Transport characteristics of suspended sediment in Funing Bay during spring tide in winter
-
摘要:
基于2014年12月在福宁湾附近海域8个站位的同步水文泥沙观测资料,分析了冬季大潮期悬浮泥沙分布以及输运通量的变化规律,并结合理查森数、水体混合所需的势能、潮动力引起的水体势能变化率的计算结果,初步探讨了水体的垂向混合对于悬浮泥沙垂向分布的影响,研究了悬浮泥沙的输运机制。结果表明,从湾内到湾外,温度、盐度总体上呈现递增的趋势;平面上各站位悬浮泥沙浓度由湾内向湾外递减;潮周期内悬浮泥沙浓度变化存在不对称性,总体来说,湾内及湾口处(1#站除外)涨潮阶段悬浮泥沙浓度高,湾外(4#站除外)落潮阶段悬浮泥沙浓度较高。从湾内向湾外,随着水深的增加潮周期内水体的垂向混合逐渐减弱,悬沙浓度的垂向差异逐渐增大。悬浮泥沙输运在湾内及湾口整体表现为向陆输运,在湾外为向海输运。在湾内及湾口处,各分层悬浮泥沙的输运方向大多向陆,且量值较高,而湾外的悬浮泥沙输运方向在垂向上存在差异。由于潮流不对称以及悬浮泥沙的滞后效应引起的潮泵项输运对总的悬浮泥沙通量起主要贡献。
Abstract:Based on the simultaneous field observations at the eight stations near the area of Funing Bay in December of 2014, the variation in suspended sediment distribution pattern and transport flux during the winter spring tide was analyzed. Combined with the calculation results of the Richardson number, the water mixed potential energy, as well as the change rate of water potential energy caused by tidal power, the effects of vertical mixing of water bodies on the distribution of suspended sediment were also discussed, and the transport mechanism of suspended sediments was studied. The results show that the temperature and salinity increase from inside to outside of the bay, and the suspended sediment share the same trend. The concentration of suspended sediment is obviously asymmetrical during a tide cycle, that is, the concentration of suspended sediment is high during the flood tide inside and at the mouth of the bay except the No.1 station, while the concentration is high during the ebb tide outside the bay except the No. 4 station. From inside to outside of the bay, with the increase in water depth, the vertical mixing of water body gradually weakens, and the vertical difference of suspended sediment concentration gradually increases. The transport of suspended sediment is generally transited to the land inside and at the mouth of the bay, while the transport of suspended sediment is transited to the sea outside the bay. The vertical stratified transport direction is mostly landward with a higher value inside and at the mouth of the bay, while the suspended sediment transport direction is different in the vertical direction outside the bay. The tidal pump transport due to the asymmetry of tidal current and the hysteresis effect of suspended sediment plays a major role in the total suspended sediment transport.
-
Key words:
- suspended sediment /
- lamination and mixing /
- transport mechanism /
- Funing Bay
-
表 1 冬季大潮期海面风速观测表(1#、7#站)
Table 1. Observations of sea surface wind speed at No. 1 and No. 7 station during the winter spring tide
1#站 7#站 序号 时间 风速/(m/s) 风向 序号 时间 风速/(m/s) 风向 1 19:00 0.7 N 1 19:00 3.7 NE 2 21:00 1.6 W 2 21:00 3.0 N 3 1:00 1.7 S 3 1:00 0.8 S 4 4:00 1.4 SW 4 4:00 0.9 W 5 7:00 0.8 SW 5 7:00 2.2 SW 6 10:00 0.3 E 6 10:00 3.2 SE 7 13:00 2.6 SE 7 13:00 3.4 SE 8 16:00 2.6 NE 8 16:00 4.2 NE 9 19:00 2.3 NE 9 19:00 4.3 NE 表 2 各站位各层总悬浮泥沙输运通量中各输沙项占比(单位:%)
