海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响

徐翠玲, 孙治雷, 吴能友, 赵广涛, 耿威, 曹红, 张现荣, 张喜林, 翟滨, 李鑫. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801
引用本文: 徐翠玲, 孙治雷, 吴能友, 赵广涛, 耿威, 曹红, 张现荣, 张喜林, 翟滨, 李鑫. 海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响[J]. 海洋地质与第四纪地质, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801
XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801
Citation: XU Cuiling, SUN Zhilei, WU Nengyou, ZHAO Guangtao, GENG Wei, CAO Hong, ZHANG Xianrong, ZHANG Xilin, ZHAI Bin, LI Xin. Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 1-13. doi: 10.16562/j.cnki.0256-1492.2020050801

海底泥火山的甲烷迁移与转化及其对海洋碳输入的影响

  • 基金项目: 国家自然科学基金“冲绳海槽泥火山甲烷迁移与转化的空间分布规律及其对海水碳输入的影响”(41906068),“冲绳海槽海底冷泉-热液系统相互作用及资源效应”(91858208);山东省泰山学者特聘专家计划(ts201712079);中国地质调查局海洋地质调查专项项目(DD20190819)
详细信息
    作者简介: 徐翠玲(1988―),女,助理研究员,主要从事海底冷泉地球化学研究,E-mail: xcl1130@163.com
    通讯作者: 吴能友(1965―),男,研究员,主要从事海洋地质与天然气水合物研究,E-mail: wuny@ms.giec.ac.cn
  • 中图分类号: P736.3

Methane migration and consumption in submarine mud volcanism and their impacts on marine carbon input

More Information
  • 海底通过泥火山释放的富甲烷流体是海洋甚至大气重要的碳源之一,对该系统内甲烷迁移与转化过程开展研究,有助于精确估算其碳排放总量。系统调研了国内外文献,认识到泥火山的碳排放具有强烈的时、空变化特征。在时间上,甲烷的排放主要发生在泥火山的喷发期和平静期,而在其消亡之后只出现微量的渗漏;在空间上,一个单独的泥火山中心、翼部和外缘分别发育强甲烷气泡泄漏、中等强度富甲烷和溶解无机碳(DIC)的流体泄漏以及大面积的DIC微渗漏;甲烷厌氧氧化和碳酸盐岩沉淀作用在翼部最强,对碳排放的拦截最有效,而在中心和外缘均较慢。全球陆坡和深水盆地沉积物通过泥火山向上释放的深部来源的甲烷通量为0.02 Pg C·a−1,这些碳可能引发海水缺氧、酸化和影响海-气交换通量,从而在千年尺度甚至更短时间内影响海洋吸收大气二氧化碳的能力。将来需要进一步对海底泥火山的发育数目和喷发周期进行统计,对不同类型的泥火山开展精细调查,以准确评估沉积物中自下而上的碳排放对海洋碳循环的影响,完善全球碳循环模式。

  • 加载中
  • 图 1  海底泥火山的分布、地貌和构造图

    Figure 1. 

    图 2  海底泥火山浅层沉积物中甲烷的迁移与转化示意图[32]

    Figure 2. 

    图 3  哥斯达黎加岸外冷泉区5个沉积柱站位的甲烷释放速率和转化速率[45]

    Figure 3. 

    图 4  海洋碳循环及海底冷泉活动对海洋碳循环的影响示意图

    Figure 4. 

    图 5  Håkon Mosby 泥火山上覆海水中的气态和溶解态甲烷分布[30]

    Figure 5. 

    表 1  巴伦支海Håkon Mosby泥火山中心到边缘不同生态分区的甲烷泄漏强度[15, 30-31]

    Table 1.  intensities of methane emission from the center to the edge of the Håkon Mosby Mud Volcanoin the Barents Sea[15, 30-31]

