南黄海中部MIS6期以来沉积物稀土元素组成及其物源指示意义

黄龙, 耿威, 陆凯, 田振兴, 张勇, 温珍河. 南黄海中部MIS6期以来沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2023, 43(2): 92-105. doi: 10.16562/j.cnki.0256-1492.2022072501
引用本文: 黄龙, 耿威, 陆凯, 田振兴, 张勇, 温珍河. 南黄海中部MIS6期以来沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2023, 43(2): 92-105. doi: 10.16562/j.cnki.0256-1492.2022072501
HUANG Long, GENG Wei, LU Kai, TIAN Zhenxing, ZHANG Yong, WEN Zhenhe. Rare earth element composition and provenance implication of sediments in the Central South Yellow Sea since MIS6[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 92-105. doi: 10.16562/j.cnki.0256-1492.2022072501
Citation: HUANG Long, GENG Wei, LU Kai, TIAN Zhenxing, ZHANG Yong, WEN Zhenhe. Rare earth element composition and provenance implication of sediments in the Central South Yellow Sea since MIS6[J]. Marine Geology & Quaternary Geology, 2023, 43(2): 92-105. doi: 10.16562/j.cnki.0256-1492.2022072501

南黄海中部MIS6期以来沉积物稀土元素组成及其物源指示意义

  • 基金项目: 中国地质调查局地质调查专项项目(DD20190205,DD20190208,DD20221710,DD20191003)
详细信息
    作者简介: 黄龙(1983—),男,高级工程师,主要从事海洋地质研究,E-mail:huanglong0919@126.com
    通讯作者: 陆凯(1978—),男,正高级工程师,主要从事海洋地质调查与研究,E-mail:qimg_luk@163.com
  • 中图分类号: P736.21

Rare earth element composition and provenance implication of sediments in the Central South Yellow Sea since MIS6

More Information
  • 对南黄海中部SYSC-1孔0~30 m段岩芯稀土元素(REE)和粒度进行分析,结合年代测定,研究了沉积物REE组成特征及其影响因素,并对其物质来源变化进行了探讨。结果表明,∑REE含量为111.66~231.12 μg/g,垂向分布变化较大,均值与中国黄土∑REE均值比较接近。∑REE与粒度变化有一定的相关性,但(La/Yb)N、(Gd/Yb)N和(δEu)N等参数受粒级影响较小。稀土元素分异参数有效示踪了物质来源,与周边河流对比发现,SYSC-1孔沉积物(La/Yb)N和(δEu)N散点图分布位置与黄河和长江较为一致,而与朝鲜半岛河流有明显不同。REE判别函数(DF)的物源区分结果表明,钻孔MIS6期经历了一次大的物源转换,沉积物由长江源(27.98~30 m)转为黄河源(24.24~27.98 m)。MIS5.5—MIS5.1期间(24.24~16.98 m)发育了浅水陆架冷水团沉积,主要是长江源细颗粒沉积物被古黄海暖流由南往北携带而来,并在冷涡区附近沉积下来。MIS5.1—MIS1期间(16.98~3 m)的低海平面时间较长,主要发育了一套滨浅海相-河口/潮坪相-三角洲相沉积,随着海平面急剧下降,陆架可容纳空间缩小,导致黄河、长江入海口向陆架区移动,黄河沉积物质控制了钻孔所处的南黄海北部区域。MIS1中晚期,山东半岛沿岸流的形成将黄河沉积物质主要控制在南黄海西部附近海域,而黄海暖流将济州岛西南部泥质区的长江源细颗粒物质搬运至SYSC-1孔附近的冷涡区沉积下来。总体来说,MIS6期以来南黄海中部海域沉积演化是西太平洋边缘海河海相互作用的一个典型范例,海平面波动和海洋环流变化在物源转换过程中发挥了重要作用。

  • 加载中
  • 图 1  SYSC-1孔及周边钻孔[1,20,33,35-37]位置分布图

    Figure 1. 

    图 2  SYSC-1孔稀土元素相关参数及海平面变化曲线[23]

    Figure 2. 

    图 3  SYSC-1孔与周边主要河流稀土元素上陆壳标准化配分模式

    Figure 3. 

