2018.01.035

    [42]

    Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deepwater Gulf of Mexico [J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246. doi: 10.1016/S0016-7037(99)00292-6

    [43]

    Gill B C, Lyons T W, Frank T D. Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy [J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4699-4711. doi: 10.1016/j.gca.2008.07.001

    [44]

    梅洪明. 一个多层的早期成岩作用模型[J]. 科学通报, 1997, 42(16):1385-1387

    MEI Hongming. A multi-layer model for early diagenesis [J]. Chinese Science Bulletin, 1997, 42(16): 1385-1387.

    [45]

    Chopin C. Ultrahigh-pressure metamorphism: tracing continental crust into the mantle [J]. Earth and Planetary Science Letters, 2003, 212(1-2): 1-14. doi: 10.1016/S0012-821X(03)00261-9

    [46]

    Dogramaci S S, Herczeg A L, Schiff S L, et al. Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes [J]. Applied Geochemistry, 2001, 16(4): 475-488. doi: 10.1016/S0883-2927(00)00052-4

    [47]

    Marenco P J, Corsetti F A, Kaufman A J, et al. Environmental and diagenetic variations in carbonate associated sulfate: an investigation of CAS in the Lower Triassic of the western USA [J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1570-1582. doi: 10.1016/j.gca.2007.10.033

    [48]

    Feng D, Peng Y B, Bao H M, et al. A carbonate-based proxy for sulfate-driven anaerobic oxidation of methane [J]. Geology, 2016, 44(12): 999-1002. doi: 10.1130/G38233.1

    [49]

    Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane [J]. Geology, 2015, 43(7): 619-622. doi: 10.1130/G36688.1

    [50]

    Rennie V C F, Turchyn A V. The preservation of δ34SSO4 and δ18OSO4 in carbonate-associated sulfate during marine diagenesis: a 25 Myr test case using marine sediments [J]. Earth and Planetary Science Letters, 2014, 395: 13-23. doi: 10.1016/j.jpgl.2014.03.025

    [51]

    Mazumdar A, Goldberg T, Strauss H. Abiotic oxidation of pyrite by Fe(III) in acidic media and its implications for sulfur isotope measurements of lattice-bound sulfate in sediments [J]. Chemical Geology, 2008, 253(1-2): 30-37. doi: 10.1016/j.chemgeo.2008.03.014

    [52]

    Chavagnac V, Monnin C, Ceuleneer G, et al. Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantle peridotites in the Oman and Ligurian ophiolites [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2496-2522. doi: 10.1002/ggge.20147

    [53]

    James N P, Choquette P W. Diagenesis 9. Limestones- the meteoric diagenetic environment[M]//Scholle P A, James N P, Read J F. Carbonate Sedimentology and Petrology, Volume 4. Washington, DC: American Geophysical Union, 2013.

    [54]

    Paytan A, Kastner M, Campbell D, et al. Sulfur isotopic composition of Cenozoic seawater sulfate [J]. Science, 1998, 282(5393): 1459-1462. doi: 10.1126/science.282.5393.1459

    [55]

    Flügel E, Munnecke A. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application[M]. 2nd ed. Berlin, New York: Springer-Verlag, 2010.

    [56]

    Jones D S, Fike D A. Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ34S [J]. Earth and Planetary Science Letters, 2013, 363: 144-155. doi: 10.1016/j.jpgl.2012.12.015

    [57]

    Present T M, Paris G, Burke A, et al. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata [J]. Earth and Planetary Science Letters, 2015, 432: 187-198. doi: 10.1016/j.jpgl.2015.10.005

    [58]

    Howell K J, Bao H M. Caliche as a geological repository for atmospheric sulfate [J]. Geophysical Research Letters, 2006, 33(13): L13816. doi: 10.1029/2006GL026518

    [59]

    Jenkins K A, Bao H M. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA [J]. Atmospheric Environment, 2006, 40(24): 4528-4537. doi: 10.1016/j.atmosenv.2006.04.010

    [60]

    Shen B, Xiao S H, Kaufman A J, et al. Stratification and mixing of a post-glacial Neoproterozoic ocean: evidence from carbon and sulfur isotopes in a cap dolostone from Northwest China [J]. Earth and Planetary Science Letters, 2008, 265(1-2): 209-228. doi: 10.1016/j.jpgl.2007.10.005

    [61]

    Savarino J, Lee C C W, Thiemens M H. Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth [J]. Journal of Geophysical Research, 2000, 105(D23): 29079-29088. doi: 10.1029/2000JD900456

    [62]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [63]

    Böttcher M E, Parafiniuk J. Methane-derived carbonates in a native sulfur deposit: stable isotope and trace element discriminations related to the transformation of aragonite to calcite [J]. Isotopes in Environmental and Health Studies, 1998, 34(1-2): 177-190. doi: 10.1080/10256019708036345

    [64]

    He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals [J]. Nature Geoscience, 2019, 12(6): 468-474. doi: 10.1038/s41561-019-0357-z

