Age of a Fe-Mn crust on the Gagua Ridge and applicability studies of dating methods
-
摘要:
深海铁锰结壳的定年对其记录的百万年尺度古海洋环境变化研究至为关键。综合运用10Be/9Be、Co经验公式、230Thex/232Th和磁性地层学,对采自加瓜海脊的铁锰结壳样品开展了系统的年代学对比研究。结果表明:相对于开阔大洋的铁锰结壳,较多的陆源物质输入造成了不同定年方法获得的年龄或生长速率的明显差异。其中,因为大量陆源物质携带的232Th以及对Co含量的稀释,铁锰结壳表层的230Thex/232Th初始通量以及样品部分层位的Co通量出现显著变化,230Thex/232Th定年方法与Co经验公式获得的结果受到碎屑物质的影响最为显著。尽管10Be/9Be初始通量也受到了陆源物质输入的影响,但是10Be/9Be初始通量变化很小,应该是本研究中最为可信的结果。而古地磁地层学定年法需要参考其他定年结果,最后也只能得到几个年龄控制点。最终得出加瓜海脊该铁锰结壳样品的年龄为7.09 Ma,而不同核素在铁锰结壳中的赋存状态应该是今后值得深入研究的一个重要方向。
Abstract:Precise dating of deep-sea Fe-Mn crust is crucial to the research of paleoceanographic changes. In this paper, dating methods of 10Be/9Be, Co empirical formula, 230Thex/232Th and paleomagnetic stratigraphy are comparatively used for systematical chronological studies of a Fe-Mn crust sample collected from the Gagua Ridge. Different growth rate or different age figures are observed as different dating methods are adopted due to large inputs of terrigenous materials. Co content is diluted by the excessive amounts of 232Th brought in by the terrigenous inputs, and the Co flux in certain layers and initial 230Thex/232Th flux at the surface layer are both greatly fluctuated, which will render greatly influence onto the dating results of the two methods. Although the 10Be/9Be initial flux is also influenced by terrigenous inputs, it remains relatively stable. Therefore, 10Be/9Be can be regarded as the most precise dating method in the case. Paleomagnetic stratigraphy dating results may provide several age controlling points after referring to other dating results. Finally, the initial growth age of the Fe-Mn crust is confirmed as 7.09 Ma. For more precise age figure, further studies are required on the occurrence of nuclides in the Fe-Mn crust.
-
Key words:
- Fe-Mn crust /
- dating methods /
- paleomagnetism /
- isotopic geochemistry /
- the Gagua Ridge
-
表 1 铁锰结壳的10Be/9Be测试结果以及10Be/9Be初始通量
Table 1. 10Be/9Be testing results of Fe-Mn crust and initial flux of 10Be/9Be
序号 矫正深度/mm 10Be/9Be/10−10 年龄/Ma (10Be/9Be)初始通量/10−10 Dive08-1 0.50 1.535 0.080 1.598 Dive08-2 3.50 1.208 0.560 1.598 Dive08-3 6.50 0.564 2.085 1.599 Dive08-4 11.75 0.439 2.589 1.601 Dive08-5 16.25 0.273 3.544 1.604 Dive08-6 20.75 0.239 3.814 1.605 Dive08-7 25.00 0.187 4.299 1.606 Dive08-8 28.25 0.137 4.923 1.606 Dive08-9 32.50 0.125 5.110 1.607 Dive08-10 36.00 0.113 5.306 1.609 Dive08-11 39.25 0.081 5.989 1.608 空白样 0.002 表 2 结壳表层230Thex/232Th测试结果以及230Thex/232Th初始通量
Table 2. Experimental results of 230Thex/232Th and initial flux of 230Thex/232Th