Table 2. Proportion of each sediment transport item in the total suspended sediment transport amount of each layer at each station (unit: %)
表层 0.2H 0.4H 0.6H 0.8H 底层 1# 平流输运项 86.9 67.4 69.7 68.8 113.3 216.1 潮泵项 13.2 32.8 30.6 31.3 24.1 124.0 2# 平流输运项 36.1 50.7 55.9 72.4 68.4 91.9 潮泵项 75.0 75.0 60.8 40.7 52.5 11.0 3# 平流输运项 42.4 37.8 37.5 35.2 30.4 82.2 潮泵项 57.8 63.5 63.5 68.7 80.7 138.8 4# 平流输运项 42.8 50.4 56.3 49.5 49.3 135.1 潮泵项 93.2 104.7 98.8 84.1 59.7 97.5 5# 平流输运项 46.0 54.8 58.4 60.9 72.3 143.2 潮泵项 58.9 57.0 58.2 51.2 48.8 48.8 6# 平流输运项 68.6 48.6 15.3 52.0 130.1 44.0 潮泵项 36.8 89.2 115.2 104.0 146.9 93.6 7# 平流输运项 48.9 37.2 12.1 33.3 42.7 51.4 潮泵项 95.6 96.5 90.1 71.8 59.9 53.1 8# 平流输运项 88.3 47.1 58.6 56.1 75.7 83.2 潮泵项 87.6 116.9 108.5 111.0 81.1 86.6 -
[1] 邢飞, 汪亚平, 高建华, 等. 江苏近岸海域悬沙浓度的时空分布特征[J]. 海洋与湖沼, 2010, 41(3):459-468 doi: 10.11693/hyhz201003025025
XING Fei, WANG Yaping, GAO Jianhua, et al. Seasonal distributions of the concentrations of suspended sediment along Jiangsu coastal sea [J]. Oceanologia et Limnologia Sinica, 2010, 41(3): 459-468. doi: 10.11693/hyhz201003025025
[2] 陈勇, 韩震, 杨丽君, 等. 长江口水体表层悬浮泥沙时空分布对环境演变的响应[J]. 海洋学报(中文版), 2012, 34(01):145-152
CHEN Yong, HAN Zhen, Yang Lijun, et al. The spatial and temporal distribution of suspended sediment concentration and its response to environmental change in the Changjiang Estuary [J]. Acta Oceanologica Sinica, 2012, 34(01): 145-152.
[3] 杨晓东. 乐清湾悬沙输移特性研究[D]. 浙江大学, 2010.
YANG Xiaodong. Study on transport characteristics of suspend sediment in Yueqing bay [D]. Zhejiang University, 2010.
[4] Prandle D. Tidal Characteristics of Suspended Sediment Concentrations [J]. Journal of Hydraulic Engineering, 1997, 123(4): 341-350. doi: 10.1061/(ASCE)0733-9429(1997)123:4(341)
[5] 石学法, 刘升发, 乔淑卿, 等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质, 2010, 30(4):19-30 doi: 10.3724/SP.J.1140.2010.04019
SHI Xuefa, LIU Shengfa, QIAO Shuqing, et al. Depositional feature sand paleoenvironmental records of the mud deposits in Min-Zhe coastal mud area, East China sea [J]. Marine Geology and Quaternary Geology, 2010, 30(4): 19-30. doi: 10.3724/SP.J.1140.2010.04019
[6] Liu G, J Zhu, Y Wang, H Wu, et al. Tripod measured residual currents and sediment flux: Impacts on the silting of the Deepwater Navigation Channel in the Changjiang Estuary [J]. Estuarine Coastal & Shelf Science, 2011, 93(3): 192-201.
[7] Li L, H Wu, J T Liu, et al. Sediment Transport Induced by the Advection of a Moving Salt Wedge in the Changjiang Estuary [J]. Journal of Coastal Research, 2014, 31(3): 671-679.
[8] 刘浩, 骆智斌, 潘伟然. 泉州湾水体结构的潮周期变化[J]. 台湾海峡, 2009, 28(3):316-320
LIU hao, LUO Zhibin, PAN Weiran. Intra tidal variation of the water column in Quanzhou Bay [J]. Journal of Oceanography in Taiwan Strait, 2009, 28(3): 316-320.
