Formation model of authigenic chimneys on the Quaker serpentinite mud volcano in the Mariana forearc
-
摘要:
马里亚纳弧前蛇纹岩泥火山顶发育烟囱状自生沉积,由海底低温碱性流体渗漏形成,它对示踪蛇纹石化流体渗漏有重要意义,但烟囱生长模式仍未明确。本文选取马里亚纳弧前Quaker蛇纹岩泥火山烟囱状自生碳酸盐岩,进行岩石学、矿物学和元素地球化学研究,查明不同生长阶段烟囱元素组成、矿物类型及演化规律,提出烟囱生长模式。幼年烟囱具有高MgO(18.5%~37.5%)和低CaO含量(12.2%~32.1%),由方解石(52.0%~77.6%)及以水镁石为主的富镁碱性矿物组成;成熟烟囱MgO含量显著降低(1.5%~23.6%),CaO含量显著升高(18.6%~53.3%),除发育方解石(59.8%)和少量富镁矿物外,还发育文石(23.4%);死亡烟囱不含富镁矿物,文石含量最高(33.2%),显微镜和扫描电镜下均观察到文石交代富镁矿物。不同类型烟囱间元素和矿物组成差异以及岩石学特征,说明渗漏流体导致方解石和水镁石沉淀,而文石为交代产物,在烟囱成熟过程中亚稳定的水镁石最终被文石交代,文石及CaO和MgO含量可指示烟囱的成熟程度。同一烟囱横截面由内向外微区样品的MgO含量依次降低,CaO含量依次升高,说明烟囱内侧较新,外侧较老,烟囱由外向内生长。同一烟囱下部横截面MgO含量低于上部横截面,CaO含量则相反,说明下部先形成,指示烟囱自下而上生长。
Abstract:Authigenic chimneys, found at the top of serpentinite mud volcanos in the Mariana forearc, are induced by the seepage of low temperature and alkaline fluids. They are critical significant to trace the eruption of serpentinization fluids. However, few is known with regards to the formation mechanism of these chimneys. In this paper, detailed investigations are carried out on the petrology, mineralogy, and major elemental geochemistry of the chimneys collected from the Quaker serpentinite mud volcano in the Mariana forearc region so as to explore the formation model of these authigenic chimneys. Base on the mineral and elemental compositions, as well as neomorphic processes, three types of chimneys are identified. It is found that infancy chimneys are high in MgO (18.5%~37.5%) and low in CaO contents (12.2%~32.1%), and mineralogically composed of calcite (52.0%~77.6%) and magnesium-rich alkaline minerals, such as brucite, hydromagnesite, and hydrotalcite, while the mature chimneys are characterized by reduced MgO contents (1.5%~23.6%) and enhanced CaO contents (18.6%~53.3%), and mineralogically composed of calcite (59.8%), magnesium-rich minerals and aragonite (23.4%). Dead chimneys have the highest aragonite content (33.2%), but do not contain any magnesium-rich minerals. In addition, microscopic observation results have revealed the precursory magnesium-rich alkaline minerals replaced by aragonite. The variations of elemental and mineral compositions among different types of chimneys, and their petrological characteristics suggest that the fluid seepage induced calcite and brucite precipitation, while aragonite represents a replaced phase of brucite. Brucite occurrences indicate newly formed fabrics, while aragonite reflects an old precursory mineral. Micro-drilled samples from the same chimney cross section show successively decrease of MgO content and increase of CaO content from inner to outer, suggesting that the outer texture is older than the inner. The top of a chimney displays higher MgO and lower CaO contents than the bottom, indicating that the top is relatively younger.