    图 4  SYSC-1孔稀土元素特征参数与平均粒径相关性

    Figure 4. 

    图 5  SYSC-1孔不同层位沉积物(La/Yb)N与(δEu)N投点判别物源图

    Figure 5. 

    图 6  SYSC-1孔沉积物REE判别函数(DF)物源区分图

    Figure 6. 

    表 1  SYSC-1孔AMS14C和光释光(OSL)测年结果

    Table 1.  AMS14C and OSL ages in core SYSC-1

    测年方法深度/m材料δ13C/‰惯用年龄/aBP日历年龄/cal.aBPBeta-No.
    中值范围
    AMS14C0.40有孔虫01800±3013471205~14885520578
    3.20有孔虫−2.89960±301090110705~110975520579
    7.00贝壳−9.1>43500528761
    OSL深度/mU/10−6TH/10−6K/%含水率/%剂量率/ (Gy/ka)等效剂量 /GyOSL/ka
    3.701.71±0.39.37±0.61.97±0.0422±50.92±0.0858.2±0.863.4±5.2
    6.002.81±0.310.02±0.61.91±0.0420±53.02±0.23186.5±5.861.8±5.0
    7.002.08±0.310.02±0.61.85±0.0418±52.85±0.22166.6±7.658.4±5.2
    9.301.65±0.39.57±0.71.92±0.0320±52.70±0.21180.2±6.566.8±5.7
    11.501.7±0.310.52±0.61.77±0.0321±52.63±0.20172.5±2.465.6±5.0
    12.601.96±0.310.68±0.61.87±0.0319±52.85±0.22180.2±4.363.3±5.1
    14.701.11±0.36.27±0.61.79±0.0316±52.25±0.18174.5±8.277.6±7.2
    15.701.71±0.39.13±0.61.75±0.0319±52.59±0.19289.1±17.0111.7±10.6*
    23.901.81±0.39.52±0.61.83±0.0319±52.71±0.21328±17121±11*
    26.641.91±0.39.43±0.61.88±0.0320±52.72±0.21325±20119±12*
    29.501.77±0.310.31±0.61.97±0.0320±52.82±0.22350.2±15.4129±13*
     *光释光年龄超过极限值,仅做参考使用。
    下载: 导出CSV

    表 2  SYSC-1孔沉积物各稀土元素含量

    Table 2.  Contents of rare earth elements of core SYSC-1 sediments

    沉积物MZ/ΦLaCePrNdSmEuGdTbDyHoErTmYbLu∑REE(δCe)N(δEu)N(La/Yb)N(La/Sm)N(Gd/Yb)N
    SYSC-1最大值7.8650.0894.3411.3042.078.241.727.011.175.991.293.510.543.450.51231.120.970.7010.833.961.77
    最小值5.0824.1745.595.2520.173.920.793.450.563.040.671.790.281.710.27111.660.920.658.943.561.53
    平均值6.7540.9178.259.1334.256.631.345.640.934.831.042.800.442.740.41189.350.950.689.843.761.65
    黄河[4]31.0061.807.1526.905.020.974.920.653.900.722.290.302.160.30148.080.970.609.483.761.83
    黄河[26]28.9753.927.0726.674.991.044.650.753.920.842.230.352.050.31137.760.880.679.333.541.82
    长江[26]36.0965.088.3332.606.091.305.580.854.710.982.560.372.230.33167.100.880.6910.693.612.01
    长江[4]39.5078.708.8733.606.371.305.980.824.740.892.710.352.480.35186.660.980.6510.523.781.94
    锦江[39]59.28103.1012.8138.356.611.335.200.794.040.762.010.291.770.27236.610.880.7022.125.472.36
    汉江[39]76.94140.5016.4744.217.501.526.561.085.311.262.760.483.090.46308.140.920.6716.446.251.70
    荣山江[39]46.0578.0310.0931.165.451.154.370.693.640.701.980.291.810.30185.710.850.7316.805.151.94
    球粒陨石[40]0.320.810.120.600.190.070.260.050.330.070.210.030.210.03
    上陆壳[41]30.0064.007.1026.004.500.883.800.643.500.802.300.332.200.32
     La-∑REE含量(μg/g);球粒陨石标准化值据文献[39] (以下标N表示)。
    下载: 导出CSV
  • [1]