    生态分区 面积/
    m2
    对流速率/
    (cm·a−1
    深部甲烷泄漏 AOM 海底甲烷通量/
    (106 mol·a−1
    通量/
    (mol·m-2·a−1
    流量/
    (106 mol·a−1
    速率/
    (mol·m−2·a−1
    总速率/
    (106 mol·a−1
    效率/
    %
    泥火山中心 300~600
    高热流区 14 >182.5 2.6 1.8 0.04 1 2.6
    次高热流区 101 22.3~28.5 2.6 1.1 0.1 4 2.4
    气泡羽流 8~35 0 0 8~35
    Beggiatoa
    密集菌席 30 60~100 32.1 0.9 3.6 0.1 12 0.8
    斑状菌席 55 0.6 0.07 12 0.5
    灰色菌席
    菌席 80 13.1 1 3.9 0.3 32 0.7
    菌席附近 60 >102.2 6.2 6.2
    管状虫
    Siboglinid 410 40 8.4 3.3 7.6 3.1 93 0.2
    合计 750 17.3aq+(8~35)g 3.8 22 13.5aq+(8~35)g
     注:下标aq表示溶解态,g表示气态
    下载: 导出CSV

    表 2  不同海域海底泥火山的溶解态甲烷泄漏强度统计

    Table 2.  Statistics of the intensities of dissolved methane seepage from mud volcanoes in different sea areas

    泥火山 面积/km2 流体对流速率/
    (cm·a−1
    深部来源甲烷流量/
    (106 mol·a−1
    AOM速率/
    (106 mol·a−1
    AOM效率/%
    海底甲烷流量/
    (106 mol·a−1
    参考文献
    黑海
    Dvurechenskii泥火山 3 8~25 8.9 7 73~84 1.9 [11]
    Dvurechenskii泥火山 30~150 19~27 14 50~70 13 [33]
    巴伦支海
    Håkon Mosby泥火山 0.75 40~530 17.3 3.8 22 13.5 [15, 31]
    巴巴多斯岸外
    Atalante泥火山 10~150 6.5 [11]
    Cyclops泥火山 7~50 0.6
    哥斯达黎加岸外
    Mound 12 5 10 0.4 [34]
    Mound 11 - 5 0.07
    Mound Culebra 5 - 0.6
    格雷仕湾
    Carlos Ribeiro 1.77 0.4~4 0.1 0.085 85 0.015 [35]
    Cap. Arutyunov 3.14 10~15 0.006 [36]
    Ginsburg泥火山 3 [16]
    Bonjardim泥火山 0.8 1.3
    下载: 导出CSV
  • [1]

    Kopf A J. Significance of mud volcanism [J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52.

    [2]

    Dimitrov L I. Mud volcanoes—the most important pathway for degassing deeply buried sediments [J]. Earth Science Reviews, 2002, 59(1-4): 49-76. doi: 10.1016/S0012-8252(02)00069-7

    [3]

    Zheng G D, Ma X X, Guo Z F, et al. Gas geochemistry and methane emission from Dushanzi mud volcanoes in the southern Junggar Basin, NW China [J]. Journal of Asian Earth Sciences, 2017, 149: 184-190. doi: 10.1016/j.jseaes.2017.08.023

    [4]

    Etiope G, Milkov A V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere [J]. Environmental Geology, 2004, 46(8): 997-1002. doi: 10.1007/s00254-004-1085-1

    [5]

    马向贤, 郑国东, 郭正府, 等. 准噶尔盆地南缘独山子泥火山温室气体排放通量[J]. 科学通报, 2014, 59(32):3190-3196 doi: 10.1360/N972014-00361

    MA Xiangxian, ZHENG Guodong, GUO Zhengfu, et al. Estimation of greenhouse gas flux from mud volcanoes in the Dushanzi area, southern Junggar Basin of Northwest China [J]. Chinese Science Bulletin, 2014, 59(32): 3190-3196. doi: 10.1360/N972014-00361

    [6]

    陈多福, 李绪宣, 夏斌. 南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J]. 地球物理学报, 2004, 47(3):483-489 doi: 10.3321/j.issn:0001-5733.2004.03.018

    CHEN Duofu, LI Xuxuan, XIA Bin. Distribution of gas hydrate stable zones and resource prediction in the Qiongdongnan basin of the South China Sea [J]. Chinese Journal of Geophysics, 2004, 47(3): 483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018

    [7]

    何家雄, 祝有海, 翁荣南, 等. 南海北部边缘盆地泥底辟及泥火山特征及其与油气运聚关系[J]. 地球科学, 2010, 35(1):75-86

    HE Jiaxiong, ZHU Youhai, WENG Rongnan, et al. Characters of North-West Mud Diapirs volcanoes in South China Sea and relationship between them and accumulation and migration of oil and gas [J]. Earth Science, 2010, 35(1): 75-86.