[9] 刘浩, 潘伟然. 渤海层化结构及潮汐锋面季节变化的数值研究[J]. 水科学进展, 2007(03):398-403 doi: 10.3321/j.issn:1001-6791.2007.03.015
LIU Hao, PAN Weiran. Numerical simulation of the seasonal variations of the stratification and tidal front in the Bohai Sea [J]. Adwannces in Water Science, 2007(03): 398-403. doi: 10.3321/j.issn:1001-6791.2007.03.015
[10] 李霞, 胡国栋, 时钟, 等. 长江口南支南港的北槽枯季水体中混合、层化与潮汐应变[J]. 水运工程, 2013(9):79-88 doi: 10.3969/j.issn.1002-4972.2013.09.018
LI Xia, HU Guodong, SHI Zhong, et al. Mixing, stratification and tidal straining in dry season within the north passage of the south branch / south channel of the Changjiang River estuary [J]. Port & Waterway Engineering, 2013(9): 79-88. doi: 10.3969/j.issn.1002-4972.2013.09.018
[11] Rippeth T P, Fisher N R, Simpson J H. The Cycle of Turbulent Dissipation in the Presence of Tidal Straining [J]. Journal of Physical Oceanography, 2001, 31(8): 2458-2471. doi: 10.1175/1520-0485(2001)031<2458:TCOTDI>2.0.CO;2
[12] 赵保仁, 曹德明, 李徽翡, 等. 渤海的潮混合特征及潮汐锋现象[J]. 海洋学报(中文版), 2001, 23(4):113-119
ZHAO Baoren, CAO Deming, and LI Weifei, et al. Tidal mixing characters and tidal fronts phenomenon in the Bohai sea [J]. Acta Oceanologica Sinica, 2001, 23(4): 113-119.
[13] 张开毕. 福建近岸浅海沉积物元素丰度及含量变化特征[J]. 福建地质, 2008, 27(04):392-401 doi: 10.3969/j.issn.1001-3970.2008.04.007
ZHANG Kaibi. Characteristics of the elemental abundance and content of near-shore neritic sediment in Fujian Province [J]. Geology of Fujian, 2008, 27(04): 392-401. doi: 10.3969/j.issn.1001-3970.2008.04.007
[14] 刘炜, 李奶姜, 李婕. 福宁湾水质状况及其水体富营养化的初步探讨[J]. 海洋通报, 2008(01):111-115 doi: 10.3969/j.issn.1001-6392.2008.01.016
LIU Wei, LI Naijiang, LI Jie. Preliminary analysis on the state of water and eutrophication in the Funing Bay [J]. Marine Science Bulletin, 2008(01): 111-115. doi: 10.3969/j.issn.1001-6392.2008.01.016
[15] 江甘兴. 福建海区的潮汐和潮流[J]. 台湾海峡, 1992(2):89-94
JIANG Ganxing. Tides and tidal currents in Fujian waters [J]. Journal of Oceanography in Taiwan Strait, 1992(2): 89-94.
[16] 曾定勇, 倪晓波, 黄大吉. 冬季浙闽沿岸流与台湾暖流在浙南海域的时空变化[J]. 中国科学: 地球科学, 2012, 42(07):1123-1134 doi: 10.1360/zd-2012-42-7-1123
ZENG Dingyong, NI Xiaobo, HUANG Daji. Temporal and spatial variability of the ZheMin Coastal Current and the Taiwan Warm Current in winter in the southern Zhejiang coastal sea (in Chinese) [J]. Scientia Sinica Terrae, 2012, 42(07): 1123-1134. doi: 10.1360/zd-2012-42-7-1123
[17] Guan B X. Patterns and Structures of the Currents in Bohai, Huanghai and East China Seas [J]. Oceanology of China Seas, 1994, 1: 17-26.
[18] Li X, Zhu J, Rui Y, et al. Sediment trapping in the Changjiang Estuary: Observations in the North Passage over a spring-neap tidal cycle [J]. Estuarine Coastal & Shelf Science, 2016, 177: 8-19.
