南海礼乐盆地新生代构造沉降特征及其成因分析

裴健翔, 施小斌, 王丽芳, 任自强, 谌永强, 史德锋, 刘奎, 赵鹏, 闫安菊. 南海礼乐盆地新生代构造沉降特征及其成因分析[J]. 海洋地质与第四纪地质, 2020, 40(4): 17-29. doi: 10.16562/j.cnki.0256-1492.2020030601
引用本文: 裴健翔, 施小斌, 王丽芳, 任自强, 谌永强, 史德锋, 刘奎, 赵鹏, 闫安菊. 南海礼乐盆地新生代构造沉降特征及其成因分析[J]. 海洋地质与第四纪地质, 2020, 40(4): 17-29. doi: 10.16562/j.cnki.0256-1492.2020030601
PEI Jianxiang, SHI Xiaobin, WANG Lifang, REN Ziqiang, SHEN Yongqiang, SHI Defeng, LIU Kui, ZHAO Peng, YAN Anju. Tectonic subsidence and its mechanism of the Liyue Basin, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 17-29. doi: 10.16562/j.cnki.0256-1492.2020030601
Citation: PEI Jianxiang, SHI Xiaobin, WANG Lifang, REN Ziqiang, SHEN Yongqiang, SHI Defeng, LIU Kui, ZHAO Peng, YAN Anju. Tectonic subsidence and its mechanism of the Liyue Basin, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 17-29. doi: 10.16562/j.cnki.0256-1492.2020030601

南海礼乐盆地新生代构造沉降特征及其成因分析

  • 基金项目: 国家科技重大专项课题(2017ZX05026-005);国家自然科学基金项目“南海北部陆缘异常构造沉降形成机制与破裂阶段热状态的数值模拟”(41776078);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104)
详细信息
    作者简介: 裴健翔(1970—),男,硕士,教授级高级工程师,主要从事南海油气勘探研究,E-mail:peijx001@163.com
    通讯作者: 施小斌(1970—),男,博士,研究员,主要从事地热地质与盆地定量分析研究,E-mail:xbshi@scsio.ac.cn
  • 中图分类号: P736.1

Tectonic subsidence and its mechanism of the Liyue Basin, South China Sea

More Information
  • 为深入认识礼乐盆地的构造演化史,基于已有钻井资料和重新处理解释的地震数据,对区内43个代表点进行了系统的沉降史重建,发现礼乐盆地新生代3个演化阶段分别具有快速、缓慢和快速的构造沉降特点,并且总构造沉降量与地壳减薄程度密切相关;礼乐滩礁体发育区晚渐新世以来构造沉降量为580~900 m,礁体厚度与构造沉降量和下伏沉积层厚度有关。分析表明礼乐盆地构造沉降具有“先抑后扬”的特征,礼乐地块裂离和漂移阶段,构造沉降受到深部热物质上涌产生的浮力作用而出现明显亏损,拗陷阶段,礼乐盆地随着南海海底扩张停止而失去深部浮力的支持,从而发生幕式的快速构造沉降,以补偿早期亏损的构造沉降。

  • 加载中
  • 图 1  礼乐盆地沉降分析代表点位置图(a)、礼乐滩实钻井位置图(b)及礼乐盆地构造区划与测线位置图(c)

    Figure 1. 

    图 2  礼乐盆地S-1钻井岩性柱状图(据文献[1]、[5]修改,S-1钻井位置见图1b

    Figure 2. 

    图 3  南海南部莫霍面埋深等值线图(a)及延伸入礼乐盆地的2条深部地壳结构剖面(b)

    Figure 3. 

    图 4  礼乐盆地地壳厚度(a)及拉张因子分布图(b)

    Figure 4. 

    图 5  地震测线G地层结构的时间剖面(a)与深度剖面(b)(G测线位置见图1c

    Figure 5. 

    图 6  南部坳陷模拟井构造沉降史

    Figure 6. 

    图 7  北1凹陷模拟井构造沉降史

    Figure 7. 

    图 8  礼乐滩礁体发育区构造沉降史

    Figure 8. 

    图 9  2口实钻井的沉降史曲线和沉降速率柱状图

    Figure 9. 

    图 10  礼乐盆地4口代表井的构造沉降史曲线与理论构造沉降史曲线图

    Figure 10. 