    [8]

    阎贫, 王彦林, 郑红波, 等. 东沙群岛西南海区泥火山的地球物理特征[J]. 海洋学报, 2014, 36(7):142-148

    YAN Pin, WANG Yanlin, ZHENG Hongbo, et al. Geophysical features of mud volcanoes in the waters southwest of the Dongsha islands [J]. Acta Oceanologica Sinica, 2014, 36(7): 142-148.

    [9]

    Xu C L, Sun Z L, Geng W, et al. Thermal recovery method of submarine gas hydrate based on a thermoelectric generator [J]. China Geology, 2018, 1(4): 568-569. doi: 10.31035/cg2018068

    [10]

    Sun Z L, Cao H, Geng W, et al. A three-dimensional environmental monitoring system for the production of marine gas hydrates [J]. China Geology, 2018, 1(4): 570-571. doi: 10.31035/cg2018066

    [11]

    Wallmann K, Drews M, Aloisi G, et al. Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes [J]. Earth & Planetary Science Letters, 2006, 248(1-2): 545-560.

    [12]

    Niemann H, Duarte J, Hensen C, et al. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz [J]. Geochimica Et Cosmochimica Acta, 2006, 70(21): 5336-5355. doi: 10.1016/j.gca.2006.08.010

    [13]

    Wan Z F, Yao Y J, Chen K W, et al. Characterization of mud volcanoes in the northern Zhongjiannan Basin, western South China Sea [J]. Geological Journal, 2019, 54(1): 177-189. doi: 10.1002/gj.3168

    [14]

    Dupré S, Buffet G, Mascle J, et al. High-resolution mapping of large gas emitting mud volcanoes on the Egyptian continental margin (Nile Deep Sea Fan) by AUV surveys [J]. Marine Geophysical Research, 2008, 29(4): 275-290. doi: 10.1007/s11001-009-9063-3

    [15]

    de Beer D, Sauter E, Niemann H, et al. In situ fluxes and zonation of microbial activity in surface sediments of the Håkon Mosby Mud Volcano [J]. Limnology & Oceanography, 2006, 51(3): 1315-1331.

    [16]

    Hensen C, Nuzzo M, Hornibrook E, et al. Sources of mud volcano fluids in the Gulf of Cadiz—indications for hydrothermal imprint [J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1232-1248. doi: 10.1016/j.gca.2006.11.022

    [17]

    Mazzini A, Etiope G. Mud volcanism: An updated review [J]. Earth-Science Reviews, 2017, 168: 81-112. doi: 10.1016/j.earscirev.2017.03.001

    [18]

    ZHANG J, LEI H Y, CHEN Y, et al. Carbon and oxygen isotope composition of carbonate in bulk sediment in the southwest Taiwan Basin, South China Sea: methane hydrate decomposition history and its link to mud volcano eruption [J]. Marine & Petroleum Geology, 2018, 98: 687-696.

    [19]

    Yan P, Wang Y L, Liu J, et al. Discovery of the southwest Dongsha Island mud volcanoes amid the northern margin of the South China Sea [J]. Marine & Petroleum Geology, 2017, 88: 858-870.

    [20]

    Chen J X, Song H B, Guan Y X, et al. Morphologies, classification and genesis of pockmarks, mud volcanoes and associated fluid escape features in the northern Zhongjiannan Basin, South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 106-117. doi: 10.1016/j.dsr2.2015.11.007

    [21]

    Ciais P, Sabine C, Bala G, et al. Carbon and other biogeochemical cycles[M]//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 465-570.

    [22]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [23]

    冯东, 陈多福, 苏正, 等. 海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征[J]. 现代地质, 2005, 19(1):26-32 doi: 10.3969/j.issn.1000-8527.2005.01.004

    FEND Dong, CHEN Duofu, SU Zheng, et al. Characteristics of cold seep carbonates and microbial processes in gas seep system [J]. Geoscience, 2005, 19(1): 26-32. doi: 10.3969/j.issn.1000-8527.2005.01.004

    [24]

    Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021

    [25]

    Caprais J C, Lanteri N, Crassous P, et al. A new CALMAR benthic chamber operating by submersible: First application in the cold-seep environment of Napoli mud volcano (Mediterranean Sea) [J]. Limnology & Oceanography Methods, 2010, 8(6): 304-312.