序号 深度/mm 质量/g 238U /(μg/kg) 230Th / 232Th/原子数×10−6 230Th / 238U 230Thex/232Th 年龄/Ma (230Thex/232Th)0 D08-1 0.08 0.023100 7684.3±36.7 159.015159±3.348 46.7555±0.3114 30.01 0.01 32.25 D08-2 0.27 0.033700 7459.7±31.2 87.168225±1.812 31.1138±0.1780 16.60 0.03 21.29 D08-3 0.47 0.024700 7467.8±29.3 65.836530±1.362 22.5662±0.1255 12.67 0.05 19.49 D08-4 0.64 0.026800 7715.4±29.0 66.634394±1.405 21.3219±0.1441 12.85 0.06 23.20 D08-5 0.81 0.023200 7891.3±35.2 60.799142±1.278 17.5236±0.1188 11.83 0.08 24.95 D08-6 0.98 0.027800 7358.8±41.0 23.237013±3.394 8.7137±1.1560 4.74 0.10 11.71 D08-7 1.14 0.021000 8267.8±35.7 45.847210±0.963 13.5603±0.0882 9.05 0.12 26.03 D08-8 1.28 0.020000 6918.1±34.2 35.667330±0.779 11.4776±0.1039 7.12 0.13 23.27 D08-9 1.41 0.019300 6830.7±22.5 37.542399±0.865 12.3548±0.1423 7.45 0.14 27.53 D08-10 1.53 0.014500 6557.2±42.6 30.485152±0.682 9.8458±0.1022 6.16 0.15 25.28 D08-11 1.62 0.014000 10020.1±71.8 24.628982±0.533 7.5091±0.0642 5.10 0.16 22.89 D08-12 1.75 0.023800 7926.5±44.1 21.876682±0.489 6.3202±0.0604 4.63 0.18 23.34 D08-13 1.87 0.011200 8203.9±48.0 19.038096±0.428 5.5576±0.0583 4.10 0.19 23.05 D08-14 1.95 0.013800 6689.5±36.2 18.846383±0.411 5.5571±0.0508 4.05 0.20 24.62 D08-14R 6171.4±46.5 16.099030±0.356 4.5886±0.0463 3.56 注:(230Thex/232Th)0代表初始通量,D08-14R为重复样。 表 3 南海和太平洋深层水10Be/9Be初始通量
Table 3. Initial flux of 10Be/9Be in SCS and Pacific
序号 年龄/Ma 10Be/9Be/10−9 (10Be/9Be)初始通量/10−9 J158-1 0.390 5.160 6.270 J158-2 1.330 3.230 6.279 J158-3 2.170 2.130 6.300 J158-4 3.170 1.290 6.289 J158-5 4.520 0.660 6.318 05E-1 0.250 5.420 6.141 05E-2 0.550 4.650 6.121 05E-3 1.060 3.610 6.131 05E-4 1.870 2.400 6.110 05E-5 2.340 1.900 6.118 05E-6 2.71 1.58 6.121 MDD46-1-1 0.96 65.48 106 MDD46-1-5 1.370 68.32 135 MDD46-1-10 1.750 60.89 146 MDD46-1-15 2.320 47.56 152 MDD46-1-20 2.750 24.31 96 MDD46-1-25 3.190 19.79 97 MDD46-1-30 3.680 7.93 50 MDD46-1-35 4.150 11.10 88 MDD46-1-40 4.560 14.99 147 MDD46-1-41 4.650 14.29 146 注:J158[41]和05E[42]记录南海深层水10Be/9Be初始通量,结壳
MDD46-1[40]记录太平洋深层水10Be/9Be初始通量。表 4 全球大洋、边缘海结壳主微量元素平均含量
Table 4. Major and trace elements content of Fe-Mn crust from oceans and marginal seas
元素 大西洋 印度洋 南大洋 Non-Prime Zone 北太平洋Prime Zone 加瓜海脊* 菲律宾海盆 加利福利亚湾 南海** 主量元素/% Fe 20.9 22.3 18.1 22.5 16.8 23.92 21.16 23.8 16.01 Mn 14.5 17 21.7 23.4 22.8 18.59 5.08 19.5 15.43 Al 2.2 1.83 1.28 1.8 1.01 5.80 4 1.79 2.02 微量元素/(mg/kg) Co 3608 3291 6167 3733 6655 2258.95 1450 3131 1639.25 Cu 861 1105 1082 1074 982 1077.06 815.3 383 484.88 Ni 2581 2563 4643 3495 4216 2286.86 886.15 2269 2992.88 Th 52 56 15 36 12 63.03 31.66 48 8.68 注:*数据来自Chen[28]以及本研究,**数据来自Guan[54],其他数据来自Hein[1]。 -
[1] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources [J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001
[2] Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014, 13: 273-291.