-
Key words:
- authigenic chimney /
- petrology /
- mineralogy /
- formation model /
- serpentinite mud volcano /
- Mariana forearc
-
表 1 Quaker海山烟囱样品XRD数据
Table 1. XRD data of chimneys from Quaker seamount
% 样品编号 样品描述 方解石 文石 水菱镁矿 水镁石 水滑石类 石盐 Q1a 幼年烟囱 52.0 0 17.3 18.3 12.3 0 Q1b 幼年烟囱 77.6 0 18.5 3.9 0 0 Q3 成熟全岩 59.8 23.4 0 0 16.8 0 Q4 死亡烟囱 63.9 33.2 0 0 0 2.8 表 2 Quaker海山烟囱状自生沉积主量元素分析结果
Table 2. The major elemental compositions of the chimneys from Quaker seamount
% 样品编号 样品描述 CaO MgO Na2O Al2O3 P2O5 K2O Fe2O3-T Q101 幼年烟囱截面 12.2 37.5 2.0 0.12 0.02 0.05 0.0007 Q102 幼年烟囱截面 21.7 29.0 1.6 0.05 0.03 0.03 0.0015 Q103 幼年烟囱截面 32.1 18.5 1.4 0.02 0.04 0.02 0.0135 Q201 成熟烟囱顶截面 18.6 23.6 2.9 4.01 0.14 0.10 0.0029 Q202 成熟烟囱顶截面 34.2 15.0 1.3 0.21 0.03 0.03 0.0267 Q203 成熟烟囱顶截面 36.5 13.0 1.3 0.03 0.03 0.03 0.0174 Q204 成熟烟囱底截面 28.4 14.8 2.8 2.79 0.09 0.09 0.0020 Q205 成熟烟囱底截面 51.9 2.0 1.2 0.29 0.04 0.01 0.0029 Q206 成熟烟囱底截面 53.3 1.7 1.2 0.04 0.05 0.01 0.0028 Q207 成熟烟囱底截面 52.7 1.5 1.3 0.01 0.05 0.01 0.0019 注:Fe2O3-T代表全岩铁含量。 -
[1] Evans B W, Hattori K, Baronnet A. Serpentinite: what, why, where? [J]. Elements, 2013, 9(2): 99-106. doi: 10.2113/gselements.9.2.99
[2] Schrenk M O, Brazelton W J, Lang S Q. Serpentinization, carbon, and deep life [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 575-606. doi: 10.2138/rmg.2013.75.18
[3] 黄瑞芳, 孙卫东, 丁兴, 等. 蛇纹石化过程中铁活动性的高温高压实验研究[J]. 岩石学报, 2015, 31(3):883-890
HUANG Ruifang, SUN Weidong, DING Xing, et al. Experimental investigation of iron mobility during serpentinization [J]. Acta Petrologica Sinica, 2015, 31(3): 883-890.
[4] 王先彬, 欧阳自远, 卓胜广, 等. 蛇纹石化作用、非生物成因有机化合物与深部生命[J]. 中国科学: 地球科学, 2014, 57(5):878-887 doi: 10.1007/s11430-014-4821-8
WANG Xianbin, OUYANG Ziyuan, ZHUO Shengguang, et al. Serpentinization, Abiogenic Organic Compounds, and Deep life [J]. Science China Earth Sciences, 2014, 57(5): 878-887. doi: 10.1007/s11430-014-4821-8
[5] 焦鑫, 柳益群, 周鼎武, 等. "白烟型"热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2):221-232 doi: 10.11867/j.issn.1001-8166.2013.02.0221
JIAO Xin, LIU Yiqun, ZHOU Dingwu, et al. Progress of research on “White Smoke Type” exhalative hydrothermal rocks [J]. Advances in Earth Science, 2013, 28(2): 221-232. doi: 10.11867/j.issn.1001-8166.2013.02.0221
[6] 王先彬, 郭占谦, 妥进才, 等. 中国松辽盆地商业天然气的非生物成因烷烃气体[J]. 中国科学 D辑: 地球科学, 2009, 52(2):213-226 doi: 10.1007/s11430-009-0015-1
WANG Xianbin, GUO Zhanqian, TUO Jincai, et al. Abiogenic hydrocarboris in commercial gases ftom the Songliao Basin, China [J]. Science China Ser D: Earth Science, 2009, 52(2): 213-226. doi: 10.1007/s11430-009-0015-1
[7] Fryer P. Serpentinite mud volcanism: observations, processes, and implications [J]. Annual Review of Marine Science, 2012, 4: 345-373. doi: 10.1146/annurev-marine-120710-100922
[8] Kelley D S, Karson J A, Früh-Green G L, et al. A serpentinite-hosted ecosystem: the lost city hydrothermal field [J]. Science, 2005, 307(5714): 1428-1434. doi: 10.1126/science.1102556
[9] Russell M J, Hall A J, Martin W. Serpentinization as a source of energy at the origin of life [J]. Geobiology, 2010, 8(5): 355-371. doi: 10.1111/j.1472-4669.2010.00249.x
[10] Fryer P, Wheat C G, Williams T, et al. Expedition 366 summary[M]//Fryer P, Wheat C G, Williams T, et al. Proceedings of the International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program, 2018, 366: 1-23.
