-
摘要:
地磁日变改正是海洋磁测资料处理过程中的一个重要环节。本文利用地磁场综合模型与IGRF模型联合计算了西太平洋某调查工区的地磁日变数据,对比分析了相同位置的海洋地磁日变站观测数据。使用两种不同类型的地磁日变数据,分别对该测区中15条测线进行了磁测数据处理,并对这些测线及其56个交叉点进行了误差分析。研究结果认为:①当用计算数据做海洋磁测的处理时,其交叉点内符合精度在调差前基本满足海洋地质规范的要求,在调差后完全符合海洋地质规范的要求,但使用计算数据的精度低于实测数据。②磁静时,计算日变曲线和实测日变曲线拟合程度高;磁扰时,两者幅值差异较大,磁扰越强相关系数越小。磁情指数K>4时的模型计算数据,建议谨慎使用或不使用。
Abstract:The correction of geomagnetic diurnal variation is an important step for marine magnetic data processing. In this paper, the geomagnetic diurnal variation data of a survey area in the western Pacific Ocean was calculated using the integrated model and the IGRF model, and the results were analyzed by comparing with the observation data from the same marine geomagnetic diurnal variation stations. Both of the two kinds of data were used to process the magnetic data for the 15 survey lines in the survey area, and error analyses are made for all the survey lines and their 56 intersections. The results suggest that: (1) When the calculated data is used for the processing of marine magnetic survey data, the accuracy of the intersection points basically meets the requirements of the specifications for marine geological survey before the adjustment, and completely meets the requirements of the specifications for marine geological survey after the adjustment, but the accuracy of the calculated data is lower than the measured data. (2) The calculated diurnal variation curve had higher fitting degree with the measured in magnetostatic condition, while the amplitude difference between them is larger in the case of magnetic disturbance, and correlation coefficient decreased with the enhancement of magnetic disturbance. The model calculated data of K>4 must be used with caution or never be used.
-
Key words:
- CM4 model /
- IGRF model /
- marine magnetic survey /
- diurnal variation correction /
- the western Pacific
-
表 1 K指数与两种日变曲线差值绝对值统计表
Table 1. Statistical of K index and absolute value of difference between two kinds of diurnal variation curves
差值绝对值(nT) K指数 0 1 2 3 4 平均值 2.97 3.79 5.85 6.81 12.77 最大值 13.68 19.30 21.56 27.45 36.67 表 2 两种磁异常差值绝对值统计表
Table 2. Statistical of absolute value of difference between two kinds of magnetic anomalies
差值绝对值(nT) 测线 a b c 平均值 3.08 5.23 12.98 最大值 7.94 20.25 28.09 -
[1] 安振昌. 区域和全球地磁场模型[J]. 地球物理学进展, 1995, 10(3):63-73
AN Zhenchang. Regional and global geomagnetic field models [J]. Progress in Geophysics, 1995, 10(3): 63-73.
[2] 焦新华, 吴燕冈. 重力与磁法勘探[M]. 北京: 地质出版社, 2009.
JIAO Xinhua, WU Yangang. Gravity and Magnetic Prospecting[M]. Beijing: Geological Publishing House, 2009.
[3] 徐行, 廖开训, 盛堰. 海底地磁日变观测站的设计与应用[J]. 海洋测绘, 2005, 25(1):67-69 doi: 10.3969/j.issn.1671-3044.2005.01.018
XU Xing, LIAO Kaixun, SHENG Yan. Technology and application of the geomagnetism observation mooring system on the seafloor [J]. Hydrographic Surveying and Charting, 2005, 25(1): 67-69. doi: 10.3969/j.issn.1671-3044.2005.01.018
[4] 廖开训, 徐行, 王功祥, 等. 不同方式地磁观测数据对磁测精度的影响分析[J]. 海洋测绘, 2017, 37(5):22-25 doi: 10.3969/j.issn.1671-3044.2017.05.004
LIAO Kaixun, XU Xing, WANG Gongxiang, et al. Analysis of effects made by using different geomagnetic observation data upon magnetic measurement precision [J]. Hydrographic Surveying and Charting, 2017, 37(5): 22-25. doi: 10.3969/j.issn.1671-3044.2017.05.004
[5] 徐行, 赵旭东, 王功祥, 等. 南海西南次海盆深海地磁观测潜标的数据分析[J]. 地球物理学报, 2017, 60(3):1179-1188 doi: 10.6038/cjg20170328
XU Xing, ZHAO Xudong, WANG Gongxiang, et al. Analysis of data from the deep-sea geomagnetic observation buoy in the southwest Subbasin of the South China Sea [J]. Chinese Journal of Geophysics, 2017, 60(3): 1179-1188. doi: 10.6038/cjg20170328
[6] 高金耀, 刘强, 翟国君, 等. 与海洋地磁日变改正有关的长期变化和磁扰的处理[J]. 海洋学报, 2009, 31(4):87-92
GAO Jinyao, LIU Qiang, ZHAI Guojun, et al. Processing of secular variation and disturbance related to marine geomagnetic diurnal variation correction [J]. Acta Oceanologica Sinica, 2009, 31(4): 87-92.
