大西洋中脊赤狐热液区热液产物矿物学特征及其地质意义

李响, 叶俊, 刘希军, 石学法, 李传顺, 闫仕娟. 大西洋中脊赤狐热液区热液产物矿物学特征及其地质意义[J]. 海洋地质与第四纪地质, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301
引用本文: 李响, 叶俊, 刘希军, 石学法, 李传顺, 闫仕娟. 大西洋中脊赤狐热液区热液产物矿物学特征及其地质意义[J]. 海洋地质与第四纪地质, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301
LI Xiang, YE Jun, LIU Xijun, SHI Xuefa, LI Chuanshun, YAN Shijuan. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301
Citation: LI Xiang, YE Jun, LIU Xijun, SHI Xuefa, LI Chuanshun, YAN Shijuan. Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 46-58. doi: 10.16562/j.cnki.0256-1492.2021062301

大西洋中脊赤狐热液区热液产物矿物学特征及其地质意义

  • 基金项目: 中国大洋协会“十三五”项目(DY135-S2-2-07,DY135-S2-2-01)
详细信息
    作者简介: 李响( 1995—),男,硕士研究生,从事海底热液活动及成矿作用研究,E-mail:1037748675@qq.com
    通讯作者: 刘希军(1980—),男,教授,从事元素/同位素地球化学研究,E-mail:xijunliu@glut.edu.cn
  • 中图分类号: P744

Mineralogical and geological significance of hydrothermal products: A case from the Chihu hydrothermal field, South Mid-Atlantic Ridge

More Information
  • 赤狐热液区是2019年中国在南大西洋中脊23.7°S发现的一个位于拆离断层上盘的热液区。本文利用光学显微镜、电子探针、TerraSpec Halo矿物鉴别仪和XRD粉晶衍射仪,对该区热液产物进行了矿物学和矿物成分研究。结果表明,赤狐热液区热液产物可分为硅质硫化物、硅质矿化角砾岩和碳酸盐质矿化角砾岩。这些产物均由不等量蚀变岩石碎屑、团块状硫化物角砾、细粒浸染状硫化物以及硅质和碳酸盐质胶结基质组成。团块状硫化物与细粒浸染状硫化物之间在矿物组合、结构构造和矿物成分上的差异指示该热液区可能经历了多个喷发周期,蚀变岩石碎屑的复杂性和多样性指示该热液区除了基性源岩外,还可能受到超基性源岩影响。

  • 加载中
  • 图 1  赤狐热液区位置图

    Figure 1. 

    图 2  赤狐热液区样品照片

    Figure 2. 

    图 3  硅质硫化物的矿物特征

    Figure 3. 

    图 4  硅质硫化物中粗粒团块黄铜矿与细粒浸染状黄铜矿中Cu-Fe含量变化图

    Figure 4. 

    图 5  矿化角砾岩中蚀变岩屑的矿物特征

    Figure 5. 

    图 6  矿化角砾岩中金属硫化物的矿物特征

    Figure 6. 

    图 7  硅质矿化角砾岩中粗粒与细粒黄铁矿的Fe-Cu含量变化图

    Figure 7. 

    图 8  矿化角砾岩XRD衍射图谱

    Figure 8. 

    表 1  赤狐热液区样品特征

    Table 1.  Characteristics of Chihu hydrothermal samples

    样品编号样品种类样品特征矿物种类
    13-2硅质硫化物整体呈黑色,致密结构,表面存在黄色的硫单质。可见流体通道构造。黄铁矿、黄铜矿、铜蓝、皂石、滑石、针铁矿
    13-5硅质硫化物整体呈黑色,表面可见呈颗粒状的细小黄铁矿,可见通道构造,硫化物呈浸染状出现在二氧化硅基质中。黄铁矿、黄铜矿、闪锌矿、铜蓝、等轴古巴矿、皂石、滑石、针铁矿
    13-3硅质矿化角砾岩表面被大量红色Fe氢氧化物覆盖,内部可见硫化物团块,岩屑呈大小不等、未见磨圆的角砾分布于硅质和碳酸钙质基质中。黄铁矿、黄铜矿、斑铜矿、针铁矿、白云石、菱镁矿、蛇纹石、滑石
    13-7硅质矿化角砾岩呈长条状,质地松散细腻,易碎,表面存在细小的黄铁矿颗粒,可见粒度不等的棱角状碎屑。黄铁矿、黄铜矿、闪锌矿、皂石、滑石、蛇纹石、针铁矿
    13-1碳酸盐质矿化角砾岩可见粒度不等的棱角状蚀变岩屑和硫化物角砾不均匀分布于硅质基质中。黄铁矿、白铁矿、黄铜矿、闪锌矿、Phase A、橙玄玻璃、皂石、滑石、伊丁石、阳起石
    下载: 导出CSV