[3] Koschinsky A, Hein J R. Marine ferromanganese encrustations: archives of changing oceans [J]. Elements, 2017, 13(3): 177-182. doi: 10.2113/gselements.13.3.177
[4] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications [J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. doi: 10.1016/0016-7037(95)00358-4
[5] Christensen J N, Halliday A N, Godfrey L V, et al. Climate and ocean dynamics and the lead isotopic records in Pacific ferromanganese crusts [J]. Science, 1997, 277(5328): 913-918. doi: 10.1126/science.277.5328.913
[6] Burton K W, Ling H F, O'Nions R K. Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic [J]. Nature, 1997, 386(6623): 382-385. doi: 10.1038/386382a0
[7] Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean [J]. Earth and Planetary Science Letters, 2005, 232(3-4): 345-361. doi: 10.1016/j.jpgl.2004.12.009
[8] Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust [J]. Earth and Planetary Science Letters, 2005, 238(1-2): 42-48. doi: 10.1016/j.jpgl.2005.07.016
[9] Klemm V, Frank M, Levasseur S, et al. Seawater osmium isotope evidence for a middle Miocene flood basalt event in ferromanganese crust records [J]. Earth and Planetary Science Letters, 2008, 273(1-2): 175-183. doi: 10.1016/j.jpgl.2008.06.028
[10] 王洋, 方念乔. 80Ma以来海水Os同位素组成曲线的精细特征: 中、西太平洋多金属结壳的记录[J]. 海洋科学, 2020, 44(9):21-28
WANG Yang, FANG Nianqiao. Precise characteristics of Os isotopic composition of seawater since 80 Ma: recorded in polymetallic crusts from CW Pacific [J]. Marine Sciences, 2020, 44(9): 21-28.
[11] Cowen J P, Decarlo E H, Mcgee D L. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount [J]. Marine Geology, 1993, 115(3-4): 289-306. doi: 10.1016/0025-3227(93)90057-3
[12] 苏新, 马维林, 程振波. 中太平洋海山区富钴结壳的钙质超微化石地层学研究[J]. 地球科学——中国地质大学学报, 2004, 29(2):141-147 doi: 10.3321/j.issn:1000-2383.2004.02.003
SU Xin, MA Weilin, CHENG Zhenbo. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 141-147. doi: 10.3321/j.issn:1000-2383.2004.02.003
[13] 张海生, 韩正兵, 雷吉江, 等. 太平洋海山富钴结壳钙质超微化石生物地层学及生长过程[J]. 地球科学——中国地质大学学报, 2014, 39(7):775-783 doi: 10.3799/dqkx.2014.073
ZHANG Haisheng, HAN Zhengbing, LEI Jijiang, et al. Calcareous nannofossil biostratigraphy and growth periods of Co-rich crusts from Pacific seamounts [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(7): 775-783. doi: 10.3799/dqkx.2014.073
[14] 任向文, Pulyaeva I, 吕华华, 等. 麦哲伦海山群MK海山富钴结壳钙质超微化石生物地层学研究[J]. 地学前缘, 2017, 24(1):276-296
REN Xiangwen, Pulyaeva I, LÜ Huahua, et al. Calcareous nannofossil biostratigraphy of a Co-rich ferromanganese crust from seamount MK of Magellan Seamount Cluster [J]. Earth Science Frontiers, 2017, 24(1): 276-296.
[15] Han X Q, Jin X L, Yang S F, et al. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin [J]. Earth and Planetary Science Letters, 2003, 211(1-2): 143-157. doi: 10.1016/S0012-821X(03)00169-9
[16] Josso P, van Peer T, Horstwood M S A, et al. Geochemical evidence of Milankovitch cycles in Atlantic Ocean ferromanganese crusts [J]. Earth and Planetary Science Letters, 2021, 553: 116651. doi: 10.1016/j.jpgl.2020.116651
[17] Ku T L, Kusakabe M, Nelson D E, et al. Constancy of oceanic deposition of 10Be as recorded in manganese crusts [J]. Nature, 1982, 299(5880): 240-242. doi: 10.1038/299240a0
[18] Von Blanckenburg F, O'Nions R K. Response of beryllium and radiogenic isotope ratios in Northern Atlantic Deep Water to the onset of northern hemisphere glaciation [J]. Earth and Planetary Science Letters, 1999, 167(3-4): 175-182. doi: 10.1016/S0012-821X(99)00028-X
[19] Somayajulu B L K. Growth rates of oceanic manganese nodules: implications to their genesis, palaeo-earth environment and resource potential [J]. Current Science, 2000, 78(3): 300-308.
