水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测

张永超, 刘昌岭, 刘乐乐, 陈鹏飞, 张准, 孟庆国. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3): 193-202. doi: 10.16562/j.cnki.0256-1492.2021031501
引用本文: 张永超, 刘昌岭, 刘乐乐, 陈鹏飞, 张准, 孟庆国. 水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测[J]. 海洋地质与第四纪地质, 2021, 41(3): 193-202. doi: 10.16562/j.cnki.0256-1492.2021031501
ZHANG Yongchao, LIU Changling, LIU Lele, CHEN Pengfei, ZHANG Zhun, MENG Qingguo. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202. doi: 10.16562/j.cnki.0256-1492.2021031501
Citation: ZHANG Yongchao, LIU Changling, LIU Lele, CHEN Pengfei, ZHANG Zhun, MENG Qingguo. Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation[J]. Marine Geology & Quaternary Geology, 2021, 41(3): 193-202. doi: 10.16562/j.cnki.0256-1492.2021031501

水合物生成导致沉积物孔隙结构和渗透率变化的低场核磁共振观测

  • 基金项目: 国家自然科学基金项目“南海沉积物中水合物降压分解动力学行为及控制机理研究”(41876051),“南海含有孔虫沉积物双重孔隙特征对水合物分解过程中渗透率演化的影响机理”(42006181),“水合物降压开采粉砂质储层孔隙结构演化及渗透性响应机理研究”(41872136);国家重点研发计划“天然气水合物开采过程中井周储层动态响应行为与控制”(2018YFE0126400)
详细信息
    作者简介: 张永超(1989—),男,博士后,从事天然气水合物模拟实验和数值模拟研究,E-mail:yongchao.zhang@hotmail.com
    通讯作者: 刘昌岭(1966—),男,研究员,从事天然气水合物实验与测试研究,E-mail:qdliuchangling@163.com
  • 中图分类号: P736.21

Sediment pore-structure and permeability variation induced by hydrate formation: Evidence from low field nuclear magnetic resonance observation

More Information
  • 含水合物储层的宏观物性表现是由储层沉积物的微观孔隙特征所控制的。理解沉积物在水合物生成过程中微观孔隙结构特征变化对于其物性特征的预测和分析有重要意义。本文利用低场核磁共振(LFNMR)技术监测了不同砂样中氙气水合物的生成过程,利用横向弛豫时间(T2)谱对生成过程中的微观孔隙结构及水相渗透率演化规律进行了分析。研究表明,水合物优先生成于沉积物较大孔隙中,在半径较小的孔隙中水合物很难生成;生成前期水合物的生长速率较快,后期逐渐减缓;水合物的生成导致沉积物孔隙尺寸和分布的变化,表现为随着水合物的生成,沉积物水相孔隙空间的最大孔隙半径和平均孔隙半径逐渐减小,孔隙空间的分形系数逐渐增大;沉积物水相渗透率随水合物生成过程中水合物饱和度的增加,先迅速减小后缓慢减小;具有不同孔隙结构特征的样品水相渗透率变化规律存在差异;相较于SDR模型和Kozeny-Carman模型,分形方法能够更好地体现孔隙结构变化对渗透率的影响。

  • 加载中
  • 图 1  水合物用LFNMR测试系统设备示意图

    Figure 1. 

    图 2  饱和水状态下的样品T2特征谱

    Figure 2. 

    图 3  水合物生成过程中反应釜内的压力变化

    Figure 3. 

    图 4  水合物生成过程中T2特征谱变化

    Figure 4. 

    图 5  水合物生成过程中相饱和度的变化

    Figure 5. 

    图 6  水合物生成速率与相平衡压差之间的关系曲线

    Figure 6. 

    图 7  水合物生成过程中水相孔隙尺寸参数变化

    Figure 7. 

    图 8  水合物生长过程中水相孔隙分形系数的变化

    Figure 8. 

    图 9  基于不同渗透率预测模型得到的水合物生成过程中水相渗透率计算结果

    Figure 9. 