    表 2  矿物种类及分布

    Table 2.  Minerals and their distribution

    样品种类矿物种类化学式
    硅质硫化物    黄铁矿(Pyrite)    FeS2
        闪锌矿(Sphalerite)    ZnS
        黄铜矿(Chalcopyrite)    CuFeS2
        等轴古巴矿(Isocubanite)    CuFe2S3
        铜蓝(Covellite)    CuS
        皂石(Saponite)    Nax(H2O)4{Mg3[AlxSi4-xO10](OH)2}
        滑石(Talc)    Mg3[Si4O10](OH)2
        针铁矿(Goethite)    FeOOH
    矿化角砾岩    黄铁矿(Pyrite)    FeS2
        白铁矿(Marcasite)    FeS2
        闪锌矿(Sphalerite)    ZnS
        黄铜矿(Chalcopyrite)    CuFeS2
        Phase A    Cu10Fe3S11
        斑铜矿(Bornite)    Cu5FeS4
        皂石(Saponite)    Nax(H2O)4{Mg3[AlxSi4-xO10](OH)2}
        滑石(Talc)    Mg3[Si4O10](OH)2
        针铁矿(Goethite)    FeOOH
        伊丁石(Iddingsite)    H4MgFe2[Si3O12]·2H2O
        橙玄玻璃
        蛇纹石    Mg6[Si4O10](OH)8
        白云石    CaMg[CO3]2
        菱镁矿    Mg[CO3]
        阳起石    Ca2(Mg,Fe2+)5[Si8O22](OH)2
    下载: 导出CSV

    表 5  闪锌矿电子探针分析结果

    Table 5.  Chemical composition of sphalerite

    %  
    矿石类型SZnFeNiPbCoCu总量
    矿化角砾岩32.9657.863.66000.152.7197.34
    33.2360.223.6000.060.180.4097.68
    33.3862.973.3600.080.080.29100.15
    33.2258.198.91000.32100.63
    33.1457.778.3500.050.4899.78
    32.8857.659.3900.100.34100.36
    32.1757.279.10000.2798.82
    硅质硫化物“干净”闪锌矿33.7661.892.8100.310.091.20100.06
    32.0263.912.0200.150.060.7899.94
    33.1661.631.340.060.800.062.7099.74
    32.4263.242.1000.140.061.1399.09
    32.6963.742.5600.260.010.89100.12
    “黄铜矿病”
    闪锌矿
    33.4157.018.0100.220.080.0898.81
    32.9559.586.390.020.200.060.1999.35
    下载: 导出CSV

    表 3  黄铜矿电子探针分析结果及结晶分子式

    Table 3.  Chemical composition and crystalline formula of chalcopyrite

    %  
    矿石类型CuFeSZnPb结晶分子式
    硅质硫化物粗粒黄铜矿32.5931.4034.5600.13Cu0.94Fe1.03S2.00
    34.0531.3734.8800.14Cu0.99Fe1.03S2.00
    33.5830.7034.5200Cu0.98Fe1.02S2.00
    32.7631.0634.7200.12Cu0.96Fe1.03S2.00
    32.8831.2435.1700.02Cu0.95Fe1.02S2.00
    细粒黄铜矿33.2128.9034.8200.14Cu0.95Fe0.95S2.00
    32.9329.2534.7800.19Cu0.96Fe0.96S2.00
    33.5129.0834.8000.19Cu0.97Fe0.95S2.00
    矿化角砾岩碳酸盐质矿化角砾岩34.2431.5535.0800Cu0.99Fe1.02S2.00
    34.6330.0035.3900Cu1.00Fe0.98S2.00
    33.7530.5135.3100.14Cu0.96Fe1.00S2.00
    34.0530.2435.0200.15Cu0.99Fe0.99S2.00
    硅质矿化角砾岩粗粒团块状黄铜矿33.3029.3634.6600.01Cu0.97Fe0.98S2.00
    33.6529.8734.8300.12Cu0.99Fe0.98S2.00
    细粒浸染状黄铜矿33.5730.0234.5600.01Cu0.98Fe0.99S2.00
    34.3230.0935.0200.17Cu0.99Fe0.99S2.00
    33.5530.0134.5000Cu0.98Fe1.00S2.00
    下载: 导出CSV