    [26]

    Sun M S, Zhang G L, Ma X, et al. Dissolved methane in the East China Sea: Distribution, seasonal variation and emission [J]. Marine Chemistry, 2018, 202: 12-26. doi: 10.1016/j.marchem.2018.03.001

    [27]

    孙治雷, 魏合龙, 王利波, 等. 海底冷泉系统的碳循环问题及探测[J]. 应用海洋学报, 2016, 35(3):442-450

    SUN Zhilei, WEI Helong, WANG Libo, et al. Focus issues of carbon cycle and detecting technologies in seafloor cold seepages [J]. Journal of Applied Oceanography, 2016, 35(3): 442-450.

    [28]

    Judd A, Hovland M. Seabed Fluid Flow—the Impact on Geology, Biology and the Marine Environment[M]. Cambridge: Cambridge University Press, 2007:195-205.

    [29]

    Milkov A V, Vogt P R, Crane K, et al. Geological, geochemical, and microbial processes at the hydrate-bearing Hakon Mosby mud volcano: a review [J]. Chemical Geology, 2004, 205(3-4): 347-366. doi: 10.1016/j.chemgeo.2003.12.030

    [30]

    Sauter E J, Muyakshin S I, Charlou J L, et al. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles [J]. Earth & Planetary Science Letters, 2006, 243(3-4): 354-365.

    [31]

    Felden J, Wenzhöfer F, Feseker T, et al. Transport and consumption of oxygen and methane in different habitats of the Håkon Mosby Mud Volcano (HMMV) [J]. Limnology & Oceanography, 2010, 55(6): 2366-2380.

    [32]

    Bohrmann G, Torres M E. Gas hydrates in marine sediments[M]//Schulz H, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer-Verlag, 2006: 481-512.

    [33]

    Lichtschlag A, Felden J, Wenzhöfer F, et al. Methane and sulfide fluxes in permanent anoxia: in situ studies at the Dvurechenskii mud volcano (Sorokin Trough, Black Sea) [J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5002-5018. doi: 10.1016/j.gca.2010.05.031

    [34]

    Linke P, Wallmann K, Suess E, et al. In situ benthic fluxes from an intermittently active mud volcano at the Costa Rica convergent margin [J]. Earth & Planetary Science Letters, 2005, 235(1-2): 79-95.

    [35]

    Vanneste H, Kelly-Gerreyn B A, Connelly D P, et al. Spatial variation in fluid flow and geochemical fluxes across the sediment–seawater interface at the Carlos Ribeiro mud volcano (Gulf of Cadiz) [J]. Geochimica Et Cosmochimica Acta, 2011, 75(4): 1124-1144. doi: 10.1016/j.gca.2010.11.017

    [36]

    Sommer S, Linke P, Pfannkuche O, et al. Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyunov mud volcano (Gulf of Cadiz) [J]. Marine Ecology Progress Series, 2009, 382: 69-86. doi: 10.3354/meps07956

    [37]

    Praeg D, Ceramicola S, Barbieri R, et al. Tectonically-driven mud volcanism since the late Pliocene on the Calabrian accretionary prism, central Mediterranean Sea [J]. Marine & Petroleum Geology, 2009, 26(9): 1849-1865.

    [38]

    Toyos M H, Medialdea T, León R, et al. Evidence of episodic long-lived eruptions in the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes, Gulf of Cádiz [J]. Geo Marine Letters, 2016, 36(3): 197-214. doi: 10.1007/s00367-016-0440-z

    [39]

    黄华谷, 邸鹏飞, 陈多福. 泥火山的全球分布和研究进展[J]. 矿物岩石地球化学通报, 2011, 30(2):189-197 doi: 10.3969/j.issn.1007-2802.2011.02.010

    HUANG Huagu, DI Pengfei, CHEN Duofu. Global distribution and research progress of mud volcanoes [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(2): 189-197. doi: 10.3969/j.issn.1007-2802.2011.02.010

    [40]

    Deville E, Guerlais S H. Cyclic activity of mud volcanoes: Evidences from Trinidad (SE Caribbean) [J]. Marine & Petroleum Geology, 2009, 26(9): 1681-1691.