    表 1  模型参数值

    Table 1.  Parameter symbols and values in the model

    符号/单位参数物理含义参数值
    a/km岩石圈初始厚度125
    tc/km地壳初始厚度32
    ρw/kg·m−3海水密度1030
    ρc/kg·m−3地壳密度(0 ℃)2800
    ρm/ kg·m−3地幔密度(0 ℃)3330
    ρa/kg·m−3软流圈密度(1333 ℃)3185
    α/℃ −1热膨胀系数3.28×10-5
    岩层表面孔隙度
    砂岩0.49
    φ0泥岩0.63
    灰岩0.60
    岩层压实系数
    砂岩0.27×10−3/m
    c泥岩0.51×10−3/m
    灰岩0.53×10−3/m
    地层骨架密度
    砂岩2650
    ρ/kg·m−3泥岩2720
    灰岩2710
    下载: 导出CSV
  • [1]

    孙龙涛, 孙珍, 詹文欢, 等. 南沙海域礼乐盆地油气资源潜力[J]. 地球科学—中国地质大学学报, 2010, 35(1):137-145 doi: 10.3799/dqkx.2010.014

    SUN Longtao, SUN Zhen, ZHAN Wenhuan, et al. Petroleum potential prediction of the Lile Basin in Nansha [J]. Earth Science—Journal of China University of Geosciences, 2010, 35(1): 137-145. doi: 10.3799/dqkx.2010.014

    [2]

    杨树春, 仝志刚, 郝建荣, 等. 南海南部礼乐盆地构造热演化研究[J]. 大地构造与成矿学, 2009, 33(3):359-364 doi: 10.3969/j.issn.1001-1552.2009.03.005

    YANG Shuchun, TONG Zhigang, HAO Jianrong, et al. Tectono-thermal modeling of Lile Basin, Southern South China Sea [J]. Geotectonica et Metallogenia, 2009, 33(3): 359-364. doi: 10.3969/j.issn.1001-1552.2009.03.005

    [3]

    Yao Y J, Liu H L, Yang C P, et al. Characteristics and evolution of cenozoic sediments in the Liyue Basin, SE South China Sea [J]. Journal of Asian Earth Sciences, 2012, 60: 114-129. doi: 10.1016/j.jseaes.2012.08.003

    [4]

    吴智平, 刘雨晴, 张杰, 等. 中国南海礼乐盆地新生代断裂体系的发育与演化[J]. 地学前缘, 2018, 25(2):221-231

    WU Zhiping, LIU Yuqing, ZHANG Jie, et al. Cenozoic characteristics and evolution of fault systems in the Liyue basin, South China Sea [J]. Geoscience Frontiers, 2018, 25(2): 221-231.

    [5]

    Taylor B, Hayes D E. The tectonic evolution of the South China Basin[M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington DC: American Geophysical Union, 1980: 89-104.

    [6]

    姚伯初. 大陆岩石圈在张裂和分离时的变形模式[J]. 海洋地质与第四纪地质, 2002, 22(3):59-67

    YAO Bochu. Deformation characteristics of continental lithosphere when rifting and breaking-up [J]. Marine Geology & Quaternary Geology, 2002, 22(3): 59-67.

    [7]

    Sun Z, Zhong Z H, Keep M, et al. 3D analogue modeling of the South China Sea: a discussion on breakup pattern [J]. Journal of Asian Earth Sciences, 2009, 34(4): 544-556. doi: 10.1016/j.jseaes.2008.09.002

    [8]

    Cullen A, Reemst P, Henstra G, et al. Rifting of the South China Sea: New perspectives [J]. Petroleum Geoscience, 2010, 16(3): 273-282. doi: 10.1144/1354-079309-908

    [9]

    谢晓军, 张功成, 刘世翔, 等. 礼乐盆地漂移前的位置探讨[J]. 科学技术与工程, 2015, 15(2):8-13 doi: 10.3969/j.issn.1671-1815.2015.02.002

    XIE Xiaojun, ZHANG Gongchen, LIU Shixiang, et al. Discussion the pre-drifting position of the Liyue Basin [J]. Science Technology and Engineering, 2015, 15(2): 8-13. doi: 10.3969/j.issn.1671-1815.2015.02.002

    [10]

    Sibuet J C, Yeh Y C, Lee C S. Geodynamics of the South China Sea [J]. Tectonophysics, 2016, 692: 98-119. doi: 10.1016/j.tecto.2016.02.022

    [11]

    王良书, 施央申. 油气盆地地热研究[M]. 南京: 南京大学出版社, 1989: 10-50.

    WANG Liangshu, SHI Yangshen. Geothermal Research of Oil-gas Basins[M]. Nanjing: Nanjing University Press, 1989: 10-50.