    表 4  黄铁矿电子探针分析结果

    Table 4.  Chemical composition of pyrite

    %  
    矿石类型FeNiZnSPbCoCu总量
    硅质硫化物自形黄铁矿45.180.04053.910.340.030.0999.58
    45.210.05054.110.1200.72100.21
    45.780.040.1452.670.310.050.3599.33
    45.0900.0153.860.020.060.0299.06
    粒状黄铁矿45.4700.1253.850.240.130.44100.23
    45.5500.0154.650.090.030.07100.39
    45.9800.2054.230.330.061.26102.04
    45.800.010.1953.770.180.080.64100.67
    45.260055.140.070.120.57101.16
    矿化角砾岩碳酸盐质矿化角砾岩46.080.070.1253.920.150.080.17100.57
    46.2500.1453.250.070.050.2299.99
    45.6300.0552.680.160.070.2398.82
    硅质矿化角砾岩细粒黄铁矿45.800.04053.980.090.13100.04
    44.880.030.6954.590.340.16100.69
    45.580053.680.180.0999.53
    粗粒黄铁矿47.360.04053.970.170101.53
    46.550054.0300.080.09100.75
    46.240053.970.100.030.13100.47
    46.250.02054.080.080.100100.53
    46.090053.630.300.050.02100.08
      注:“−”表示未检测。
    下载: 导出CSV
  • [1]

    Corliss J B, Lyle M, Dymond J, et al. The chemistry of hydrothermal mounds near the Galapagos Rift [J]. Earth and Planetary Science Letters, 1978, 40(1): 12-24. doi: 10.1016/0012-821X(78)90070-5

    [2]

    Hannington M D, De Ronde C E J, Petersen S. Sea-floor tectonics and submarine hydrothermal systems[M]//Hedenquist J W, Thompson J F H, Goldfarb R J, et al. One Hundredth Anniversary Volume. Littleton: Society of Economic Geologists, 2005.

    [3]

    Hannington M, Jamieson J, Monecke T, et al. The abundance of seafloor massive sulfide deposits [J]. Geology, 2011, 39(12): 1155-1158. doi: 10.1130/G32468.1

    [4]

    Cherkashev G A, Ivanov V N, Bel’tenev V I, et al. Massive sulfide ores of the northern equatorial mid-atlantic ridge [J]. Oceanology, 2013, 53(5): 607-619. doi: 10.1134/S0001437013050032

    [5]

    Augustin N, Lackschewitz K S, Kuhn T, et al. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N) [J]. Marine Geology, 2008, 256(1-4): 18-29. doi: 10.1016/j.margeo.2008.09.004

    [6]

    石学法, 李兵, 叶俊, 等. 南大西洋中脊热液活动及形成机制[J]. 矿物学报, 2015, 35(S1):782-783

    SHI Xuefa, LI Bing, YE Jun, et al. The hydrothermal activity and formation mechanism of the South Mid-Atlantic Ridge [J]. Acta Mieralogica Sinica, 2015, 35(S1): 782-783.

    [7]

    杨耀民, 石学法. 南大西洋脊多金属硫化物热液区的预测与发现[J]. 矿物学报, 2011, 31(S1):708-709

    YANG Yaomin, SHI Xuefa. Prediction and discovery of polymetallic sulfide hydrothermal area in South Atlantic Ridge [J]. Acta Mieralogica Sinica, 2011, 31(S1): 708-709.

    [8]

    曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011

    ZENG Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

    [9]

    Humphris S E, Tivey M K, Tivey M A. The Trans-Atlantic Geotraverse hydrothermal field: A hydrothermal system on an active detachment fault [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 121: 8-16. doi: 10.1016/j.dsr2.2015.02.015

    [10]

    Mccaig A M, Delacour A, Fallick A E, et al. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the tag hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 207-239.

    [11]

    Escartín J, Mével C, Petersen S, et al. Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge) [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(4): 1451-1482. doi: 10.1002/2016GC006775

    [12]

    中国大洋矿产资源研究开发协会办公室. 中国大洋海底地理实体名录-2017[M]. 北京: 海洋出版社, 2018

    Office of China Ocean Mineral Resources Research and Development Association. Chinese Gazetteer of Undersea Features on the International Seabed-2017[M]. Beijing: Ocean Press, 2018.