    Liu J, Zhang X H, Mei X, et al. The sedimentary succession of the last ~3.50 Myr in the western South Yellow Sea: paleoenvironmental and tectonic implications [J]. Marine Geology, 2018, 399: 47-65. doi: 10.1016/j.margeo.2017.11.005

    [2]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea [J]. Marine Geology, 2010, 278(1-4): 54-76. doi: 10.1016/j.margeo.2010.09.003

    [3]

    Yang S Y, Jung H S, Lim D I, et al. A review on the provenance discrimination of sediments in the Yellow Sea [J]. Earth-Science Reviews, 2003, 63(1-2): 93-120. doi: 10.1016/S0012-8252(03)00033-3

    [4]

    窦衍光, 李军, 杨守业. 山东半岛东部海域表层沉积物元素组成及物源指示意义[J]. 海洋学报, 2012, 34(1):109-119

    DOU Yanguang, LI Jun, YANG Shouye. Element compositions and provenance implication of surface sediments in offshore areas of the eastern Shandong Peninsula in China [J]. Acta Oceanologica Sinica, 2012, 34(1): 109-119.

    [5]

    Liu J P, Milliman J D, Gao S, et al. Holocene development of the Yellow River’s subaqueous delta, North Yellow Sea [J]. Marine Geology, 2004, 209(1-4): 45-67. doi: 10.1016/j.margeo.2004.06.009

    [6]

    Yang S Y, Youn J S. Geochemical compositions and provenance discrimination of the central South Yellow Sea sediments [J]. Marine Geology, 2007, 243(1-4): 229-241. doi: 10.1016/j.margeo.2007.05.001

    [7]

    Gao X B, Ou J, Guo S Q, et al. Sedimentary history of the coastal plain of the south Yellow Sea since 5.1 Ma constrained by high-resolution magnetostratigraphy of onshore borehole core GZK01 [J]. Quaternary Science Reviews, 2020, 239: 106355. doi: 10.1016/j.quascirev.2020.106355

    [8]

    杨子赓. Olduvai亚时以来南黄海沉积层序及古地理变迁[J]. 地质学报, 1993, 67(4):357-366

    YANG Zigeng. The sedimentary sequence and palaeogeographic changes of the South Yellow Sea since the Olduvai subchron [J]. Acta Geologica Sinica, 1993, 67(4): 357-366.

    [9]

    Lee H J, Chough S K. Sediment distribution, dispersal and budget in the Yellow Sea [J]. Marine Geology, 1989, 87(2-4): 195-205. doi: 10.1016/0025-3227(89)90061-3

    [10]

    秦蕴珊, 赵一阳, 陈丽蓉, 等. 黄海地质[M]. 北京: 科学出版社, 1989: 1-289

    QIN Yunshan, ZHAO Yiyang, CHEN Lirong, et al. Geology in the Yellow Sea[M]. Beijing: Science Press, 1989: 1-289.

    [11]

    Lee H J, Chu Y S. Origin of inner-shelf mud deposit in the southeastern Yellow Sea: Huksan mud belt [J]. Journal of Sedimentary Research, 2001, 71(1): 144-154. doi: 10.1306/040700710144

    [12]

    赵一阳, 李凤业, 秦朝阳, 等. 试论南黄海中部泥的物源及成因[J]. 地球化学, 1991, 20(2):112-117 doi: 10.3321/j.issn:0379-1726.1991.02.002

    ZHAO Yiyang, LI Fengye, QIN Zhaoyang, et al. Source and genesis of mud in the central part of the South Yellow Sea in special reference to geochemical data [J]. Geochimica, 1991, 20(2): 112-117. doi: 10.3321/j.issn:0379-1726.1991.02.002

    [13]

    Chough S K, Kwon S T, Ree J H, et al. Tectonic and sedimentary evolution of the Korean peninsula: a review and new view [J]. Earth-Science Reviews, 2000, 52(1-3): 175-235. doi: 10.1016/S0012-8252(00)00029-5