[20] 方志浩, 屠霄霞, 乔志国, 等. 铁锰结壳年代学方法及其应用[J]. 海洋科学, 2019, 43(9):104-113 doi: 10.11759/hykx20190130003
FANG Zhihao, TU Xiaoxia, QIAO Zhiguo, et al. Review and application of dating methods of ferromanganese crusts [J]. Marine Sciences, 2019, 43(9): 104-113. doi: 10.11759/hykx20190130003
[21] Crecelius E A, Carpenter R, Merrill R T. Magnetism and magnetic reversals in ferromanganese nodules [J]. Earth and Planetary Science Letters, 1973, 17(2): 391-396. doi: 10.1016/0012-821X(73)90206-9
[22] Oda H, Usui A, Miyagi I, et al. Ultrafine-scale magnetostratigraphy of marine ferromanganese crust [J]. Geology, 2011, 39(3): 227-230. doi: 10.1130/G31610.1
[23] Noguchi A, Yamamoto Y, Nishi K, et al. Paleomagnetic study of ferromanganese crusts recovered from the northwest Pacific-Testing the applicability of the magnetostratigraphic method to estimate growth rate [J]. Ore Geology Reviews, 2017, 87: 16-24. doi: 10.1016/j.oregeorev.2016.07.018
[24] Yuan W, Zhou H Y, Zhao X X, et al. Magnetic stratigraphic dating of marine hydrogenetic ferromanganese crusts [J]. Scientific Reports, 2017, 7(1): 16748. doi: 10.1038/s41598-017-17077-8
[25] Yi L, Medina-Elizalde M, Kletetschka G, et al. The potential of marine ferromanganese nodules from eastern pacific as recorders of earth's magnetic field changes during the past 4.7 Myr: a geochronological study by magnetic scanning and authigenic 10Be/9Be dating [J]. Journal of Geophysical Research:Solid Earth, 2020, 125(7): e2019JB018639.
[26] Ling H F, Burton K W, O'Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 1-12. doi: 10.1016/S0012-821X(96)00224-5
[27] Chen S, Yin X B, Wang X Y, et al. The geochemistry and formation of ferromanganese oxides on the eastern flank of the Gagua Ridge [J]. Ore Geology Reviews, 2018, 95: 118-130. doi: 10.1016/j.oregeorev.2018.02.026
[28] Du Y J, Zhou W J, Xian F, et al. 10Be signature of the Matuyama-Brunhes transition from the Heqing paleolake basin [J]. Quaternary Science Reviews, 2018, 199: 41-48. doi: 10.1016/j.quascirev.2018.09.020
[29] Tu X X, Zhou H Y, Wang C H, et al. Basin-scale seawater lead isotopic character and its geological evolution indicated by Fe-Mn deposits in the SCS [J]. Marine Georesources & Geotechnology, 2020, 38(7): 876-886.
[30] Cheng H, Edwards R L, Shen C C, et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry [J]. Earth and Planetary Science Letters, 2013, 371-372: 82-91. doi: 10.1016/j.jpgl.2013.04.006
[31] Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor [J]. Nature, 1988, 335(6185): 59-62. doi: 10.1038/335059a0
[32] Liu R L, Wang M Y, Li W Q, et al. Dissolved thorium isotope evidence for export productivity in the subtropical North Pacific during the Late Quaternary [J]. Geophysical Research Letters, 2020, 47(11): e2019GL085995.
