潮滩环境沉积物吸附多环芳烃的粒径因素影响

杨达, 高抒, 李家彪, 邹欣庆, 盛辉. 潮滩环境沉积物吸附多环芳烃的粒径因素影响[J]. 海洋地质与第四纪地质, 2021, 41(3): 54-61. doi: 10.16562/j.cnki.0256-1492.2020071401
引用本文: 杨达, 高抒, 李家彪, 邹欣庆, 盛辉. 潮滩环境沉积物吸附多环芳烃的粒径因素影响[J]. 海洋地质与第四纪地质, 2021, 41(3): 54-61. doi: 10.16562/j.cnki.0256-1492.2020071401
YANG Da, GAO Shu, LI Jia-biao, ZOU Xin-qing, SHENG Hui. Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 54-61. doi: 10.16562/j.cnki.0256-1492.2020071401
Citation: YANG Da, GAO Shu, LI Jia-biao, ZOU Xin-qing, SHENG Hui. Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 54-61. doi: 10.16562/j.cnki.0256-1492.2020071401

潮滩环境沉积物吸附多环芳烃的粒径因素影响

  • 基金项目: 海洋局专项计划“海岸带动力作用”(GASI-04-CEOGE-01);中央高校基本科研业务费项目(14380001)
详细信息
    作者简介: 杨达(1991—),男,硕士,主要从事海洋海岸环境方面的研究。E-mail:849583923@qq.com
    通讯作者: 高抒(1956—),教授,主要从事河口海洋沉积动力学和沉积地质学。E-mail:shugao@nju.edu.cn
  • 中图分类号: P76

Adsorption of PAHs by the sediments from the Yangcheng tidal flat: the influence of particle size

More Information
  • 为了研究粒径因素对于潮间带沉积物吸附多环芳烃(PAHs)的影响,基于索氏提取法、比值法、统计分析法和室内等温吸附实验以及0~31、32~64 μm和大于64 μm这三种不同粒径的沉积物对于16种多环芳烃各自吸附参数的反演计算,研究盐城潮滩沉积物PAHs赋存状态以及沉积物粒径对PAHs的吸附能力。结果表明,研究地点的潮滩沉积物中PAHs含量为49.67~141.90 ng·g−1,平均为74.92 ng·g−1。沉积物中的PAHs主要以3环、4环和5环为主, 其主要来源为高温燃烧源。在沉积物有机质含量极低时, 粒径对PAHs的吸附起主导作用。

  • 加载中
  • 图 1  采样区位置图

    Figure 1. 

    图 2  盐城潮滩柱状样沉积物参数的垂向分布

    Figure 2. 

    图 3  沉积物中不同环数PAHs所占百分比

    Figure 3. 

    图 4  3种粒径颗粒对PAHs的吸附能力

    Figure 4. 

    图 5  3种粒径颗粒对低中高3种环数PAHs的吸附能力

    Figure 5. 

    图 6  Freundlich模型下沉积物对PAHs吸附和盐城潮滩沉积物实际吸附对比图

    Figure 6. 

    表 1  PAHs的比值法判断指标[1, 25-26]

    Table 1.  The method of PAHs source identification using isomeric ratios[1, 25-26]

    特征分子比石油燃烧煤炭燃烧草木燃烧石油源
    荧蒽/(荧蒽+芘)0.4~0.5>0.5>0.5<0.4
    苯并[a]蒽/(苯并[a]蒽+䓛)>0.35>0.35>0.35<0.2
    茚并芘/(茚并芘+苯并苝)0.2~0.5>0.5>0.5<0.2
    下载: 导出CSV

    表 2  沉积物中PAHs分子比值

    Table 2.  Isomeric ratios of PAHs in sediments

    特征分子比范围平均值指示意义
    荧蒽/(荧蒽+芘)0.44~0.550.51燃烧源
    苯并[a]蒽/(苯并[a]蒽+䓛)0.27~0.490.41燃烧源
    茚并芘/(茚并芘+苯并苝)0.41~0.530.49石油燃烧源
    下载: 导出CSV

    表 3  PAHs组分在主成分上的因子载荷和累积方差

    Table 3.  The components load of PAHs (PC1) in sediment and the variance of PCA (PC2)

    PAHs组分PC1PC2
    0.4840.743
    苊烯0.7980.435
    0.9020.375
    0.9050.105
    0.946−0.053
    0.955−0.053
    荧蒽0.959−0.227
    0.906−0.301
    苯并[a]蒽0.986−0.152
    0.953−0.278
    苯并[b]荧蒽0.957−0.219
    苯并[k]荧蒽0.9240.189
    苯并[a]芘0.983−0.079
    二苯并[a,h]蒽0.9460.104
    茚并[1,2,3-cd]芘0.969−0.005
    苯并[g,h,i]苝0.967−0.128
    累积方差%84.69692.468
    下载: 导出CSV

    表 4  Freundlich模型下盐城潮滩三种粒径物质颗粒吸附能力参数

    Table 4.  Freundlich sorption parameters of PAHs with different sediment sizes from the Yancheng tidal flat