[11] Schwarzenbach E M. RESEARCH FOCUS: Serpentinization and the formation of fluid pathways [J]. Geology, 2016, 44(2): 175-176. doi: 10.1130/focus022016.1
[12] Fryer P, Ambos E L, Hussong D M. Origin and emplacement of Mariana forearc seamounts [J]. Geology, 1985, 13(11): 774-777. doi: 10.1130/0091-7613(1985)13<774:OAEOMF>2.0.CO;2
[13] Haggerty J A. Petrology and geochemistry of neocene sedimentary rocks from Mariana forearc seamounts: Implications for emplacement of the seamounts[C]//Keating B H, Fryer P, Batiza R, et al. Seamounts, Islands, and Atolls. Washington, DC: American Geophysical Union, 1987: 175-185.
[14] Frery E, Fryer P, Kurz W, et al. Episodicity of structural flow in an active subduction system, new insights from mud volcano's carbonate veins – Scientific Ocean drilling expedition IODP 366 [J]. Marine Geology, 2021, 434: 106431. doi: 10.1016/j.margeo.2021.106431
[15] Grimmer J C, Greiling R O. Serpentinites and low-K island arc meta-volcanic rocks in the Lower Köli Nappe of the central Scandinavian Caledonides: Late Cambrian–early Ordovician serpentinite mud volcanoes in a forearc basin? [J]. Tectonophysics, 2012, 541-543: 19-30. doi: 10.1016/j.tecto.2012.03.014
[16] Lockwood J P. Sedimentary and gravity-slide emplacement of serpentinite [J]. GSA Bulletin, 1971, 82(4): 919-936. doi: 10.1130/0016-7606(1971)82[919:SAGEOS]2.0.CO;2
[17] Pons M L, Quitté G, Fujii T, et al. Early Archean serpentine mud volcanoes at Isua, Greenland, as a niche for early life [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43): 17639-17643. doi: 10.1073/pnas.1108061108
[18] Spaggiari C V, Gray D R, Foster D A. Formation and emplacement of the Dolodrook serpentinite body, Lachlan Orogen, Victoria [J]. Australian Journal of Earth Sciences, 2003, 50(5): 709-723. doi: 10.1111/j.1440-0952.2003.01021.x
[19] Yoshida K, Iba Y, Taki S, et al. Deposition of serpentine-bearing conglomerate and its implications for Early Cretaceous tectonics in northern Japan [J]. Sedimentary Geology, 2010, 232(1-2): 1-14. doi: 10.1016/j.sedgeo.2010.09.002
[20] 李鸿莉, 冯俊熙, 佟宏鹏, 等. 台湾利吉蛇纹岩角砾碎屑岩地球化学特征及其指示意义[J]. 地球化学, 2020, 49(1):50-61
LI Hongli, FENG Junxi, TONG Hongpeng, et al. Geochemical characteristics and their indicative significance of serpentine breccia clasolites in Lichi, Taiwan, China [J]. Geochimica, 2020, 49(1): 50-61.
[21] Albers E, Kahl W A, Beyer L, et al. Variant across-forearc compositions of slab-fluids recorded by serpentinites: Implications on the mobilization of FMEs from an active subduction zone (Mariana forearc) [J]. Lithos, 2020, 364-365: 105525. doi: 10.1016/j.lithos.2020.105525
[22] Scambelluri M, Cannaò E, Gilio M. The water and fluid-mobile element cycles during serpentinite subduction. A review [J]. European Journal of Mineralogy, 2019, 31(3): 405-428. doi: 10.1127/ejm/2019/0031-2842
[23] Alt J C, Shanks Ⅲ W C. Stable isotope compositions of serpentinite seamounts in the Mariana forearc: Serpentinization processes, fluid sources and sulfur metasomatism [J]. Earth and Planetary Science Letters, 2006, 242(3-4): 272-285. doi: 10.1016/j.jpgl.2005.11.063
[24] Benton L D, Ryan J G, Tera F. Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc [J]. Earth and Planetary Science Letters, 2001, 187(3-4): 273-282. doi: 10.1016/S0012-821X(01)00286-2
[25] Benton L D, Ryan J G, Savov I P. Lithium abundance and isotope systematics of forearc serpentinites, Conical Seamount, Mariana forearc: Insights into the mechanics of slab-mantle exchange during subduction [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): Q08J12.