    [12]

    高红芳, 曾祥辉, 刘振湖, 等. 南海礼乐盆地沉降史模拟及构造演化特征分析[J]. 大地构造与成矿学, 2005, 29(3):385-390 doi: 10.3969/j.issn.1001-1552.2005.03.014

    GAO Hongfang, ZENG Xianghui, LIU Zhenhu, et al. Smulating of subsidence history and analysis of tectonic evolutionary characteristics of Liyue Basin in South China Sea [J]. Geotectonica et Metallogenia, 2005, 29(3): 385-390. doi: 10.3969/j.issn.1001-1552.2005.03.014

    [13]

    李鹏春, 赵中贤, 张翠梅, 等. 南沙海域礼乐盆地沉积过程和演化[J]. 地球科学—中国地质大学学报, 2011, 36(5):837-844

    LI Pengchun, ZHAO Zhongxiang, ZHANG Cuimei, et al. Depositional process and evolution of Liyue Basin in southern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 837-844.

    [14]

    Tang X Y, Chen L, Hu S B, et al. Tectono-thermal Evolution of the Reed Bank Basin, Southern South China Sea [J]. Journal of Asian Earth Sciences, 2014, 96: 344-352. doi: 10.1016/j.jseaes.2014.09.030

    [15]

    Ding W W, Li J B, Dong C Z, et al. Oligocene–miocene carbonates in the reed Bank Area, South China Sea, and their tectono-sedimentary evolution [J]. Marine Geophysical Research, 2015, 36(2-3): 149-165. doi: 10.1007/s11001-014-9237-5

    [16]

    方鹏高, 丁巍伟, 方银霞, 等. 南海礼乐滩碳酸盐台地的发育及其新生代构造响应[J]. 地球科学—中国地质大学学报, 2015, 40(12):2062-2076

    FANG Penggao, DING Weiwei, FANG Yinxia, et al. Development of carbonate platform and its response to cenozoic tectonic in Reed Bank Area, the South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2015, 40(12): 2062-2076.

    [17]

    刘雨晴, 吴智平, 张杰, 等. 南海南部礼乐盆地结构演化及其对区域地质背景的响应[J]. 地质学报, 2018, 92(9):1766-1779 doi: 10.3969/j.issn.0001-5717.2018.09.002

    LIU Yuqing, WU Zhiping, ZHANG Jie, et al. Structural evolution of the Liyue basin in Southern South China sea and its response to the regional geological background [J]. Acta Geologica Sinica, 2018, 92(9): 1766-1779. doi: 10.3969/j.issn.0001-5717.2018.09.002

    [18]

    Steuer S, Franke D, Meresse F, et al. Oligocene–miocene carbonates and their role for constraining the rifting and collision history of the dangerous Grounds, South China Sea [J]. Marine and Petroleum Geology, 2014, 58: 644-657. doi: 10.1016/j.marpetgeo.2013.12.010

    [19]

    李家彪. 南海大陆边缘动力学: 科学实验与研究进展 [J]. 地球物理学报, 2011, 54 (12): 2993-3003 .

    LI Jiabiao. Dynamics of the continental margins of South China Sea: Scientific experiments and research progresses [J]. Chinese Journal of Geophysics, 2011, 54 (12): 2993-3003.

    [20]

    阮爱国, 牛雄伟, 丘学林, 等. 穿越南沙礼乐滩的海底地震仪广角地震试验[J]. 地球物理学报, 2011, 54(12):3139-3149 doi: 10.3969/j.issn.0001-5733.2011.12.014

    RUAN Aiguo, NIU Xiongwei, QIU Xuelin, et al. A wide angle ocean bottom seismometer profile across Liyue Bank, the Southern margin of South China Sea [J]. Chinese Journal of Geophysics, 2011, 54(12): 3139-3149. doi: 10.3969/j.issn.0001-5733.2011.12.014

    [21]

    Pichot T, Delescluse M, Chamot-Rooke N, et al. Deep crustal structure of the conjugate margins of the SW South China sea from wide-angle refraction Seismic data [J]. Marine and Petroleum Geology, 2014, 58: 627-643. doi: 10.1016/j.marpetgeo.2013.10.008

    [22]

    苏达权, 刘元龙, 陈雪, 等. 南海的三维莫霍界面[M]//张中杰, 译. 中国大陆地球深部结构与动力学研究. 北京: 科学出版社, 2004: 357-365.

    SU Daquan, LIU Yuanlong, CHEN Xue, et al. 3D Moho Depth of the South China Sea[M]//ZHANG Zhongjie, trans. Earths Deep Structure and Dynamic Researches of the Mainland China. Beijing: Science Press, 2004: 357-365.