    [14]

    Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea [J]. Marine Geology, 2007, 240(1-4): 169-176. doi: 10.1016/j.margeo.2007.02.008

    [15]

    Dong L X, Guan W B, Chen Q, et al. Sediment transport in the Yellow Sea and East China Sea [J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 248-258. doi: 10.1016/j.ecss.2011.04.003

    [16]

    Zhang J Q, Liu J, Wang H X, et al. Characteristics and provenance implication of detrital minerals since Marine Isotope Stage 3 in Core SYS-0701 in the western South Huanghai Sea [J]. Acta Oceanologica Sinica, 2013, 32(4): 49-58. doi: 10.1007/s13131-013-0281-9

    [17]

    Pico T, Mitrovica J X, Ferrier K L, et al. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta [J]. Quaternary Science Reviews, 2016, 152: 72-79. doi: 10.1016/j.quascirev.2016.09.012

    [18]

    Zhang J, Wan S M, Clift P D, et al. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing? [J]. Quaternary Science Reviews, 2019, 216: 74-88. doi: 10.1016/j.quascirev.2019.06.002

    [19]

    Huang J, Wan S M, Zhang J, et al. Mineralogical and isotopic evidence for the sediment provenance of the western South Yellow Sea since MIS 3 and implications for paleoenvironmental evolution [J]. Marine Geology, 2019, 414: 103-117. doi: 10.1016/j.margeo.2019.05.011

    [20]

    蓝先洪, 张宪军, 赵广涛, 等. 南黄海NT1孔沉积物稀土元素组成与物源判别[J]. 地球化学, 2009, 38(2):123-132 doi: 10.3321/j.issn:0379-1726.2009.02.003

    LAN Xianhong, ZHANG Xianjun, ZHAO Guangtao, et al. Distributions of rare earth elements in sediments from Core NT1 of the South Yellow Sea and their provenance discrimination [J]. Geochimica, 2009, 38(2): 123-132. doi: 10.3321/j.issn:0379-1726.2009.02.003

    [21]

    Sun Z Y, Li G, Yin Y. The Yangtze River deposition in southern Yellow Sea during marine oxygen isotope stage 3 and its implications for sea-level changes [J]. Quaternary Research, 2015, 83(1): 204-215. doi: 10.1016/j.yqres.2014.08.008

    [22]

    Su M, Yao P, Wang Z B, et al. Exploratory morphodynamic hindcast of the evolution of the abandoned Yellow River delta, 1578-1855 CE [J]. Marine Geology, 2017, 383: 99-119. doi: 10.1016/j.margeo.2016.11.007

    [23]

    Xue C T, Qin Y C, Ye S Y, et al. Evolution of Holocene ebb-tidal clinoform off the Shandong Peninsula on East China Sea shelf [J]. Earth-Science Reviews, 2018, 177: 478-496. doi: 10.1016/j.earscirev.2017.12.012

    [24]

    王中波, 张江勇, 梅西, 等. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境[J]. 中国地质, 2020, 47(5):1370-1394

    WANG Zhongbo, ZHANG Jiangyong, MEI Xi, et al. The stratigraphy and depositional environments of China’s sea shelves since MIS5(74-128)ka [J]. Geology in China, 2020, 47(5): 1370-1394.

    [25]

    张现荣, 李军, 窦衍光, 等. 辽东湾东南部海域柱状沉积物稀土元素地球化学特征与物源识别[J]. 沉积学报, 2014, 32(4):684-691 doi: 10.14027/j.cnki.cjxb.2014.04.002

    ZHANG Xianrong, LI Jun, DOU Yanguang, et al. REE Geochemical characteristics and provenance discrimination of core LDC30 in the southeastern part of Liaodong bay [J]. Acta Sedimentologica Sinica, 2014, 32(4): 684-691. doi: 10.14027/j.cnki.cjxb.2014.04.002

    [26]

    杨守业, 李从先. 长江与黄河沉积物REE地球化学及示踪作用[J]. 地球化学, 1999, 28(4):374-380 doi: 10.3321/j.issn:0379-1726.1999.04.008