[26] Mottl M J. Pore waters from serpentinite seamounts in the mariana and izu-bonin forearcs, leg 125: evidence for volatiles from the subducting slab[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 373-385.
[27] Mottl M J, Komor S C, Fryer P, et al. Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean drilling program leg 195 [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(11): 9009.
[28] Mottl M J, Wheat C G, Fryer P, et al. Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate [J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4915-4933. doi: 10.1016/j.gca.2004.05.037
[29] Wheat C G, Fryer P, Takai K, et al. SPOTLIGHT•South chamorro seamount [J]. Oceanography, 2010, 23(1): 174-175. doi: 10.5670/oceanog.2010.81
[30] Wheat C G, Seewald J S, Takai K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount [J]. Geochimica et Cosmochimica Acta, 2020, 269: 413-428. doi: 10.1016/j.gca.2019.10.037
[31] 冯俊熙, 罗敏, 胡钰, 等. 海底蛇纹岩化伴生的碳酸盐岩研究进展[J]. 矿物岩石地球化学通报, 2016, 35(4):789-799 doi: 10.3969/j.issn.1007-2802.2016.04.019
FENG Junxi, LUO Ming, HU Yu, et al. Progress of the research on authigenic carbonates associated with oceanic serpentinization [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 789-799. doi: 10.3969/j.issn.1007-2802.2016.04.019
[32] Fryer P, Saboda K L, Johnson L E, et al. Conical seamount: SeaMARC II, Alvin submersible, and seismic reflection studies[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program Initial Reports. College Station, TX: Ocean Drilling Program, 1990: 69-80.
[33] Haggerty J A, Chaudhuri S. Strontium isotopic composition of the interstitial waters from Leg 125: Mariana and bonin forearcs[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 397-400.
[34] Hulme S M, Wheat C G, Fryer P, et al. Pore water chemistry of the Mariana serpentinite mud volcanoes: A window to the seismogenic zone [J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1): Q01X09.
[35] Klein F, Humphris S E, Bach W. Brucite formation and dissolution in oceanic serpentinite [J]. Geochemical Perspectives Letters, 2020, 16: 1-5. doi: 10.7185/geochemlet.2035
[36] Tran T H, Kato K, Wada H, et al. Processes involved in calcite and aragonite precipitation during carbonate chimney formation on Conical Seamount, Mariana Forearc: Evidence from geochemistry and carbon, oxygen, and strontium isotopes [J]. Journal of Geochemical Exploration, 2014, 137: 55-64. doi: 10.1016/j.gexplo.2013.11.013
[37] Stern R J, Smoot N C. A bathymetric overview of the Mariana forearc [J]. Island Arc, 1998, 7(3): 525-540. doi: 10.1111/j.1440-1738.1998.00208.x
[38] Haggerty J A. Evidence from fluid seeps atop serpentine seamounts in the Mariana forearc: Clues for emplacement of the seamounts and their relationship to forearc tectonics [J]. Marine Geology, 1991, 102(1-4): 293-309. doi: 10.1016/0025-3227(91)90013-T
[39] Fryer P, Mottl M J. Lithology, mineralogy, and origin of serpentine muds recovered from conical and torishima forearc seamounts[M]//Fryer P, Pearce J A, Stokking L B, et al. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1992: 343-362.
[40] Oakley A J, Taylor B, Fryer P, et al. Emplacement, growth, and gravitational deformation of serpentinite seamounts on the Mariana forearc [J]. Geophysical Journal International, 2007, 170(2): 615-634. doi: 10.1111/j.1365-246X.2007.03451.x
[41] Fryer P, Gharib J, Ross K, et al. Variability in serpentinite mudflow mechanisms and sources: ODP drilling results on Mariana forearc seamounts [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8): Q08014.