[7] Sager W W, Huang Y M, Tominaga M, et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies [J]. Nature Geoscience, 2019, 12(8): 661-666. doi: 10.1038/s41561-019-0390-y
[8] 徐文耀. 地磁活动K指数值量算和确定方法的改进[J]. 西北地震学报, 2005, 27(S1):36-41
XU Wenyao. Improvement of scaling and evaluating of K index [J]. Northwestern Seismological Journal, 2005, 27(S1): 36-41.
[9] 严大华, 周锦屏. K指数测量及其意义[J]. 地震地磁观测与研究, 1984, 5(4):11-17, 30
YAN Dahua, ZHOU Jinping. K index measurement and its significance [J]. Seismological and Geomagnetic Observation and Research, 1984, 5(4): 11-17, 30.
[10] 冯彦, 安振昌, 孙涵, 等. 利用地磁场综合模型CM4分析中国大陆地区地磁场变化[J]. 物理学报, 2010, 59(12):8941-8953 doi: 10.7498/aps.59.8941
FENG Yan, AN Zhenchang, SUN Han, et al. Analysis of variation in geomagnetic field of Chinese mainland based on comprehensive model CM4 [J]. Acta Physica Sinica, 2010, 59(12): 8941-8953. doi: 10.7498/aps.59.8941
[11] 李细顺, 高登平, 李琪, 等. CM4模型数据与台站实测数据的对比研究[J]. 震灾防御技术, 2015, 10(2):418-425 doi: 10.11899/zzfy20150223
LI Xishun, GAO Dengping, LI Qi, et al. Comparison of CM4 model data and the measured data of the station [J]. Technology for Earthquake Disaster Prevention, 2015, 10(2): 418-425. doi: 10.11899/zzfy20150223
[12] 冯春. Matlab实现IGRF国际地磁参考场模型的计算[J]. 内蒙古石油化工, 2014(12):43-46 doi: 10.3969/j.issn.1006-7981.2014.12.018
FENG Chun. International geomagnetic reference field model (IGRF) calculated by Matlab [J]. Inner Mongolia Petrochemical Industry, 2014(12): 43-46. doi: 10.3969/j.issn.1006-7981.2014.12.018
[13] 柴松均, 陈曙东, 张爽. 国际地磁参考场的计算与软件实现[J]. 吉林大学学报: 信息科学版, 2015, 33(3):280-285
CHAI Songjun, CHEN Shudong, ZHANG Shuang. Calculation and software realization of international geomagnetic reference field [J]. Journal of Jilin University: Information Science Edition, 2015, 33(3): 280-285.
[14] Sabaka T J, Olsen N, Langel R A. A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3 [J]. Geophysical Journal International, 2002, 151(1): 32-68. doi: 10.1046/j.1365-246X.2002.01774.x
[15] Sabaka T J, Olsen N, Purueker M E. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data [J]. Geophysical Journal International, 2004, 159(2): 521-547. doi: 10.1111/j.1365-246X.2004.02421.x
[16] 邢琮琮, 徐行, 陆镜辉, 等. 南海北部陆海台站地磁观测与磁场模型计算的对比分析[J]. 华南地震, 2019, 39(4):60-68
XING Congcong, XU Xing, LU Jinghui, et al. Comparative analysis of geomagnetic observation and magnetic field model calculation for land and marine stations in the northern South China Sea [J]. South China Journal of Seismology, 2019, 39(4): 60-68.
[17] GJB 7537-2012海洋磁力测量要求[S]. 2012.
GJB 7537-2012 Specification for marine magnetic survey[S]. 2012.
[18] 任来平, 王耿峰, 张哲, 等. 海洋磁力仪性能指标分析与测试[J]. 海洋测绘, 2016, 36(6):38-42 doi: 10.3969/j.issn.1671-3044.2016.06.009
REN Laiping, WANG Gengfeng, ZHANG Zhe, et al. Test and analysis of marine magnetometer performance [J]. Hydrographic Surveying and Charting, 2016, 36(6): 38-42. doi: 10.3969/j.issn.1671-3044.2016.06.009
[19] 常国宾, 边少锋. 海洋测量交叉点误差分析(一): 交叉点误差的确定[J]. 海洋测绘, 2015, 35(4):1-6 doi: 10.3969/j.issn.1671-3044.2015.04.001
CHANG Guobin, BIAN Shaofeng. Analysis of crossover errors in marine surveys, Part Ⅰ: The determination of crossover errors [J]. Hydrographic Surveying and Charting, 2015, 35(4): 1-6. doi: 10.3969/j.issn.1671-3044.2015.04.001
[20] 王庚. 地磁Kp指数现报模式及全球K指数分布预报模式[D]. 中国科学院大学硕士学位论文, 2015.
WANG Geng. Algorithm for nowcast of Kp index and a model for forecast of global K index distribution[D]. Master Dissertation of University of Chinese Academy of Sciences, 2015.
[21] 黄林峰, 黄江, 邓柏昌, 等. 利用单台地磁数据估算Ap和Kp指数的可行性分析[J]. 地震地磁观测与研究, 2011, 32(3):45-51 doi: 10.3969/j.issn.1003-3246.2011.03.008
HUANG Linfeng, HUANG Jiang, DENG Baichang, et al. The feasibility analysis of the Ap and Kp indices estimated using the geomagnetic data of a single station [J]. Seismological and Geomagnetic Observation and Research, 2011, 32(3): 45-51. doi: 10.3969/j.issn.1003-3246.2011.03.008