    YANG Shouye, LI Congxian. REE geochemistry and tracing application in the Yangtze River and the Yellow River sediments [J]. Geochimica, 1999, 28(4): 374-380. doi: 10.3321/j.issn:0379-1726.1999.04.008

    [27]

    赵一阳, 王金土, 秦朝阳, 等. 中国大陆架海底沉积物中的稀土元素[J]. 沉积学报, 1990, 8(1):37-43 doi: 10.14027/j.cnki.cjxb.1990.01.005

    ZHAO Yiyang, WANG Jintu, QIN Chaoyang, et al. Rare- earth elements in continental shelf sediments of the China Seas [J]. Acta Sedimentologica Sinica, 1990, 8(1): 37-43. doi: 10.14027/j.cnki.cjxb.1990.01.005

    [28]

    蓝先洪, 申顺喜. 南黄海中部沉积岩心的稀土元素地球化学特征[J]. 海洋通报, 2002, 21(5):46-53 doi: 10.3969/j.issn.1001-6392.2002.05.007

    LAN Xianhong, SHEN Shunxi. Geochemical characteristics of rare earth elements of sediment cores from the central South Yellow Sea [J]. Marine Science Bulletin, 2002, 21(5): 46-53. doi: 10.3969/j.issn.1001-6392.2002.05.007

    [29]

    王贤觉, 陈毓蔚, 雷剑泉, 等. 东海大陆架海底沉积物稀土元素地球化学研究[J]. 地球化学, 1982, 11(1):56-65 doi: 10.3321/j.issn:0379-1726.1982.01.008

    WANG Xianjue, CHEN Yuwei, LEI Jianquan, et al. REE geochemistry in sea-floor sediments in the continental shelf of East China Sea [J]. Geochimica, 1982, 11(1): 56-65. doi: 10.3321/j.issn:0379-1726.1982.01.008

    [30]

    吴明清. 我国台湾浅滩海底沉积物稀土元素地球化学[J]. 地球化学, 1983, 30(3):303-313 doi: 10.3321/j.issn:0379-1726.1983.03.010

    WU Mingqing. REE geochemistry of sea-floor sediments from the Taiwan shallow, China [J]. Geochimica, 1983, 30(3): 303-313. doi: 10.3321/j.issn:0379-1726.1983.03.010

    [31]

    窦衍光, 李军, 李炎. 北部湾东部海域表层沉积物稀土元素组成及物源指示意义[J]. 地球化学, 2012, 41(2):147-157 doi: 10.3969/j.issn.0379-1726.2012.02.006

    DOU Yanguang, LI Jun, LI Yan. Rare earth element compositions and provenance implication of surface sediments in the eastern Beibu Gulf [J]. Geochimica, 2012, 41(2): 147-157. doi: 10.3969/j.issn.0379-1726.2012.02.006

    [32]

    管秉贤. 黄、东海浅海水文学的主要特征[J]. 黄渤海海洋, 1985, 3(4):1-10

    GUAN Bingxian. Major features of the shallow water hydrography in the East China Sea and Huanghai Sea [J]. Journal of Oceanography of Huanghai & Bohai Seas, 1985, 3(4): 1-10.

    [33]

    Wang W J, Jiang W S. Study on the seasonal variation of the suspended sediment distribution and transportation in the East China Seas based on SeaWiFS data [J]. Journal of Ocean University of China, 2008, 7(4): 385-392. doi: 10.1007/s11802-008-0385-6

    [34]

    Pang Y M, Guo X W, Han Z Z, et al. Mesozoic–Cenozoic denudation and thermal history in the Central Uplift of the South Yellow Sea Basin and the implications for hydrocarbon systems: constraints from the CSDP-2 borehole [J]. Marine and Petroleum Geology, 2019, 99: 355-369. doi: 10.1016/j.marpetgeo.2018.10.027

    [35]

    刘健, 段宗奇, 梅西, 等. 南黄海中部隆起晚新近纪: 第四纪沉积序列的地层划分与沉积演化[J]. 海洋地质与第四纪地质, 2021, 41(5):25-43

    LIU Jian, DUAN Zongqi, MEI Xi, et al. Stratigraphic classification and sedimentary evolution of the late Neogene to Quaternary sequence on the Central Uplift of the South Yellow Sea [J]. Marine Geology Quaternary Geology, 2021, 41(5): 25-43.