    PAHs组分粒径/μmKnR2
    0~318.091.220.96
    32~646.001.240.94
    >645.801.250.97
    苊烯0~3125.871.020.94
    32~6420.461.020.97
    >6418.771.030.95
    0~3127.071.000.96
    32~6422.271.010.94
    >6417.271.020.95
    0~3116.731.040.94
    32~6414.411.050.97
    >6414.901.040.96
    0~3122.381.070.95
    32~6421.071.070.94
    >6416.911.100.96
    0~3129.121.070.96
    32~6422.611.090.97
    >6423.941.060.96
    荧蒽0~3126.291.060.94
    32~6421.041.100.95
    >6424.321.090.96
    0~3120.261.150.95
    32~6419.471.150.95
    >6416.811.150.95
    苯并[a]蒽0~3126.461.140.96
    32~6418.961.140.94
    >6414.451.170.94
    0~3127.281.100.95
    32~6421.231.080.97
    >6423.331.060.96
    苯并[b]荧蒽0~3123.111.200.98
    32~6419.421.210.96
    >6421.741.190.94
    苯并[k]荧蒽0~3124.781.220.97
    32~6421.271.230.98
    >6418.231.240.98
    苯并[a]芘0~3123.691.090.95
    32~6416.571.080.96
    >6414.631.110.96
    二苯并[a,h]蒽0~3138.331.080.96
    32~6433.051.100.95
    >6428.151.090.95
    茚并[1,2,3-cd]芘0~3118.011.340.94
    32~6415.681.380.96
    >6416.121.370.96
    苯并[g,h,i]苝0~3110.251.200.96
    32~649.501.200.95
    >649.521.180.96
    下载: 导出CSV
  • [1]

    Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515. doi: 10.1016/S0146-6380(02)00002-5

    [2]

    Zhang Y X, Tao S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004 [J]. Atmospheric Environment, 2009, 43(4): 812-819. doi: 10.1016/j.atmosenv.2008.10.050

    [3]

    Kim G B, Maruya K A, Lee R F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea [J]. Marine Pollution Bulletin, 1999, 38(1): 7-15. doi: 10.1016/S0025-326X(99)80006-X

    [4]

    Lin C, Liu J L, Wang R M, et al. Polycyclic aromatic hydrocarbons in surface soils of Kunming, China: concentrations, distribution, sources, and potential risk [J]. Soil and Sediment Contamination: An International Journal, 2013, 22(7): 753-766. doi: 10.1080/15320383.2013.768201

    [5]

    Gao S, Collins M B. Holocene sedimentary systems on continental shelves [J]. Marine Geology, 2014, 352: 268-294. doi: 10.1016/j.margeo.2014.03.021

    [6]

    毕丽姣, 周岩梅, 张林林, 等. 太子河中游河段有机污染物分布特征研究[J]. 环境科学与技术, 2016, 39(S1):164-168

    BI Lijiao, ZHOU Yanmei, ZHANG Linlin, et al. Distribution characteristics of organic contaminant in middle reaches of Taizihe river [J]. Environmental Science & Technology, 2016, 39(S1): 164-168.

    [7]

    王喆, 卢丽. 南宁市清水泉地下河水中多环芳烃分布特征[J]. 环境科学与技术, 2016, 39(4):132-136

    WANG Zhe, LU Li. Distribution characteristics of polycyclic aromatic hydrocarbons in water from Qingshuiquan underground river in Nanning [J]. Environmental Science & Technology, 2016, 39(4): 132-136.

    [8]

    Müller S, Wilcke W, Kanchanakool N, et al. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in particle-size separates of urban soils in Bangkok, Thailand [J]. Soil Science, 2000, 165(5): 412-419. doi: 10.1097/00010694-200005000-00005

    [9]

    Wang B, Wang C, Huang Q Y, et al. Adsorption of PAHs on the sediments from the Yellow River delta as a function of particle size and salinity [J]. Soil and Sediment Contamination: An International Journal, 2015, 24(2): 103-115. doi: 10.1080/15320383.2014.920292

    [10]

    Wang X C, Zhang Y X, Chen R F. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States [J]. Marine Pollution Bulletin, 2001, 42(11): 1139-1149. doi: 10.1016/S0025-326X(01)00129-1

    [11]

    李锐龙, 刘贝贝, 朱亚先, 等. 芘在不同粒径红树林沉积物团聚体上的吸附/解吸行为[J]. 环境化学, 2014, 33(3):423-431 doi: 10.7524/j.issn.0254-6108.2014.03.012

    LI Ruilong, LIU Beibei, ZHU Yaxian, et al. Sorption/desorption behaviors of pyrene on mangrove sediment aggregates with different sizes [J]. Environmental Chemistry, 2014, 33(3): 423-431. doi: 10.7524/j.issn.0254-6108.2014.03.012

    [12]

    李杨帆, 朱晓东, 邹欣庆, 等. 江苏盐城海岸湿地景观生态系统研究[J]. 海洋通报, 2005, 24 (4):46-51 doi: 10.3969/j.issn.1001-6392.2005.04.008

    LI Yangfan, ZHU Xiaodong, ZOU Xinqing, et al. Study on landscape ecosystem of coastal wetlands in Yancheng, Jiangsu Province [J]. Marine Science Bulletin, 2005, 24 (4): 46-51. doi: 10.3969/j.issn.1001-6392.2005.04.008

    [13]

    Du J B, Shi B W, Li J S, et al. Muddy coast off Jiangsu, China: physical, ecological, and anthropogenic processes[M]//. Wang X H. Sediment Dynamics of Chinese Muddy Coasts and Estuaries. Boston: Academic Press, 2019.