[19] Yu Q, Y Wang, J Gao, et al. Turbidity maximum formation in a well-mixed macrotidal estuary: The role of tidal pumping [J]. Journal of Geophysical Research: Oceans, 2014, 119: 7705-7724. doi: 10.1002/2014JC010228
[20] Trowbridge J H. A simple description of the deepening and structure of a stably stratified flow driven by a surface stress [J]. Journal of Geophysical Research: Oceans, 1992, 97(C10): 15529-15543. doi: 10.1029/92JC01512
[21] Millero F J, Poisson A. International one-atmosphere equation of state of seawater [J]. Deep Sea Research Part A, Oceanographic Research Papers, 1981, 28: 625-629. doi: 10.1016/0198-0149(81)90122-9
[22] Simpson J H, Allen C M, Morris N C G. Fronts on the continental shelf [J]. Journal of Geophysical Research, 1978, 83(C9): 4607-4614. doi: 10.1029/JC083iC09p04607
[23] Simpson J H, Bowers D B. Models of stratification and frontal movement in shelf seas [J]. Deep Sea Research Part A, Oceanographic Research Papers, 1981, 28(7): 727-738. doi: 10.1016/0198-0149(81)90132-1
[24] Simpson J H, Brown J, Allen J M. Tidal Straining, Density Currents, and Stirring in the Control of Estuarine Stratification [J]. Estuaries, 1990, 13(2): 125-132. doi: 10.2307/1351581
[25] 童朝锋, 李磊, 孟艳秋, 等. 磨刀门水道枯季大潮水体层化混合分析[J]. 水利水运工程学报, 2018(01):48-57
TONG Chaofeng, LI Lei, MENG Yanqiu, et al. Analysis of stratification-mixing mechanism during spring tide of dry season in the Modaomen waterway [J]. Hydro-Science and Engineering, 2018(01): 48-57.
[26] Simpson J H, Burchard H, Fisher N R, et al. The semi-diurnal cycle of dissipation in a ROFI: Model-measurement comparisons [J]. Continental Shelf Research, 2002, 22(11): 1615-1628.
[27] 薛碧颖, 王厚杰, 张勇, 等. 闽北附近海域悬浮体输运及通量的季节变化[J]. 海洋地质与第四纪地质, 2018, 38(05):30-40
XUE Biying, WANG Houjie, ZHANG Yong, et al. Seasonal variations of suspended sediments in transport and flux in the coastal area of the northern Fujian Province [J]. Marine Geology and Quaternary Geology, 2018, 38(05): 30-40.
[28] 汪亚平, 高抒, 贾建军. 浪流联合作用下潮滩沉积动力过程的高分辨率数据采集与分析[J]. 科学通报, 2006, 51(03):339-348 doi: 10.3321/j.issn:0023-074X.2006.03.016
WANG Yaping, GAO Shu, JIA Jianjun. High-resolution data collection for analysis of sediment dynamic processes associated with combined current-wave action over intertidal flats [J]. Chinese Science Bulletin, 2006, 51(03): 339-348. doi: 10.3321/j.issn:0023-074X.2006.03.016
[29] 李远. 近期长江口北槽水沙特性及悬沙浓度垂向分布规律[D]. 2018.
LI Yuan. Recent characteristics of flow and suspended sediment and vertical sediment concentration distribution pattern in the North Passage of Yangtze Estuary [D]. 2018
[30] Geyer W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum [J]. Estuaries, 1993, 16(1): 113-125. doi: 10.1016/S0278-4343(98)00042-9
[31] 刘志宇. 强潮驱陆架海中的湍流与混合[D]. 中国海洋大学, 2009.
LIU Zhiyu. Turbulence and mixing in tidally energetic shelf sea [D]. Ocean University of China, 2009
[32] Howarth M J. The effect of stratification on tidal current profiles [J]. Continental Shelf Research, 1998, 18(11): 1235-1254. doi: 10.2307/1352769
[33] 鲍献文, 宋军, 姚志刚, 等. 北黄海潮流、余流垂直结构及其季节变化[J]. 中国海洋大学学报自然科学版, 2010, 40(11):11-18
BAO Xianwen, SONG Zhijun, YAO Zhigang, et al. The vertical structure and seasonal variation of the tide current and residual current in the North Yellow Sea [J]. Periodical of Ocean University of China, 2010, 40(11): 11-18.