    [41]

    王家生, Suess E. 天然气水合物伴生的沉积物碳、氧稳定同位素示踪[J]. 科学通报, 2002, 47(15):1172-1176 doi: 10.3321/j.issn:0023-074X.2002.15.012

    WANG Jiasheng, Suess E. Carbon and oxygen stable isotope tracing of sediments associated with gas hydrate [J]. Chinese Science Bulletin, 2002, 47(15): 1172-1176. doi: 10.3321/j.issn:0023-074X.2002.15.012

    [42]

    Sun Z L, Wei H L, Zhang X H, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    [43]

    Luo M, Torres M E, Hong W L, et al. Impact of iron release by volcanic ash alteration on carbon cycling in sediments of the northern Hikurangi margin [J]. Earth and Planetary Science Letters, 2020, 541: 116288. doi: 10.1016/j.jpgl.2020.116288

    [44]

    Egger M, Hagens M, Sapart C J, et al. Iron oxide reduction in methane-rich deep Baltic Sea sediment [J]. Geochimica et Cosmochimica Acta, 2017, 207: 256-276. doi: 10.1016/j.gca.2017.03.019

    [45]

    Karaca D, Hensen C, Wallmann K. Controls on authigenic carbonate precipitation at cold seeps along the convergent margin off Costa Rica [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08S27.

    [46]

    Lein A Y, Pimenov N V, Savviechev A S, et al. Methane as a source of organic matter and carbon dioxide of carbonates at a cold seep in the Norway Sea [J]. Geochemistry International, 2000, 38(3): 232-245.

    [47]

    Niemann H, Linke P, Knittel K, et al. Methane-carbon flow into the benthic food web at cold seeps – A case study from the costa Rica Subduction zone [J]. PLoS One, 2013, 8(10): e74894. doi: 10.1371/journal.pone.0074894

    [48]

    Haese R R, Meile C, van Cappellen P, et al. Carbon geochemistry of cold seeps: Methane fluxes and transformation in sediments from Kazan mud volcano, eastern Mediterranean Sea [J]. Earth and Planetary Science Letters, 2003, 212(3-4): 361-375. doi: 10.1016/S0012-821X(03)00226-7

    [49]

    Wang X C, Chen R F, Whelan J, et al. Contribution of "Old" carbon from natural marine hydrocarbon seeps to sedimentary and dissolved organic carbon pools in the Gulf of Mexico [J]. Geophysical Research Letters, 2001, 28(17): 3313-3316. doi: 10.1029/2001GL013430

    [50]

    Pohlman J W, Bauer J E, Waite W F, et al. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans [J]. Nature Geoscience, 2011, 4(1): 37-41. doi: 10.1038/ngeo1016

    [51]

    Hung C W, Huang K H, Shih Y Y, et al. Benthic fluxes of dissolved organic carbon from gas hydrate sediments in the northern South China Sea [J]. Scientific Reports, 2016, 6: 29597. doi: 10.1038/srep29597

    [52]

    Stadnitskaia A, Muyzer G, Abbas B, et al. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea [J]. Marine Geology, 2005, 217(1-2): 67-96. doi: 10.1016/j.margeo.2005.02.023

    [53]

    Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the Gulf of Cadiz [J]. Sedimentary Geology, 2012, 243-244: 155-168. doi: 10.1016/j.sedgeo.2011.10.013

    [54]

    Tamborrino L, Himmler T, Elvert M, et al. Formation of tubular carbonate conduits at Athina mud volcano, eastern Mediterranean Sea [J]. Marine and Petroleum Geology, 2019, 107: 20-31. doi: 10.1016/j.marpetgeo.2019.05.003

    [55]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [56]

    Ruffine L, Germain Y, Polonia A, et al. Pore water geochemistry at two seismogenic areas in the Sea of Marmara [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(7): 2038-2057. doi: 10.1002/2015GC005798

    [57]

    Mazumdar A, Peketi A, Joao H M, et al. Pore-water chemistry of sediment cores off Mahanadi Basin, Bay of Bengal: Possible link to deep seated methane hydrate deposit [J]. Marine & Petroleum Geology, 2014, 49: 162-175.