    [23]

    Braitenberg C, Wienecke S, Wang Y. Basement Structures from Satellite-derived Gravity Field: South China Sea Ridge [J]. Journal of Geophysical Research, 2006: 111. doi: 10.1029/2005jb003938

    [24]

    Sclater J G, Christie P A F. Continental stretching: an explanation of the post-mid-cretaceous subsidence of the central North Sea basin [J]. Journal of Geophysical Research: Solid Earth, 1980, 85(B7): 3711-3739. doi: 10.1029/JB085iB07p03711

    [25]

    Shi X B, Kirby J, Yu C H, et al. Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia [J]. Gondwana Research, 2017, 42: 49-62. doi: 10.1016/j.gr.2016.10.005

    [26]

    Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic [J]. Science, 1987, 235(4793): 1156-1167. doi: 10.1126/science.235.4793.1156

    [27]

    Kudrass H R, Wiedicke M, Cepek P, et al. Mesozoic and cainozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions [J]. Marine and Petroleum Geology, 1986, 3(1): 19-30. doi: 10.1016/0264-8172(86)90053-X

    [28]

    罗威, 张道军, 刘新宇, 等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志, 2018, 42(4):485-498

    LUO Wei, ZHANG Daojun, LIU Xinyu, et al. A comprehensive stratigraphic study of well XK-1 in the Xisha area [J]. Journal of Stratigraphy, 2018, 42(4): 485-498.

    [29]

    Xie H, Zhou D, Li Y P, et al. Cenozoic tectonic subsidence in deepwater sags in the pearl river mouth Basin, Northern South China Sea [J]. Tectonophysics, 2014, 615-616: 182-198. doi: 10.1016/j.tecto.2014.01.010

    [30]

    张亚震, 李俊良, 裴健翔, 等. 礼乐盆地深水区新生代生物礁的发育条件与地震特征[J]. 海洋地质与第四纪地质, 2018, 38(6):108-117

    ZHANG Yazhen, LI Junliang, PEI Jiangxiang, et al. Development conditions and seismic characteristics of the cenozoic reef in the deepwater area of Liyue Basin, Southern South China sea [J]. Marine Geology & Quaternary Geology, 2018, 38(6): 108-117.

    [31]

    Steuer S, Franke D, Meresse F, et al. Time constraints on the evolution of southern palawan island, philippines from onshore and offshore correlation of Miocene limestones [J]. Journal of Asian Earth Sciences, 2013, 76: 412-427. doi: 10.1016/j.jseaes.2013.01.007

    [32]

    Aurelio M A, Forbes M T, Taguibao K J L, et al. Middle to late cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the South-eastern Margin of South China Sea: evidence from onshore structural and offshore seismic data [J]. Marine and Petroleum Geology, 2014, 58: 658-673. doi: 10.1016/j.marpetgeo.2013.12.002

    [33]

    Clift P, Lin J. Preferential mantle lithospheric extension under the South China margin [J]. Marine and Petroleum Geology, 2001, 18(8): 929-945. doi: 10.1016/S0264-8172(01)00037-X

    [34]

    付洁, 黎明碧, 唐勇, 等. 珠江口盆地白云凹陷裂后异常沉降研究及成因分析[J]. 海洋学研究, 2013, 31(1):1-15 doi: 10.3969/j.issn.1001-909X.2013.01.001

    FU Jie, LI Mingbi, TANG Yong, et al. Post-rift subsidence anomaly and its mechanism in the Baiyun Sag, Pearl River mouth basin [J]. Journal of Marine Sciences, 2013, 31(1): 1-15. doi: 10.3969/j.issn.1001-909X.2013.01.001

    [35]

    Xie X N, Müller R D, Li S T, et al. Origin of anomalous subsidence along the northern South China Sea margin and its relationship to dynamic topography [J]. Marine and Petroleum Geology, 2006, 23(7): 745-765. doi: 10.1016/j.marpetgeo.2006.03.004

    [36]

    Shi X B, Jiang H Y, Yang J, et al. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: implications for the development of the deep thermal anomaly [J]. Basin Research, 2017, 29(3): 340-362. doi: 10.1111/bre.12179

    [37]

    Jarvis G T, McKenzie D P. Sedimentary basin formation with finite extension rates [J]. Earth and Planetary Science Letters, 1980, 48(1): 42-52. doi: 10.1016/0012-821X(80)90168-5

    [38]

    李亚敏, 施小斌, 徐辉龙, 等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报: 地球科学版, 2012, 42(1):42-57, 65

    LI Yaming, SHI Xiaobin, XU Huilong, et al. Temporal and spatial distribution of tectonic subsidence and discussion on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan basin [J]. Journal of Jilin University: Earth Science Edition, 2012, 42(1): 42-57, 65.

    [39]

    杨军, 施小斌, 王振峰, 等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因[J]. 海洋地质与第四纪地质, 2015, 35(1):81-90

    YANG Jun, SHI Xiaobin, WANG Zhenfeng, et al. Origin of syn-rift subsidence deficit and rapid post-rift subsidence in Qiongdongnan basin [J]. Marine Geology & Quaternary Geology, 2015, 35(1): 81-90.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  1962
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2020-03-06
修回日期:  2020-04-25
刊出日期:  2020-08-25

目录