    表 1  测量沉积物样品基础物性参数

    Table 1.  Physical properties of sedimentary samples for testing

    样品编号样品组成样品粒径分布/μm样品尺寸/cm2
    样品1不规则石英砂颗粒150~250ϕ 2.5×4.2
    样品2不规则石英砂颗粒100~150ϕ 2.5×4.9
    样品3不规则石英砂颗粒75~250ϕ 2.5×4.6
    下载: 导出CSV

    表 2  不同渗透率计算模型的计算公式和参数含义

    Table 2.  Formulas and parameters employed in different permeability prediction models

    模型模型计算公式参数含义
    SDR模型为横向表面弛豫率,T2LMT2特征谱的对数平均值。

    KC模型
    为样品有效孔隙度

    分形模型


                                         
     
    为迂曲度系数,为平均迂曲度,为平均孔隙半径,为样品的长度
      注:SDR模型公式据文献[16,22],KC模型公式据文献[36],分形模型公式据文献[24,41-42]。
    下载: 导出CSV
  • [1]

    Boswell R, Collett T S. Current perspectives on gas hydrate resources [J]. Energy Environmental Science, 2011, 4(4): 1206-1215. doi: 10.1039/C0EE00203H

    [2]

    Ruppel C D, Kessler J D. The interaction of climate change and methane hydrates [J]. Reviews of Geophysics, 2017, 55(1): 126-168. doi: 10.1002/2016RG000534

    [3]

    吴能友, 黄丽, 胡高伟, 等. 海域天然气水合物开采的地质控制因素和科学挑战[J]. 海洋地质与第四纪地质, 2017, 37(5):1-11

    WU Nengyou, HUANG Li, HU Gaowei, et al. Geological controlling factors and scientific challenges for offshore gas hydrate exploitation [J]. Marine Geology & Quantenary Geology, 2017, 37(5): 1-11.

    [4]

    吴能友. 天然气水合物运聚体系: 理论、方法与实践[M]. 合肥: 安徽科学技术出版社, 2020: 2-17.

    WU Nengyou. Gas Hydrate Migartion and Accumulation System Theory, Method and Practice[M]. Hefei: Anhui Science and Technology Press, 2020: 2-17.

    [5]

    叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3):557-568

    YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea [J]. Geology in China, 2020, 47(3): 557-568.

    [6]

    杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4):1-14

    YANG Shengxiong, LIANG Jinqiang, LU Jing’an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea [J]. Earth Science Frontiers, 2017, 24(4): 1-14.

    [7]

    吴能友, 李彦龙, 万义钊, 等. 海域天然气水合物开采增产理论与技术体系展望[J]. 天然气工业, 2020, 40(8):100-115 doi: 10.3787/j.issn.1000-0976.2020.08.008

    WU Nengyou, LI Yanlong, WAN Yizhao, et al. Prospect of marine natural gas hydrate stimulation theory and technology system [J]. Natural Gas Industry, 2020, 40(8): 100-115. doi: 10.3787/j.issn.1000-0976.2020.08.008

    [8]

    刘乐乐, 刘昌岭, 吴能友, 等. 天然气水合物储层岩心保压转移与测试进展[J]. 地质通报, 2021, 40(2-3):408-422

    LIU Lele, LIU Changling, WU Nengyou, et al. Advances in pressure core transfer and testing technology of offshore hydrate-bearing sediments [J]. Geological Bulletin of China, 2021, 40(2-3): 408-422.

    [9]

    Kneafsey T J, Tomutsa L, Moridis G J, et al. Methane hydrate formation and dissociation in a partially saturated core-scale sand sample [J]. Journal of Petroleum Science and Engineering, 2007, 56(1-3): 108-126. doi: 10.1016/j.petrol.2006.02.002

    [10]

    Lei L, Liu Z C, Seol Y, et al. An investigation of hydrate formation in unsaturated sediments using X-ray computed tomography [J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3335-3349. doi: 10.1029/2018JB016125

    [11]

    王代刚, 魏伟, 孙静静, 等. 水合物降压分解过程中沉积物孔隙结构动态演化规律[J]. 科学通报, 2020, 65(21):2292-2302 doi: 10.1360/TB-2020-0010

    WANG Daigang, WEI Wei, SUN Jingjing, et al. Dynamic evolution of pore structures of hydrate-bearing sediments induced by step-wise depressurization [J]. Chinese Science Bulletin, 2020, 65(21): 2292-2302. doi: 10.1360/TB-2020-0010

    [12]

    张永超, 刘昌岭, 吴能友, 等. 含水合物沉积物孔隙结构特征与微观渗流模拟研究[J]. 海洋地质前沿, 2020, 36(9):23-33

    ZHANG Yongchao, LIU Changling, WU Nengyou, et al. Advances in the pore-structure characteristics and microscopic seepage numerical simulation of the hydrate-bearing sediments [J]. Marine Geology Frontiers, 2020, 36(9): 23-33.

    [13]

    刘昌岭, 郝锡荦, 孟庆国, 等. 气体水合物基础特性研究进展[J]. 海洋地质前沿, 2020, 36(9):1-10

    LIU Changling, HAO Xiluo, MENG Qingguo, et al. Research progress in basic characteristics of gas hydrate [J]. Marine Geology Frontiers, 2020, 36(9): 1-10.