    [13]

    Tivey M K, Humphris S E, Thompson G, et al. Deducing patterns of fluid flow and mixing within the TAG active hydrothermal mound using mineralogical and geochemical data [J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B7): 12527-12555. doi: 10.1029/95JB00610

    [14]

    彭晓彤, 周怀阳. EPR9-10°N热液烟囱体的结构特征与生长历史[J]. 中国科学:地球科学, 2005, 48(11):1891-1899 doi: 10.1360/04yd0029

    PENG Xiaotong, ZHOU Huaiyang. Growth history of hydrothermal chimneys at EPR 9-10°N: A structural and mineralogical study [J]. Science in China Series D:Earth Sciences, 2005, 48(11): 1891-1899. doi: 10.1360/04yd0029

    [15]

    Scott S D. Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments [J]. Mineralogical Magazine, 1983, 47(345): 427-435. doi: 10.1180/minmag.1983.047.345.03

    [16]

    Barton P B Jr, Bethke P M. Chalcopyrite disease in sphalerite: Pathology and epidemiology [J]. American Mineralogist, 1987, 72(5-6): 451-467.

    [17]

    Keith M, Haase K M, Schwarz-Schampera U, et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents [J]. Geology, 2014, 42(8): 699-702. doi: 10.1130/G35655.1

    [18]

    Stroncik N A, Schmincke H U. Palagonite - a review [J]. International Journal of Earth Sciences, 2002, 91(4): 680-697. doi: 10.1007/s00531-001-0238-7

    [19]

    Mozgova N N, Borodaev Y S, Gablina I F, et al. Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds [J]. Lithology and Mineral Resources, 2005, 40(4): 293-319. doi: 10.1007/s10987-005-0030-z

    [20]

    Seyfried W E Jr, Ding K. Phase equilibria in subseafloor hydrothermal systems: a review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges[M]//Humphris W E Jr, Zierenberg R A, Mullineaux L S, et al. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington D. C. : Geophysical Monograph Series, 1995: 248-272.

    [21]

    Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: a vertical section through the TAG mound[M]//Herzig P M, Humphris S E, Miller D J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, vol. 158. College Station, Tex. : The Program, 1998.

    [22]

    Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic ridge [J]. Mineralium Deposita, 2006, 41(1): 52-67. doi: 10.1007/s00126-005-0040-8

    [23]

    Alt J C, Honnorez J, Laverne C, et al. Hydrothermal alteration of a 1 km section through the upper oceanic crust, deep sea drilling project hole 504B: mineralogy, chemistry, and evolution of seawater-basalt interactions [J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B10): 10309-10335. doi: 10.1029/JB091iB10p10309

    [24]

    Fouquet Y, Cambon P, Charlou J L, et al. Geodiversity of hydrothermal processes along the Mid-Atlantic ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington D. C. : American Geophysical Union, 2010: 321-367.

    [25]

    陈曼云, 金巍, 郑常青, . 变质岩鉴定手册[M]. 北京: 地质出版社, 2009

    CHEN Manyun, JIN Wei, ZHENG Changqing. Metamorphic Rock Identification Manual[M]. Beijing: Geological Press, 2009.

    [26]

    李文渊. 现代海底热液成矿作用[J]. 地球科学与环境学报, 2010, 32(1):15-23

    LI Wenyuan. Hydrothermal mineralization on the modern seafloor [J]. Journal of Earth Sciences and Environment, 2010, 32(1): 15-23.

    [27]

    Stolz J, Large R R. Evaluation of the source-rock control on precious metal grades in volcanic-hosted massive sulfide deposits from western Tasmania [J]. Economic Geology, 1992, 87(3): 720-738. doi: 10.2113/gsecongeo.87.3.720

    [28]

    Lowell R P. Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges, Volume 188. Washington, D. C. : American Geophysical Union, 2010: 11-26.

    [29]

    Pertsev A N, Bortnikov N S, Vlasov E A, et al. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic ridge, 13 31’N: associated rocks of the oceanic core complex and their hydrothermal alteration [J]. Geology of Ore Deposits, 2012, 54(5): 334-346. doi: 10.1134/S1075701512050030

  • 加载中

(8)

(5)

计量
  • 文章访问数:  2597
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2021-06-23
修回日期:  2021-10-07
录用日期:  2021-10-07
刊出日期:  2022-04-28

目录