南海IODP U1499和U1500站位浊积岩的沉积特征及岩石物理响应

苏晶, 钟广法. 南海IODP U1499和U1500站位浊积岩的沉积特征及岩石物理响应[J]. 海洋地质与第四纪地质, 2020, 40(3): 13-24. doi: 10.16562/j.cnki.0256-1492.2020012101
引用本文: 苏晶, 钟广法. 南海IODP U1499和U1500站位浊积岩的沉积特征及岩石物理响应[J]. 海洋地质与第四纪地质, 2020, 40(3): 13-24. doi: 10.16562/j.cnki.0256-1492.2020012101
SU Jing, ZHONG Guangfa. Sedimentary and petrophysical characteristics of various turbidites at IODP Sites U1499 and U1500 in the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 13-24. doi: 10.16562/j.cnki.0256-1492.2020012101
Citation: SU Jing, ZHONG Guangfa. Sedimentary and petrophysical characteristics of various turbidites at IODP Sites U1499 and U1500 in the northern South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(3): 13-24. doi: 10.16562/j.cnki.0256-1492.2020012101

南海IODP U1499和U1500站位浊积岩的沉积特征及岩石物理响应

  • 基金项目: 国家自然科学基金面上项目“南海北部洋陆过渡带的重力流沉积”(41876049)
详细信息
    作者简介: 苏晶(1994—),女,硕士研究生,主要从事大洋钻探岩芯-物性-测井数据解释,E-mail:sujing1218@tongji.edu.cn
    通讯作者: 钟广法(1964—),男,博士,教授,博导,主要从事地震、测井解释和沉积学方面的研究工作,E-mail:gfz@tongji.edu.cn
  • 中图分类号: P736.2

Sedimentary and petrophysical characteristics of various turbidites at IODP Sites U1499 and U1500 in the northern South China Sea

More Information
  • 深海浊流沉积是重要的油气和天然气水合物勘探目标,对古海洋、古环境、古构造乃至古气候等方面的研究具有重要的科学意义。前人对于浊积岩的研究多从沉积学角度进行,从岩石物理角度开展的相关研究很少。本文将岩芯宏观沉积学分析、薄片(或涂片)分析与岩石物性分析相结合,研究南海海盆北部IODP 367航次U1499、U1500站位浊流沉积的沉积特征和岩石物理响应。共识别出了3类浊积岩:钙质、陆源碎屑和陆源碎屑—钙质混积浊积岩,以陆源碎屑和混积浊积岩最发育。不同类型的浊积岩表现出不同的岩石物性特征:钙质浊积岩表现为低磁化率、高颜色反射率亮度、密度变化较大和低自然伽马;陆源碎屑浊积岩表现为低磁化率、中—低亮度、中—高密度、中—低自然伽马;混积浊积岩的磁化率、亮度和自然伽马变化大,密度中—高。南海海盆浊积岩的丰度在发育时间上以晚中新世和中—晚更新世最高,然后依次为早更新世、上新世和早—中中新世。晚中新世和中—晚更新世全球海平面总体处于低位时期,有利于浊积岩的发育。自晚中新世以来,南海海盆钙质浊积岩的丰度总体呈逐渐减少趋势,可能与南海海盆水深逐渐加大、碳酸盐沉积逐渐萎缩等因素有关。

  • 加载中
  • 图 1  研究区位置及IODP U1499和U1500站位分布图[8]

    Figure 1. 

    图 2  钙质浊积岩的岩心、薄片(左侧为单偏光,右侧为正交光)及物性特征

    Figure 2. 

    图 3  陆源碎屑浊积岩的岩心、薄片(左侧为单偏光,右侧为正交光)及物性特征

    Figure 3. 

    图 4  混积浊积岩的岩心、薄片(或涂片)(左侧为单偏光,右侧为正交光)及物性特征

    Figure 4. 

    图 5  典型浊积岩岩芯照片

    Figure 5. 

    图 6  U1499站位浊积岩的纵向分布序列及其与岩性和岩石物性参数之间的对应关系

    Figure 6. 

    图 7  U1500站位浊积岩的纵向分布序列及其与岩性和岩石物性参数之间的对应关系

    Figure 7. 

    图 8  IODP U1499与U1500站位不同地质年代钙质、陆源碎屑及混积浊积岩的发育丰度直方图(a-b)及全球海平面曲线(c)

    Figure 8. 

    图 9  U1499与U1500站位各类浊积岩的岩石物性参数分布直方图

    Figure 9. 

    图 10  U1499与U1500站位各类浊积岩的岩石物性参数交会图

    Figure 10. 

  • [1]

    陈峰, 蔡锋, 杨宝华, 等. 南海深海盆地沉积柱样中的浊流沉积[J]. 台湾海峡, 1992(4):339-344

    CHEN Feng, CAI Feng, YANG Baohua, et al. Fine-grained turbidite deposits from deep-sea basin in South China Sea [J]. Journal of Oceangraphy in Taiwan Strait, 1992(4): 339-344.

    [2]

    李粹中. 南海海盆北部平原受台湾西南陆坡浊流影响的证据[J]. 海洋通报, 1993, 12(1):103-105

    LI Cuizhong. Evidence of the northern plain of the South China Sea basin affected by the turbulence of the southwestern Taiwan slope [J]. Marine Science Bulletin, 1993, 12(1): 103-105.