    [14]

    李承峰, 刘乐乐, 孙建业, 等. 基于数字岩心的含水合物石英砂微观渗流有限元分析[J]. 海洋地质前沿, 2020, 36(9):68-72

    LI Chengfeng, LIU Lele, SUN Jianye, et al. Finite element analysis of micro-seepage in hydrate-bearing quartz sands based on digital cores [J]. Marine Geology Frontiers, 2020, 36(9): 68-72.

    [15]

    Kleinberg R L. Nuclear magnetic resonance [J]. Experimental Methods in the Physical Sciences, 1999, 35: 337-385.

    [16]

    Kleinberg R L, Flaum C, Griffin D D, et al. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B10): 2508.

    [17]

    陈合龙, 韦昌富, 田慧会, 等. CO2水合物在砂中生成和分解的核磁共振弛豫响应[J]. 物理化学学报, 2017, 33(8):1599-1604 doi: 10.3866/PKU.WHXB201704194

    CHEN Helong, WEI Changfu, TIAN Huihui, et al. NMR relaxation response of CO2 hydrate formation and dissociation in sand [J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1599-1604. doi: 10.3866/PKU.WHXB201704194

    [18]

    Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments [J]. Reviews of Geophysics, 2009, 47(4): RG4003.

    [19]

    Ge X M, Liu J Y, Fan Y R, et al. Laboratory investigation into the formation and dissociation process of gas hydrate by low-field NMR technique [J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5): 3339-3346. doi: 10.1029/2017JB014705

    [20]

    Ji Y K, Hou J, Zhao E M, et al. Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low-field NMR technique [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018572.

    [21]

    Tinni A, Odusina E, Sulucarnain I, et al. Nuclear-magnetic-resonance response of brine, oil, and methane in organic-rich shales [J]. SPE Reservoir Evaluation & Engineering, 2015, 18(3): 400-406.

    [22]

    Kenyon W E. Nuclear magnetic resonance as a petrophysical measurement [J]. Nuclear Geophysics, 1992, 6(2): 153-171.

    [23]

    Civan F. Predictability of porosity and permeability alterations by geochemical and geomechanical rock and fluid interactions[C]//Proceedings at the SPE International Symposium on Formation Damage Control. Lafayette, Louisiana, USA: Society of Petroleum Engineers, 2000.

    [24]

    Zhang Y C, Liu L L, Wang D G, et al. Application of low-field nuclear magnetic resonance (LFNMR) in characterizing the dissociation of gas hydrate in a porous media [J]. Energy & Fuels, 2021, 35(3): 2174-2182.

    [25]

    Liu L L, Zhang Z, Liu C L, et al. Nuclear magnetic resonance transverse surface relaxivity in quartzitic sands containing gas hydrate [J]. Energy & Fuels, 2021, 35(7): 6144-6152. doi: 10.1021/acs.energyfuels.1c00225

    [26]

    陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2020: 80-90.

    CHEN Guangjin, SUN Changyu, MA Qinglan. Gas Hydrate Science and Technology[M]. 2nd ed. Bejing: Chemical Indistry Press, 2020: 80-90.

    [27]

    Takeya S, Hachikubo A. Structure and density comparison of noble gas hydrates encapsulating Xenon, Krypton and Argon [J]. ChemPhysChem, 2019, 20(19): 2518-2524. doi: 10.1002/cphc.201900591

    [28]

    Linga P, Clarke M A. A review of reactor designs and materials employed for increasing the rate of gas hydrate formation [J]. Energy & Fuels, 2017, 31(1): 1-13.

    [29]

    Kim H C, Bishnoi P R, Heidemann R A, et al. Kinetics of methane hydrate decomposition [J]. Chemical Engineering Science, 1987, 42(7): 1645-1653. doi: 10.1016/0009-2509(87)80169-0

    [30]

    Yin Z Y, Chong Z R, Tan H K, et al. Review of gas hydrate dissociation kinetic models for energy recovery [J]. Journal of Natural Gas Science and Engineering, 2016, 35: 1362-1387. doi: 10.1016/j.jngse.2016.04.050

    [31]

    李彦龙, 孙海亮, 孟庆国, 等. 沉积物中天然气水合物生成过程的二维电阻层析成像观测[J]. 天然气工业, 2019, 39(10):132-138 doi: 10.3787/j.issn.1000-0976.2019.10.017

    LI Yanlong, SUN Hailiang, MENG Qingguo, et al. 2-D electrical resistivity tomography assessment of hydrate formation in sandy sediments [J]. Natural Gas Industry, 2019, 39(10): 132-138. doi: 10.3787/j.issn.1000-0976.2019.10.017