    [36]

    蓝先洪, 张志珣, 李日辉, 等. 南黄海NT2孔沉积物物源研究[J]. 沉积学报, 2010, 28(6):1182-1189 doi: 10.14027/j.cnki.cjxb.2010.06.006

    LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Provenance study of sediments in core NT2 of the South Yellow Sea [J]. Acta Sedimentologica Sinica, 2010, 28(6): 1182-1189. doi: 10.14027/j.cnki.cjxb.2010.06.006

    [37]

    王飞飞, 张勇, 仇建东, 等. 山东半岛南部近岸海域晚第四纪以来有孔虫和介形类化石群落分布特征及古环境演化[J]. 微体古生物学报, 2014, 31(2):130-146

    WANG Feifei, ZHANG Yong, QIU Jiandong, et al. Late quaternary distribution characters of foraminifera and ostracoda in the offshore area of Southern Shandong Peninsula and paleoenvironmental evolution [J]. Acta Micropalaeontologica Sinica, 2014, 31(2): 130-146.

    [38]

    Lai Z P. Testing the use of an OSL standardised growth curve (SGC) for determination on quartz from the Chinese Loess Plateau [J]. Radiation Measurements, 2006, 41(1): 9-16. doi: 10.1016/j.radmeas.2005.06.031

    [39]

    杨子赓, 林和茂, 王圣洁, 等. 对末次间冰期南黄海古冷水团沉积的探讨[J]. 海洋地质与第四纪地质, 1998, 18(1):48-55,57-59 doi: 10.16562/j.cnki.0256-1492.1998.01.007

    YANG Zigeng, LIN Hemao, WANG Shengjie, et al. A study of the ancient Cold Water Mass sediments in South Yellow Sea during Last Interglacial [J]. Marine Geology & Quaternary Geology, 1998, 18(1): 48-55,57-59. doi: 10.16562/j.cnki.0256-1492.1998.01.007

    [40]

    杨守业, 李从先, Lee C B, 等. 黄海周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报, 2003, 48(11):1135-1139 doi: 10.3321/j.issn:0023-074X.2003.11.004

    YANG Shouye, LI Congxian, Lee C B, et al. REE geochemistry of suspended sediments from the rivers around the Yellow Sea and provenance indicators [J]. Chinese Science Bulletin, 2003, 48(11): 1135-1139. doi: 10.3321/j.issn:0023-074X.2003.11.004

    [41]

    Masuda A, Nakamura N, Tanaka T. Fine structures of mutually normalized rare-earth patterns of chondrites [J]. Geochimica et Cosmochimica Acta, 1973, 37(2): 239-248. doi: 10.1016/0016-7037(73)90131-2

    [42]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Melbourne: Blackwell, 1985: 29-45.

    [43]

    乔淑卿, 杨作升. 长江和黄河入海沉积物不同粒级组分中稀土元素的比较[J]. 海洋地质与第四纪地质, 2007, 27(6):9-16 doi: 10.16562/j.cnki.0256-1492.2007.06.011

    QIAO Shuqing, YANG Zuosheng. Comparison of rare earth element compositions in different grain-size fractions of sediments from the Yangtze and Yellow Rivers and the sea [J]. Marine Geology & Quaternary Geology, 2007, 27(6): 9-16. doi: 10.16562/j.cnki.0256-1492.2007.06.011

    [44]

    Yang S Y, Jung H S, Li C X. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments [J]. Sedimentary Geology, 2004, 164(1-2): 19-34. doi: 10.1016/j.sedgeo.2003.08.001

    [45]

    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4): 309-323. doi: 10.1016/S0031-0182(97)00069-2

    [46]

    Condie K C. Another look at rare earth elements in shales[J]. Geochimica et Cosmochimica Acta ,1991 ,55(9):2527-2531.