    [3]

    章伟艳, 张富元, 张霄宇. 南海东部海域柱样沉积物浊流沉积探讨[J]. 热带海洋学报, 2003, 22(3):36-43 doi: 10.3969/j.issn.1009-5470.2003.03.006

    ZHANG Weiyan, ZHANG Fuyuan, ZHANG Xiaoyu. Characteristics of turbidity deposits from sediment cores in eastern South China Sea [J]. Journal of Tropical Oceanography, 2003, 22(3): 36-43. doi: 10.3969/j.issn.1009-5470.2003.03.006

    [4]

    张富元, 张霄宇, 杨群慧, 等. 南海东部海域的沉积作用和物质来源研究[J]. 海洋学报, 2005, 27(2):79-90

    ZHANG Fuyuan, ZHANG Xiaoyu, YANG Qunhui, et al. Research on sedimentations and material sources in the eastern South China Sea [J]. Acta Oceanologica Sinica, 2005, 27(2): 79-90.

    [5]

    Wetzel A, Unverricht D. A muddy megaturbidite in the deep central South China Sea deposited ~350 yrs BP [J]. Marine Geology, 2013, 346: 91-100. doi: 10.1016/j.margeo.2013.08.010

    [6]

    Li C, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349 [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.

    [7]

    Sun Z, Jian Z, Stock J M, et al. Proceedings of the International Ocean Discovery Program, 367, South China Sea Rifted Margin[R]. IODP College Station, Texas, 2018.

    [8]

    杨胜雄, 邱燕, 朱本铎. 南海地质地球物理图系(1:200万)[M]. 天津: 中国航海图书出版社, 2015.

    YANG Shengxiong, QIU Yan, ZHU Benduo. The atlas of geology and geophysics of the South China Sea (1:2000000)[M]. Tianjin: China Navigation Publications Press, 2015.

    [9]

    Stoner J S, Channell J E T, Hillaire-Marcel C. The magnetic signature of rapidly deposited detrital layers from the deep Labrador Sea: Relationship to North Atlantic Heinrich layers [J]. Paleoceanography, 1996, 11(3): 309-325.

    [10]

    Balsam W L, Deaton B C, Damuth J E. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores [J]. Marine Geology, 1999, 161: 141-153.

    [11]

    St-Onge G, Mulder T, Francus P, et al. Continuous physical properties of cored marine sediments [J]. Developments in Marine Geology, 2007, 1: 63-98. doi: 10.1016/S1572-5480(07)01007-X

    [12]

    Rider M H. The geological interpretation of well logs: Caithness (2nd edition)[M]. Whittles Publishing, 1996.

    [13]

    Haq B U, Hardenbol J, Vail P R. Chronology of Fluctuating Sea Levels Since the Triassic [J]. Science, 1987, 235(4793): 1156-1167.

    [14]

    Mix A C, Tiedemann R, Blum P, et al. Proceedings of the ODP, Initial Reports, 202[R]. Ocean Drilling Program, 2003.

    [15]

    Goldfinger C, Morey A E, Nelson C H, et al. Rupture lengths and temporal history of significant earthquakes on the offshore and north coast segments of the Northern San Andreas Fault based on turbidite stratigraphy [J]. Earth and Planetary Science Letters, 2007, 254: 9-27.

    [16]

    Weber M E, Reilly B T. Hemipelagic and turbiditic deposits constrain lower Bengal Fan depositional history through Pleistocene climate, monsoon, and sea level transitions [J]. Quaternary Science Reviews, 2018, 199: 159-173. doi: 10.1016/j.quascirev.2018.09.027

    [17]

    Prins M A, Postma G. Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea [J]. Geology, 2000, 28: 375-378.

    [18]

    Posamentier H W, Kolla V, 刘化清. 深水浊流沉积综述[J]. 沉积学报, 2019, 37(5):879-903

    Posamentier H W, Kolla V, Liu H. An overview of deep-water turbidite deposition [J]. Acta Sedimentologica Sinica, 2019, 37(5): 879-903.

    [19]

    Weaver P, Kuijpers A. Climatic control of turbidite deposition on the Madeira Abyssal Plain [J]. Nature, 1983, 306: 360-363. doi: 10.1038/306360a0

    [20]

    Wu S, Yang Z, Wang D, et al. Architecture, development and geological control of the Xisha carbonate platforms, northwestern South China Sea [J]. Marine Geology, 2014, 50: 71-83.

    [21]

    Wu S, Zhang X, Yang Z, et al. Spatial and temporal evolution of Cenozoic carbonate platforms on the continental margins of the South China Sea: Response to opening of the ocean basin [J]. Interpretation, 2016, 4: SP1-SP19.

    [22]

    吴时国, 朱伟林, 马永生. 南海半封闭边缘海碳酸盐台地兴衰史[J]. 海洋地质与第四纪地质, 2018, 38(6):1-17

    WU Shiguo, ZHU Weilin, MA Yongsheng. Vicissitude of Cenozoic carbonate platforms in the South China Sea: Sedimentation in semi-closed marginal seas [J]. Marine Geology & Quaternary Geology, 2018, 38(6): 1-17.

    [23]

    Shanmugam G, Moiola R J. Eustatic control of turbidites and winnowed turbidites [J]. Geology, 1982, 10: 231-235. doi: 10.1130/0091-7613(1982)10<231:ECOTAW>2.0.CO;2

  • 加载中

(10)

计量
  • 文章访问数:  2823
  • PDF下载数:  82
  • 施引文献:  0
出版历程
收稿日期:  2020-01-21
修回日期:  2020-03-30
刊出日期:  2020-06-25

目录