    [32]

    魏纳, 周守为, 崔振军, 等. 南海北部天然气水合物物性参数评价与分类体系构建[J]. 天然气工业, 2020, 40(8):59-67 doi: 10.3787/j.issn.1000-0976.2020.08.004

    WEI Na, ZHOU Shouwei, CUI Zhenjun, et al. Evaluation of physical parameters and construction of a parameter classification system for natural gas hydrate in the northern South China Sea [J]. Natural Gas Industry, 2020, 40(8): 59-67. doi: 10.3787/j.issn.1000-0976.2020.08.004

    [33]

    Yu B M, Li J H. Some fractal characters of porous media [J]. Fractals, 2001, 9(3): 365-372. doi: 10.1142/S0218348X01000804

    [34]

    蔡建超, 胡祥云. 多孔介质分形理论与应用[M]. 北京: 科学出版社, 2015: 2-22.

    CAI Jianchao, HU Xiangyun. Fractal Theory in Porous Media and its Applications[M]. Beijing: Science Press, 2015: 2-22.

    [35]

    Liu L L, Zhang Z, Li C F, et al. Hydrate growth in quartzitic sands and implication of pore fractal characteristics to hydraulic, mechanical, and electrical properties of hydrate-bearing sediments [J]. Journal of Natural Gas Science and Engineering, 2020, 75: 103-109.

    [36]

    Cai J C, Xia Y, X Lu C, et al. Creeping microstructure and fractal permeability model of natural gas hydrate reservoir [J]. Marine and Petroleum Geology, 2020, 115: 104282. doi: 10.1016/j.marpetgeo.2020.104282

    [37]

    蔡建超, 夏宇轩, 徐赛, 等. 含水合物沉积物多相渗流特性研究进展[J]. 力学学报, 2020, 52(1):208-223 doi: 10.6052/0459-1879-19-362

    CAI Jianchao, XIA Yuxuan, XU Sai, et al. Advances in multiphase seepage characteristics of natural gas hydrate sediments [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 208-223. doi: 10.6052/0459-1879-19-362

    [38]

    Zhang Z, Li C F, Ning F L, et al. Pore fractal characteristics of hydrate-bearing sands and implications to the saturated water permeability. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018721.

    [39]

    Lei G, Liao Q Z, Lin Q L, et al. Stress dependent gas-water relative permeability in gas hydrates: a theoretical model [J]. Advances in Geo-Energy Research, 2020, 4(3): 326-338. doi: 10.46690/ager.2020.03.10

    [40]

    刘乐乐, 刘昌岭, 孟庆国, 等. 分形理论在天然气水合物研究领域的应用[J]. 海洋地质前沿, 2020, 36(9):11-22

    LIU Lele, LIU Changing, MENG Qingguo, et al. Application of fractal theory to natural gas hydrate researches [J]. Marine Geology Frontiers, 2020, 36(9): 11-22.

    [41]

    Ghanbarian B, Hunt A G, Ewing R P, et al. Tortuosity in porous media: a critical review [J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477. doi: 10.2136/sssaj2012.0435

    [42]

    Cai J C, Yu B M. Prediction of maximum pore size of porous media based on fractal geometry [J]. Fractals, 2010, 18(4): 417-423. doi: 10.1142/S0218348X10005123

    [43]

    李彦龙, 刘昌岭, 廖华林, 等. 泥质粉砂沉积物: 天然气水合物混合体系的力学特性[J]. 天然气工业, 2020, 40(8):159-168 doi: 10.3787/j.issn.1000-0976.2020.08.013

    LI Yanlong, LIU Changling, LIAO Hualin, et al. Mechanical properties of the mixed system of clayey-silt sediments and natural gas hydrates [J]. Natural Gas Industry, 2020, 40(8): 159-168. doi: 10.3787/j.issn.1000-0976.2020.08.013

    [44]

    张辉, 卢海龙, 梁金强, 等. 南海北部神狐海域沉积物颗粒对天然气水合物聚集的主要影响[J]. 科学通报, 2016, 61(3):388-397 doi: 10.1360/N972014-01395

    ZHANG Hui, LU Hailong, LIANG Jinqiang, et al. The methane hydrate accumulation controlled compellingly by sediment grain at Shenhu, northern South China Sea [J]. Chinese Science Bulletin, 2016, 61(3): 388-397. doi: 10.1360/N972014-01395

  • 加载中

(9)

(2)

计量
  • 文章访问数:  1084
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2021-03-15
修回日期:  2021-03-29
刊出日期:  2021-06-28

目录