    [47]

    李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3):51-56 doi: 10.16562/j.cnki.0256-1492.2001.03.008

    LI Shuanglin, LI Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea [J]. Marine Geology and Quaternary Geology, 2001, 21(3): 51-56. doi: 10.16562/j.cnki.0256-1492.2001.03.008

    [48]

    王忠蕾, 梅西, 郑洪波, 等. 辽东湾北部JXC-1孔稀土元素组成与物源判别[J]. 第四纪研究, 2021, 41(1):28-42 doi: 10.11928/j.issn.1001-7410.2021.01.03

    WANG Zhonglei, MEI Xi, ZHENG Hongbo, et al. Rare earth element compositions and provenance of sediments from core JXC-1 in the northern Liaodong Bay [J]. Quaternary Sciences, 2021, 41(1): 28-42. doi: 10.11928/j.issn.1001-7410.2021.01.03

    [49]

    黎兵, 魏子新, 李晓, 等. 长江三角洲第四纪沉积记录与古环境响应[J]. 第四纪研究, 2011, 31(2):316-328 doi: 10.3969/j.issn.1001-7410.2011.02.14

    LI Bing, WEI Zixin, LI Xiao, et al. Records from quaternary sediment and palaeo-environment in the Yangtze River delta [J]. Quaternary Sciences, 2011, 31(2): 316-328. doi: 10.3969/j.issn.1001-7410.2011.02.14

    [50]

    Mei X, Li R H, Zhang X H, et al. Evolution of the Yellow Sea warm current and the Yellow Sea cold water mass since the Middle Pleistocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 442: 48-60. doi: 10.1016/j.palaeo.2015.11.018

    [51]

    Hori K, Saito Y, Zhao Q, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to Late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884

    [52]

    黄龙, 张志珣, 耿威, 等. 闽浙沿岸东部海域表层沉积物粒度特征及其沉积环境[J]. 海洋地质与第四纪地质, 2014, 34(6):161-169

    HUANG Long, ZHANG Zhixun, GENG Wei, et al. Grain size of surface sediments in the Eastern Min-Zhe Coast: an indicator of sedimentary environments [J]. Marine Geology and Quaternary Geology, 2014, 34(6): 161-169.

    [53]

    Li J, Hu B Q, Wei H L, et al. Provenance variations in the Holocene deposits from the southern Yellow Sea: clay mineralogy evidence [J]. Continental Shelf Research, 2014, 90: 41-51. doi: 10.1016/j.csr.2014.05.001

    [54]

    Hu B Q, Yang Z S, Qiao S Q, et al. Holocene shifts in riverine fine-grained sediment supply to the East China Sea Distal Mud in response to climate change [J]. The Holocene, 2014, 24(10): 1253-1268. doi: 10.1177/0959683614540963

    [55]

    黄龙, 王中波, 耿威, 等. 东海东北部海域表层沉积物黏土矿物来源及输运[J]. 地球科学, 2020, 45(7):2722-2734

    HUANG Long, WANG Zhongbo, GENG Wei, et al. Sources and transport of clay minerals in surface sediments of the Northeastern East China Sea [J]. Earth Science, 2020, 45(7): 2722-2734.

    [56]

    薛春汀, 周永青, 朱雄华. 晚更新世末至公元前7世纪的黄河流向和黄河三角洲[J]. 海洋学报, 2004, 26(1):48-61

    XUE Chunting, ZHOU Yongqing, ZHU Xionghua. The Huanghe River course and delta from end of late Pleistocene to the 7th Century BC [J]. Acta Oceanologica Sinica, 2004, 26(1): 48-61.

    [57]

    Saito Y, Yang Z S, Hori K. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene [J]. Geomorphology, 2001, 41(2-3): 219-231. doi: 10.1016/S0169-555X(01)00118-0

    [58]

    密蓓蓓, 张勇, 梅西, 等. 中国东部海域表层沉积物稀土元素赋存特征及物源探讨[J]. 中国地质, 2020, 47(5):1530-1541

    MI Beibei, ZHANG Yong, MEI Xi, et al. The rare earth element content in surface sediments of coastal areas in eastern China’s sea areas and an analysis of material sources [J]. Geology in China, 2020, 47(5): 1530-1541.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1605
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2022-07-25
修回日期:  2022-09-05
刊出日期:  2023-04-28

目录