    [14]

    成都地质学院陕北队. 沉积岩(物)粒度分析及其应用[M]. 北京: 地质出版社, 1978.

    North Shaanxi Team of Chengdu University of Geology. Analysis and application of grain size[M]. Beijing: Geological Publishing House, 1978.

    [15]

    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU Rukun. Methods of soil agricultural chemistry analyses[M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [16]

    中华人民共和国环境保护局. HJ 805-2016, 土壤和沉积物多环芳烃的测定 气相色谱-质谱法[S]. 北京: 中国环境科学出版社, 2016.

    Environmental Protection Bureau of the People's Republic of China. HJ 805-2016, Soil and sediment–determination of polycyclic aromatic hydrocarbon by gas chromatography-mass spectrometry method[S]. Beijing: China Environmental Science Press, 2016.

    [17]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 26411-2010, 海水中16种多环芳烃的测定 气相色谱-质谱法[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China GB/T 26411-2010, Determination of 16 polynuclear aromatic hydrocarbons in seawater by GC-MS[S]. Beijing: Standards Press of China, 2011.

    [18]

    Wang Y, Shen C C, Shen Z Y, et al. Spatial variation and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Yangtze Estuary, China [J]. Environmental Science: Processes & Impacts, 2015, 17(7): 1340-1347.

    [19]

    Mead, J. A. A comparison of the Langmuir, Freundlich and Temkin equations to describe phosphate adsorption properties of soils [J]. Australian Journal of Soil Research, 1981, 19(3): 333-342. doi: 10.1071/SR9810333

    [20]

    Baumard P, Budzinski H, Garrigues P. Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea [J]. Environmental Toxicology and Chemistry, 1998, 17(5): 765-776. doi: 10.1002/etc.5620170501

    [21]

    Bjørseth A, Ramdahl T. Handbook of Polycyclic Aromatic Hydrocarbons, Volume 2, Emission Sources and Recent Progress in Analytical Chemistry[M]. New York: Marcel Dekker, 1985.

    [22]

    郭俊丽, 杨旸, 高建华, 等. 浙闽沿岸泥质区南部表层沉积物中多环芳烃的分布、来源及生态风险评价[J]. 海洋环境科学, 2017, 36(6):826-831

    GUO Junli, YANG Yang, GAO Jianhua, et al. The distribution, sources and ecological risk assessment of surficial sediment in the south coastal mud Area off Zhejiang-Fujian [J]. Marine Environmental Science, 2017, 36(6): 826-831.

    [23]

    Wilcke W. Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review [J]. Journal of Plant Nutrition and Soil Science, 2000, 163(3): 229-248. doi: 10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6

    [24]

    Fernandes M B, Sicre M A, Boireau A, et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary [J]. Marine Pollution Bulletin, 1997, 34(11): 857-867. doi: 10.1016/S0025-326X(97)00063-5

    [25]

    Yan B Z, Abrajano T A, Bopp R F, et al. Molecular tracers of saturated and polycyclic aromatic hydrocarbon inputs into Central Park Lake, New York City [J]. Environmental Science & Technology, 2005, 39(18): 7012-7019.

    [26]

    Sofowote U M, McCarry B E, Marvin C H. Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods [J]. Environmental Science & Technology, 2008, 42(16): 6007-6014.

    [27]

    Wang C H, Wu S H, Zhou S L, et al. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk [J]. Science of the Total Environment, 2015, 527-528: 375-383. doi: 10.1016/j.scitotenv.2015.05.025

    [28]

    Simoneit B R T. Biomass burning—a review of organic tracers for smoke from incomplete combustion [J]. Applied Geochemistry, 2002, 17(3): 129-162. doi: 10.1016/S0883-2927(01)00061-0

    [29]

    范博, 王晓南, 黄云, 等. 我国七大流域水体多环芳烃的分布特征及风险评价[J]. 环境科学, 2019, 40(5):2101-2114

    FAN Bo, WANG Xiaonan, HUANG Yun, et al. Distribution and risk assessment of polycyclic aromatic hydrocarbons in water bodies in seven basins of China [J]. Environmental Science, 2019, 40(5): 2101-2114.

    [30]

    丁爱芳. 江苏省部分地区农田土壤中多环芳烃(PAHs)的分布与生态风险[D]. 南京农业大学博士学位论文, 2007.

    DING Aifang. Distribution of polycyclic aromatic hydrocarbons (PAHs) in farm-land of parts of Jiangsu Province and its ecological risk[D]. Doctor Dissertation of Nanjing Agricultural University, 2007.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  1602
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2020-07-14
修回日期:  2020-10-27
刊出日期:  2021-06-28

目录