    [65]

    Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process [J]. Annual Review of Microbiology, 2009, 63: 311-334. doi: 10.1146/annurev.micro.61.080706.093130

    [66]

    Niewöhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia [J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464. doi: 10.1016/S0016-7037(98)00055-6

    [67]

    Sun Z L, Cao H, Yin X J, et al. Precipitation and subsequent preservation of hydrothermal Fe-Mn oxides in distal plume sediments on Juan de Fuca Ridge [J]. Journal of Marine Systems, 2018, 187: 128-140. doi: 10.1016/j.jmarsys.2018.06.014

    [68]

    Emsbo P, Johnson C A. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins: comment and reply: COMMENT [J]. Geology, 2004, 32(1): e64. doi: 10.1130/0091-7613-32.1.e64

    [69]

    Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2-4): 362-407. doi: 10.1016/j.palaeo.2005.06.018

    [70]

    Liang Q Y, Hu Y, Feng D, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31-41. doi: 10.1016/j.dsr.2017.04.015

    [71]

    Fritz P, Basharmal G M, Drimmie R J, et al. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate [J]. Chemical Geology: Isotope Geoscience, 1989, 79(2): 99-105. doi: 10.1016/0168-9622(89)90012-2

    [72]

    Crémière A, Lepland A, Chand S, et al. Fluid source and methane-related diagenetic processes recorded in cold seep carbonates from the Alvheim channel, central North Sea [J]. Chemical Geology, 2016, 432: 16-33. doi: 10.1016/j.chemgeo.2016.03.019

    [73]

    Aharon P, Fu B S. Sulfur and oxygen isotopes of coeval sulfate-sulfide in pore fluids of cold seep sediments with sharp redox gradients [J]. Chemical Geology, 2003, 195(1-4): 201-218. doi: 10.1016/S0009-2541(02)00395-9

    [74]

    Hurtgen M T, Arthur M A, Suits N S, et al. The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball earth? [J]. Earth and Planetary Science Letters, 2002, 203(1): 413-429. doi: 10.1016/S0012-821X(02)00804-X

    [75]

    Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy [J]. Earth and Planetary Science Letters, 2004, 218(3-4): 331-345. doi: 10.1016/S0012-821X(03)00676-9

    [76]

    Dupraz C, Strasser A. Nutritional modes in coral: microbialite reefs (Jurassic, Oxfordian, Switzerland): evolution of trophic structure as a response to environmental change [J]. PALAIOS, 2002, 17(5): 449-471. doi: 10.1669/0883-1351(2002)017<0449:NMICMR>2.0.CO;2

    [77]

    Cirilli S, Iannace A, Jadoul F, et al. Microbial-serpulid build-ups in the Norian-Rhaetian of the western Mediterranean area: ecological response of shelf margin communities to stressed environments [J]. Terra Nova, 1999, 11(5): 195-202. doi: 10.1046/j.1365-3121.1999.00245.x

    [78]

    Rommerskirchen F, Eglinton G, Dupont L, et al. Glacial/interglacial changes in southern Africa: compound‐specific δ13C land plant biomarker and pollen records from southeast Atlantic continental margin sediments [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08010.

    [79]

    Riding R, Martin J M, Braga J C. Coral‐stromatolite reef framework, Upper Miocene, Almería, Spain [J]. Sedimentology, 1991, 38(5): 799-818. doi: 10.1111/j.1365-3091.1991.tb01873.x

    [80]

    Benson L. Fluctuation in the level of pluvial Lake Lahontan during the last 40, 000 years [J]. Quaternary Research, 1978, 9(3): 300-318. doi: 10.1016/0033-5894(78)90035-2

    [81]

    Beutel M W, Horne A J, Roth J C, et al. Limnological effects of anthropogenic desiccation of a large, saline lake, Walker Lake, Nevada [J]. Hydrobiologia, 2001, 466(1-3): 91-105.

    [82]

    Berelson W, Corsetti F, Johnson B, et al. Carbonate-associated sulfate as a proxy for lake level fluctuations: a proof of concept for Walker Lake, Nevada [J]. Journal of Paleolimnology, 2009, 42(1): 25-36. doi: 10.1007/s10933-008-9245-z

    [83]

    Chang H J, Chu X L, Huang J, et al. Terminal Ediacaran oceanic anoxia: evidence from framboidal pyrites in the cherts of Laobao Formation (South China) [J]. Geochimica et Cosmochimica Acta Supplement, 2009, 73(13): A208.

    [84]

    Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8

    [85]

    Sun Z L, Wu N Y, Cao H, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough [J]. Chemical Geology, 2019, 525: 190-209. doi: 10.1016/j.chemgeo.2019.07.025

  • 加载中

(8)

(1)

计量
  • 文章访问数:  2410
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2019-09-08
修回日期:  2019-11-05
刊出日期:  2020-06-25

目录