[42] Taylor J C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile [J]. Powder Diffraction, 1991, 6(1): 2-9. doi: 10.1017/S0885715600016778
[43] Ludwig K A, Kelley D S, Butterfield D A, et al. Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2006, 70(14): 3625-3645. doi: 10.1016/j.gca.2006.04.016
[44] Ohara Y, Reagan M K, Fujikura K, et al. A serpentinite-hosted ecosystem in the Southern Mariana Forearc [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2831-2835. doi: 10.1073/pnas.1112005109
[45] Okumura T, Ohara Y, Stern R J, et al. Brucite chimney formation and carbonate alteration at the Shinkai Seep Field, a serpentinite-hosted vent system in the southern Mariana forearc [J]. Geochemistry, Geophysics, Geosystems, 2016, 17(9): 3775-3796. doi: 10.1002/2016GC006449
[46] Kelley D S, Karson J A, Blackman D K, et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N [J]. Nature, 2001, 412(6843): 145-149. doi: 10.1038/35084000
[47] 王秀璋, 徐学炎. 我国发现的水菱镁矿特征及其成因的探讨[J]. 地质科学, 1965, 4:374-382
WANG Xiuchang, XU Xueyan. On the mineralogical properties and origin of hydromagneiste from China [J]. Scientia Geologica Sinica, 1965, 4: 374-382.
[48] Gharib J J. Clastic metabasites and authigenic minerals within serpentinite protrusions from the Mariana forearc: Implications for sub-forearc subduction processes[D]. Doctor Dissertation of University of Hawaii, 2006.
[49] Curtis A C, Wheat C G, Fryer P, et al. Mariana forearc serpentinite mud volcanoes harbor novel communities of extremophilic Archaea [J]. Geomicrobiology Journal, 2013, 30(5): 430-441. doi: 10.1080/01490451.2012.705226
[50] Yamanaka T, Mizota C, Satake H, et al. Stable isotope evidence for a putative endosymbiont-based lithotrophic Bathymodiolus sp. mussel community atop a serpentine seamount [J]. Geomicrobiology Journal, 2003, 20(3): 185-197. doi: 10.1080/01490450303876
[51] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps [J]. Chemical Geology, 2004, 205(3-4): 443-467. doi: 10.1016/j.chemgeo.2003.12.025
[52] Eickenbusch P, Takai K, Sissman O, et al. Origin of short-chain organic acids in serpentinite mud volcanoes of the mariana convergent margin [J]. Frontiers in Microbiology, 2019, 10: 1729. doi: 10.3389/fmicb.2019.01729
[53] Giampouras M, Garrido C J, Bach W, et al. On the controls of mineral assemblages and textures in alkaline springs, Samail Ophiolite, Oman [J]. Chemical Geology, 2020, 533: 119435. doi: 10.1016/j.chemgeo.2019.119435
[54] Königsberger E, Königsberger L C, Gamsjäger H. Low-temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O [J]. Geochimica et Cosmochimica Acta, 1999, 63(19-20): 3105-3119. doi: 10.1016/S0016-7037(99)00238-0
[55] Purgstaller B, Dietzel M, Baldermann A, et al. Control of temperature and aqueous Mg2+/Ca2+ ratio on the (trans-) formation of ikaite [J]. Geochimica et Cosmochimica Acta, 2017, 217: 128-143. doi: 10.1016/j.gca.2017.08.016
[56] Bayon G, Henderson G M, Bohn M. U-Th stratigraphy of a cold seep carbonate crust [J]. Chemical Geology, 2009, 260(1-2): 47-56. doi: 10.1016/j.chemgeo.2008.11.020
[57] Feng D, Chen D F, Peckmann J, et al. Authigenic carbonates from methane seeps of the northern Congo fan: Microbial formation mechanism [J]. Marine and Petroleum Geology, 2010, 27(4): 748-756. doi: 10.1016/j.marpetgeo.2009.08.006
[58] Ludwig K A, Shen C C, Kelley D S, et al. U–Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field [J]. Geochimica et Cosmochimica Acta, 2011, 75(7): 1869-1888. doi: 10.1016/j.gca.2011.01.008
[59] Palandri J L, Reed M H. Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation [J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1115-1133. doi: 10.1016/j.gca.2003.08.006
[60] Teichert B M A, Eisenhauer A, Bohrmann G, et al. U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations [J]. Geochimica et Cosmochimica Acta, 2003, 67(20): 3845-3857. doi: 10.1016/S0016-7037(03)00128-5
[61] 刘长华, 曾志刚, 殷学博. 现代海底热液硫化物烟囱体的生长模式研究现状[J]. 海洋科学, 2006, 30(5):71-73 doi: 10.3969/j.issn.1000-3096.2006.05.014
LIU Changhua, ZENG Zhigang, YIN Xuebo. Current research on chimneys growth model of modern sea-floor hydrothermal sulfide [J]. Marine Science, 2006, 30(5): 71-73. doi: 10.3969/j.issn.1000-3096.2006.05.014