    [58]

    Haese R R, Hensen C, de Lange G J. Pore water geochemistry of eastern Mediterranean mud volcanoes: Implications for fluid transport and fluid origin [J]. Marine Geology, 2006, 225(1-4): 191-208. doi: 10.1016/j.margeo.2005.09.001

    [59]

    Aloisi G, Drews M, Wallmann K, et al. Fluid expulsion from the Dvurechenskii mud volcano (Black Sea): Part I. Fluid sources and relevance to Li, B, Sr, I and dissolved inorganic nitrogen cycles [J]. Earth & Planetary Science Letters, 2004, 225(3-4): 347-363.

    [60]

    焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7):668-681 doi: 10.11867/j.issn.1001-8166.2016.07.0668.

    JIAO Nianzhi, LI Chao, WANG Xiaoxue. Response and feedback of marine carbon sink to climate change [J]. Advances in Earth Science, 2016, 31(7): 668-681. doi: 10.11867/j.issn.1001-8166.2016.07.0668.

    [61]

    Dimitrov L, Woodside J. Deep sea pockmark environments in the eastern Mediterranean [J]. Marine Geology, 2003, 195(1-4): 263-276. doi: 10.1016/S0025-3227(02)00692-8

    [62]

    Palomino D, López-González N, Vázquez J T, et al. Multidisciplinary study of mud volcanoes and diapirs and their relationship to seepages and bottom currents in the Gulf of Cádiz continental slope (northeastern sector) [J]. Marine Geology, 2016, 378: 196-212. doi: 10.1016/j.margeo.2015.10.001

    [63]

    Chuang P C, Yang T F, Hong W L, et al. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation [J]. Geofluids, 2010, 10(4): 497-510. doi: 10.1111/j.1468-8123.2010.00313.x

    [64]

    Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps [J]. Nature Geoscience, 2013, 6(9): 725-734. doi: 10.1038/ngeo1926

    [65]

    Werne J P, Haese R R, Zitter T, et al. Life at cold seeps: a synthesis of biogeochemical and ecological data from Kazan mud volcano, eastern Mediterranean Sea [J]. Chemical Geology, 2004, 205(3-4): 367-390. doi: 10.1016/j.chemgeo.2003.12.031

    [66]

    Ritt, B., Pierre, C., Gauthier, O. et al Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan [J]. Marine Biology, 2011, 158: 1187-1210. doi: 10.1007/s00227-011-1679-6

    [67]

    Tanhua T, Bates N R, Körtzinger A. The marine carbon cycle and ocean carbon inventories [J]. International Geophysics, 2013, 103: 787-815. doi: 10.1016/B978-0-12-391851-2.00030-1

    [68]

    张含. 大气二氧化碳、全球变暖、海洋酸化与海洋碳循环相互作用的模拟研究[D]. 杭州: 浙江大学, 2018.

    ZHANG Han. A modeling study of interactive feedbacks between carbon dioxide, global warming, ocean acidification, and the ocean carbon cycle[D]. Hangzhou: Zhejiang University, 2018:19-50.

    [69]

    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment [J]. Energy & Fuels, 2005, 19(2): 459-470.

    [70]

    Milkov A V, Sassen R, Apanasovich T V, et al. Global gas flux from mud volcanoes: A significant source of fossil methane in the atmosphere and the ocean [J]. Geophysical Research Letters, 2003, 30(2): 1037.

    [71]

    Milkov A V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates [J]. Marine Geology, 2000, 167(1-2): 29-42. doi: 10.1016/S0025-3227(00)00022-0

    [72]

    Greinert J, Artemov Y, Egorov V, et al. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability [J]. Earth & Planetary Science Letters, 2006, 244(1-2): 1-15.

    [73]

    Zhang X R, Sun Z L, Fan D J, et al. Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea [J]. Continental Shelf Research, 2019, 174: 108-117. doi: 10.1016/j.csr.2018.12.014

    [74]

    Wallmann K, Aloisi G, Haeckel M, et al. Silicate weathering in anoxic marine sediments [J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2895-2918. doi: 10.1016/j.gca.2008.03.026

  • 加载中

(5)

(2)

计量
  • 文章访问数:  2468
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2020-05-08
修回日期:  2020-06-18
刊出日期:  2020-12-25

目录