[33] Frank M. Radiogenic isotopes: tracers of past ocean circulation and erosional input [J]. Reviews of Geophysics, 2002, 40(1): 1001. doi: 10.1029/2000RG000094
[34] Von Blanckenburg F, Bouchez J. River fluxes to the sea from the ocean's 10Be/9Be ratio [J]. Earth and Planetary Science Letters, 2014, 387: 34-43. doi: 10.1016/j.jpgl.2013.11.004
[35] Beer J, Muscheler R, Wagner G, et al. Cosmogenic nuclides during Isotope Stages 2 and 3 [J]. Quaternary Science Reviews, 2002, 21(10): 1129-1139. doi: 10.1016/S0277-3791(01)00135-4
[36] Frank M, Porcelli D, Andersson P, et al. The dissolved Beryllium isotope composition of the Arctic Ocean [J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6114-6133. doi: 10.1016/j.gca.2009.07.010
[37] Suganuma Y, Yokoyama Y, Yamazaki T, et al. 10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary [J]. Earth and Planetary Science Letters, 2010, 296(3-4): 443-450. doi: 10.1016/j.jpgl.2010.05.031
[38] Simon Q, Thouveny N, Bourlès D L, et al. Increased production of cosmogenic 10Be recorded in oceanic sediment sequences: Information on the age, duration, and amplitude of the geomagnetic dipole moment minimum over the Matuyama–Brunhes transition [J]. Earth and Planetary Science Letters, 2018, 489: 191-202. doi: 10.1016/j.jpgl.2018.02.036
[39] Von Blanckenburg F, O’Nions R K, Belshaw N S, et al. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts [J]. Earth and Planetary Science Letters, 1996, 141(1-4): 213-226. doi: 10.1016/0012-821X(96)00059-3
[40] Cui L F, Hu Y, Dong K J, et al. 10Be/9Be constrain of varying weathering rate since 5 Ma: evidence from a Co-rich ferromanganese crust in the western Pacific [J]. Science Bulletin, 2021, 66(7): 664-666. doi: 10.1016/j.scib.2020.12.022
[41] Zhong Y, Chen Z, Hein J R, et al. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene [J]. Quaternary Science Reviews, 2020, 229: 106106. doi: 10.1016/j.quascirev.2019.106106
[42] Zhong Y, Liu Q S, Chen Z, et al. Tectonic and paleoceanographic conditions during the formation of ferromanganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes [J]. Marine Geology, 2019, 410: 146-163. doi: 10.1016/j.margeo.2018.12.006
[43] Puteanus D, Halbach P. Correlation of Co concentration and growth rate: a method for age determination of ferromanganese crusts [J]. Chemical Geology, 1988, 69(1-2): 73-85. doi: 10.1016/0009-2541(88)90159-3
[44] Wen X, De Carlo E H, Li Y H. Interelement relationships in ferromanganese crusts from the central Pacific ocean: Their implications for crust genesis [J]. Marine Geology, 1997, 136(3-4): 277-297. doi: 10.1016/S0025-3227(96)00064-3
[45] 周怀阳. 深海海底铁锰结核的秘密[J]. 自然杂志, 2015, 37(6):397-404
ZHOU Huaiyang. Metallogenetic mystery of deep sea ferromanganese nodules [J]. Chinese Journal of Nature, 2015, 37(6): 397-404.
[46] Burton K W, Lee D C, Christensen J N, et al. Actual timing of neodymium isotopic variations recorded by Fe-Mn crusts in the western North Atlantic [J]. Earth and Planetary Science Letters, 1999, 171(1): 149-156. doi: 10.1016/S0012-821X(99)00138-7
[47] Neff U, Bollhöfer A, Frank N, et al. Explaining discrepant depth profiles of 234U/238U and 230Thexc in Mn-crusts [J]. Geochimica et Cosmochimica Acta, 1999, 63(15): 2211-2218. doi: 10.1016/S0016-7037(99)00135-0
[48] Henderson G M, Burton K W. Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crusts [J]. Earth and Planetary Science Letters, 1999, 170(3): 169-179. doi: 10.1016/S0012-821X(99)00104-1
[49] Hayes C T. Marine thorium and protactinium distributions: Tools for past and present chemical flux[D]. Doctor Dissertation of Columbia University, 2013.
[50] Claude C, Suhr G, Hofmann A W, et al. U-Th chronology and paleoceanographic record in a Fe-Mn crust from the NE Atlantic over the last 700 ka [J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4845-4854. doi: 10.1016/j.gca.2005.05.016
[51] Huh C A, Ku T L. Distribution of thorium 232 in manganese nodules and crusts: Paleoceanographic implications [J]. Paleoceanography, 1990, 5(2): 187-195. doi: 10.1029/PA005i002p00187
[52] Hsieh Y T, Henderson G M, Thomas A L. Combining seawater 232Th and 230Th concentrations to determine dust fluxes to the surface ocean [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 280-290. doi: 10.1016/j.jpgl.2011.10.022
[53] O'Nions R K, Frank M, Von Blanckenburg F, et al. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans [J]. Earth and Planetary Science Letters, 1998, 155(1-2): 15-28. doi: 10.1016/S0012-821X(97)00207-0
[54] Guan Y, Sun X M, Ren Y Z, et al. Mineralogy, geochemistry and genesis of the polymetallic crusts and nodules from the South China Sea [J]. Ore Geology Reviews, 2017, 89: 206-227. doi: 10.1016/j.oregeorev.2017.06.020
[55] Yuan W, Zhou H Y, Yang Z Y, et al. Magnetite magnetofossils record biogeochemical remanent magnetization in hydrogenetic ferromanganese crusts [J]. Geology, 2020, 48(3): 1-1.